Weak Annihilation in Non-leptonic B Decays

Philipp Böer

work in progress with Matthias Neubert and Michel Stillger

partly based on: PB '18 [PhD thesis] (form factor for NR bound states)

SCET 2023 (Berkeley) 28 March 2023

Non-Leptonic B Decays

- provide insights into flavor-changing interactions
 - $\rightarrow~$ CP-violation and extraction of CKM parameters
 - \rightarrow sensitive to electroweak penguin contributions (probe of new physics)
 - \rightarrow puzzles in $B \rightarrow D\pi$, DK and $B \rightarrow \pi\pi, \pi K$ decays

e.g. [Bordone et al. '20, Biswas et al. '23]

challenging QCD dynamics due to purely hadronic final states

- ightarrow exploit scale hierarchy $m_b \sim E_{\pi,K} \gg \Lambda_{
 m QCD}$
- ightarrow factorization for $m_b
 ightarrow \infty$ known since more than two decades

[BBNS '99, Bauer, Rothstein, Stewart '04]

QCD Factorization (charmless final states)

SCET_I operators:

$$\begin{split} \mathcal{O}^{\mathrm{I}} &\sim [\bar{\chi}_{\mathcal{C}} h_{\mathcal{V}}] [\bar{\chi}_{\bar{\mathcal{C}}} \not\!\!/ \gamma_5 \chi_{\bar{\mathcal{C}}}] \\ \mathcal{O}^{\mathrm{II}} &\sim [\bar{\chi}_{\mathcal{C}} \, \mathcal{A}_{\mathcal{C},\perp} h_{\mathcal{V}}] [\bar{\chi}_{\bar{\mathcal{C}}} \not\!\!/ \gamma_5 \chi_{\bar{\mathcal{C}}}] \end{split}$$

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle \sim \mathcal{F}^{B \to M_1} (q^2 = 0) \int_0^1 \mathrm{d}x \, \mathbf{T}_i^{\mathrm{I}}(x) \, \phi_{M_2}(x)$$

$$+ \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \int_0^1 \mathrm{d}x \, \mathrm{d}y \, \mathbf{T}_i^{\mathrm{II}}(x, y, \omega) \, \phi_{M_1}(y) \, \phi_{M_2}(x) \, \phi_B^+(\omega)$$

perturbative hard-scattering kernels T_i^{I,II}

(hard/hard-collinear matching coefficients)

convoluted with LCDAs for heavy and light mesons

(soft/collinear functions in SCET_{II})

● form factor *F^{B→M}*¹ absorbs all endpoint-divergent convolutions

QCD Factorization (charmless final states)

SCET_I operators:

$$\begin{split} \mathcal{O}^{\mathrm{I}} &\sim [\bar{\chi}_{\mathcal{C}} h_{\mathcal{V}}] [\bar{\chi}_{\bar{\mathcal{C}}} \not\!\!/ \gamma_5 \chi_{\bar{\mathcal{C}}}] \\ \mathcal{O}^{\mathrm{II}} &\sim [\bar{\chi}_{\mathcal{C}} \, \mathcal{A}_{\mathcal{C},\perp} h_{\mathcal{V}}] [\bar{\chi}_{\bar{\mathcal{C}}} \not\!\!/ \gamma_5 \chi_{\bar{\mathcal{C}}}] \end{split}$$

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle \sim \mathcal{F}^{B \to M_1} (q^2 = 0) \int_0^1 dx \, \mathbf{T}_i^{\mathrm{I}}(x) \, \phi_{M_2}(x)$$

$$+ \int_0^\infty \frac{d\omega}{\omega} \int_0^1 dx \, dy \, \mathbf{T}_i^{\mathrm{II}}(x, y, \omega) \, \phi_{M_1}(y) \, \phi_{M_2}(x) \, \phi_B^+(\omega)$$

- perturbative hard-scattering kernels *T*^{I,II} (hard/hard-collinear matching coefficients)
 convoluted with LCDAs for heavy and light mesons (soft/collinear functions in SCET_{II})
- form factor *F^{B→M}*¹ absorbs all endpoint-divergent convolutions

State of the art:

- (N)NLO scattering kernels
- 3-loop (2-loop) anomalous dimension for ϕ_M (ϕ_B^+)
- QEDF

e.g. [Bell, Beneke, Huber, Li '07-20]

[Braun et al. '17+19]

[Beneke, PB, Finauri, Toelstede, Vos '20-22]

QCD Factorization (charmless final states)

SCET_I operators:

$$\begin{split} \mathcal{O}^{\mathrm{I}} &\sim [\bar{\chi}_{\mathcal{C}} h_{\mathcal{V}}] [\bar{\chi}_{\bar{\mathcal{C}}} \not\!\!/ \gamma_5 \chi_{\bar{\mathcal{C}}}] \\ \mathcal{O}^{\mathrm{II}} &\sim [\bar{\chi}_{\mathcal{C}} \, \mathcal{A}_{\mathcal{C},\perp} h_{\mathcal{V}}] [\bar{\chi}_{\bar{\mathcal{C}}} \not\!\!/ \gamma_5 \chi_{\bar{\mathcal{C}}}] \end{split}$$

$$\langle M_1 M_2 | Q_i | \bar{B} \rangle \sim F^{B \to M_1} (q^2 = 0) \int_0^1 \mathrm{d}x \, \mathbf{T}_i^{\mathrm{I}}(x) \, \phi_{M_2}(x)$$

$$+ \int_0^\infty \frac{\mathrm{d}\omega}{\omega} \int_0^1 \mathrm{d}x \, \mathrm{d}y \, \mathbf{T}_i^{\mathrm{II}}(x, y, \omega) \, \phi_{M_1}(y) \, \phi_{M_2}(x) \, \phi_B^+(\omega)$$

perturbative hard-scattering kernels T_i^{I,II}

(hard/hard-collinear matching coefficients)

convoluted with LCDAs for heavy and light mesons

(soft/collinear functions in SCET_{II})

● form factor F^{B→M1} absorbs all endpoint-divergent convolutions

factorization of power-corrections $\sim \Lambda_{had}/m_b \simeq 0.2$ unknown!

Weak Annihilation

Topology where the constituents of the ${\it B}$ are annihilated in weak vertex

 \rightarrow e.g. annihilation dominated decay $\bar{B}_d \rightarrow K^+ K^-$

- Why power-suppressed?
 - \rightarrow purely hard interactions (no 1/ ω enhancement from hard-collinear spectator quark)
 - \rightarrow *B*-meson described by decay constant *f*_{*B*}

Weak Annihilation

Topology where the constituents of the B are annihilated in weak vertex

 \rightarrow e.g. annihilation dominated decay $\bar{B}_{d} \rightarrow {\cal K}^+ {\cal K}^-$

- Why power-suppressed?
 - \rightarrow purely hard interactions (no 1/ ω enhancement from hard-collinear spectator quark)
 - \rightarrow *B*-meson described by decay constant *f*_{*B*}
- standard hard-scattering approach gives endpoint-singularities: $(\phi(x) \simeq 6x\bar{x})$ [BBNS '01]

$$A \sim f_{B}f_{K}^{2} \int_{0}^{1} dx \int_{0}^{1} dy \, \phi_{K^{+}}(x) \phi_{K^{-}}(y) \left[\frac{1}{y(1-x\bar{y})} + \frac{1}{\bar{x}^{2}y} \right]$$

consistent treatment would be a major step in controlling the underlying power-expansion

Interlude: non-relativistic bound states

In the limit $m_b \gg m_q = m_c \gg \Lambda$ the mesons are entirely dominated by 2-particle Fock states.

- √ quark masses provide physical IR cut-off
- \checkmark relativistic corrections at $\mu_s \sim \mu_c \sim m_q$ perturbative

Interlude: non-relativistic bound states

In the limit $m_b \gg m_q = m_c \gg \Lambda$ the mesons are entirely dominated by 2-particle Fock states.

- √ quark masses provide physical IR cut-off
- \checkmark relativistic corrections at $\mu_s \sim \mu_c \sim m_q$ perturbative, e.g.:

 \rightarrow requires rapidity regulator α in endpoint-divergent inverse moments

Interlude: non-relativistic bound states

In the limit $m_b \gg m_q = m_c \gg \Lambda$ the mesons are entirely dominated by 2-particle Fock states.

- √ quark masses provide physical IR cut-off
- \checkmark relativistic corrections at $\mu_s \sim \mu_c \sim m_q$ perturbative

In [PB '18] I have shown that endpoint-divergences in α exponentiate

$$\int_{0}^{1} \frac{dx}{\bar{x}^{2}} \phi_{\eta_{c}}(x) \sim \exp\left\{\frac{1}{\alpha} \left(\frac{\nu}{2E}\right)^{\alpha} \times f(\mu/m_{c})\right\}$$
 "collinear anomaly" [Becher,Neubert '10]

 $\rightarrow~$ they cancel in products with divergent moments of the B-LCDA in e.g. form factors $\rightarrow~$ looks like standard SCET_{II} problem. . .

... it's **not**! It's a nested integral problem!

NR bound states - refactorization

What is the all-order $\bar{x} = 1 - x \rightarrow 0$ asymptotics of the bare charmonium LCDA?

ightarrow determined by soft (or soft-collinear) limit of coll. field that carries momentum fraction $ar{x}$:

$$egin{aligned} &\langle \eta_{c}(p) | \, ar{\chi}_{c}(0) rac{ec{n}}{2} \gamma_{5\chi_{c}}(s ar{n}) \, | 0
angle = - \mathit{i} \mathit{E} \mathit{f}_{\eta_{c}} \int_{0}^{1} \mathit{d} ar{x} \, e^{\mathit{i} ar{x} s ar{n} p} \, \phi_{\eta_{c}}(x) \end{aligned}$$

NR bound states - refactorization

What is the all-order $\bar{x} = 1 - x \rightarrow 0$ asymptotics of the bare charmonium LCDA?

 \rightarrow determined by soft (or soft-collinear) limit of coll. field that carries momentum fraction \bar{x} :

$$\langle \eta_{c}(p) | \overline{\chi}_{c}(0) \frac{n}{2} \gamma_{5} \chi_{c}(s\overline{n}) | 0 \rangle = -iEf_{\eta_{c}} \int_{0}^{1} d\overline{x} e^{i\overline{x}s\overline{n}p} \phi_{\eta_{c}}(x) \quad (\overset{1}{\searrow} = \Lambda_{GOD} / M_{B})$$

 \rightarrow endpoint configuration \sim $[\bar{q}_s \psi_{hc}^{(5)}]$ involves a splitting of ψ_{hc} into a soft and two coll. quarks:

$$\phi(\bar{x} \to 0) \sim \int_0^1 d\hat{x} \, \phi(\hat{x}) \int d\rho \, J(\hat{x}, \rho) \, \mathcal{S}(\rho, \bar{x})$$
 [PB '18]

implicit ("iterative") integral equation with endpoint-divergent convolutions

cf. [Bell,PB,Feldmann '22]

Lessons from NR bound states

A non-additive cancellation of endpoint-singularities is a key characteristic of hadronic hard-exclusive reactions (process-independent), which is more complex than the recently understood cases.

An EFT formulation for such problems is unknown so far. Examples:

 \rightarrow QED textbook process $e^-\mu^-$ backward scattering

$$F \simeq \int_{0}^{1} \frac{dx}{x} f_{c}(x) \int_{0}^{1} \frac{dy}{y} f_{\bar{c}}(y) H(xy) \simeq \frac{l_{1}(2\sqrt{z})}{\sqrt{z}}, \qquad z = \frac{\alpha}{2\pi} \ln^{2} \frac{m^{2}}{s}$$

[Bell.PB.Feldmann '22]

Back to weak annihilation ...

... need higher multiplicity states at the same order in λ : (strict consequence from endpoint-divergence + power-counting)

BBNS @ I.p.:
$$\left(\bar{\chi}_{c}\frac{\vec{h}}{\bar{n}\cdot\partial_{c}}\chi_{c}\right)\left(\bar{\chi}_{\bar{c}}\frac{\dot{h}}{n\cdot\partial_{\bar{c}}}\chi_{\bar{c}}\right)\left(\bar{Q}_{s}\frac{\dot{h}}{n\cdot\partial_{s}}H_{v}\right)\sim\lambda^{12}$$

(SCET_{II} counting: $\chi_{c}\sim\lambda^{2}$, $q_{s}\sim\lambda^{3}$, $A_{s,c}^{\perp}\sim\lambda^{2}$, and $\partial_{s}\sim\lambda^{2}$, with $\lambda^{2}\sim\Lambda_{\rm QCD}$)

Goal: construct complete basis of boost and gauge-inv. operators $\sim \lambda^{14}$ in SCET_{II} with mass dim-6 that respect all quantum numbers in each sector.

BBNS @ I.p.:
$$\left(\bar{\chi}_{c}\frac{\vec{p}}{\bar{n}\cdot\partial_{c}}\chi_{c}\right)\left(\bar{\chi}_{\bar{c}}\frac{\dot{p}}{n\cdot\partial_{\bar{c}}}\chi_{\bar{c}}\right)\left(\bar{Q}_{s}\frac{\dot{p}}{n\cdot\partial_{s}}H_{v}\right)\sim\lambda^{12}$$

(SCET_{II} counting: $\chi_{c}\sim\lambda^{2}, q_{s}\sim\lambda^{3}, A_{s,c}^{\perp}\sim\lambda^{2}, \text{ and } \partial_{s}\sim\lambda^{2}, \text{ with } \lambda^{2}\sim\Lambda_{QCD}$)

Goal: construct complete basis of boost and gauge-inv. operators $\sim \lambda^{14}$ in SCET_{II} with mass dim-6 that respect all quantum numbers in each sector.

Our starting point is the weak Hamiltonian with operators Q_{1-10} after Fierz: (also $u \rightarrow s$ but symmetric)

$$Q_1^{\pm,(u)} = [\bar{d}_i b_i]_{V-A} \ [\bar{u}_j u_j]_{V\pm A} \quad \text{and} \quad Q_2^{\pm,(u)} = [\bar{d}_i b_j]_{V-A} \ [\bar{u}_j u_i]_{V\pm A}$$

i)
$$m_b^2 \to \infty$$
: 3 classes of SCET_I operators $(\bar{\psi}\psi)^2, (\bar{\psi}\psi)^2 A_{\perp}^{\mu}, (\bar{\psi}\psi)^3$

ii) $m_b \Lambda \to \infty$: need branchings of ψ_{hc} and A_{hc}^{\perp} into soft and collinear partons up to $\mathcal{O}(\lambda^5)$ [Beneke,Feldmann '03]

Matching onto SCET_I

For $\bar{B}^0_d \to K^+ K^-$ we need e.g. the matching relations (only some examples are shown!):

ightarrow even more fields (or derivatives) in SCET_I give power-suppressed contribution in SCET_II

P. Böer

Hard-collinear branchings up to $\mathcal{O}(\lambda^5)$

Splittings of $SCET_I$ into $SCET_{II}$ fields proceed via various sub-leading Lagrangian insertions. Relevant for our analysis are:

• hard modes integrated out \rightarrow match *hc* and *hc* sector separately (use $\bar{n} \cdot A_{hc} = n \cdot A_{hc} = 0$)

• Fierz relations \rightarrow color-singlet/pseudo-scalar projections for SCET_{II} operators

P. Böer

weak annihilation

Matching onto $SCET_{II}$

- We did the LO QCD \rightarrow SCET_I \rightarrow SCET_{II} matching for Q_{1-10} (construct physical basis \checkmark)
- Example: A leading contribution to the decay amplitude in the heavy-quark limit

- \rightarrow full-theory (QCD) analysis = horrible mess, but SCET gives strict rules
- ightarrow involves new 4-quark(+g) soft functions with fields delocalized on two light cones *n* and $ar{n}$
- \rightarrow ... compared to \sim *f*_B for the 6-quark operators
- ightarrow configuration is of "leading-power" due to soft inverse derivatives

We see some analogies with heavy-to-light form factors but soft physics more complicated:

We see some analogies with heavy-to-light form factors but soft physics more complicated:

- The (ψψ)²A[⊥] operators ...
 - $\rightarrow~$ seem to be free of endpoint divergences in SCET_{II} in soft* and coll sector
 - \rightarrow they give rise to two (being agnostic to color) soft operators for $Q^{(u)}$:

$$\langle 0 | \left[\bar{\mathcal{Q}}_{n}^{(d)} \frac{\hbar \tilde{n}}{4} \gamma_{\perp}^{\mu} (1 - \gamma_{5}) \mathcal{H}_{n}^{(\nu)} \right] \left[\bar{\mathcal{Q}}_{\bar{n}}^{(s)} \frac{\hbar \hbar}{4} \gamma_{\perp}^{\mu} (1 - \gamma_{5}) (S_{\bar{n}}^{\dagger} S_{n}) \mathcal{Q}_{n}^{(s)} \right] | \bar{B}_{d}^{0} \rangle$$

- → new and likely complex soft functions (no LCDAs!) (cf. "negative energies" in QED [Beneke,PB,Toelstede,Vos '22])
- \rightarrow soft Wilson lines connect all fields to hard vertex via finite segments
- \rightarrow non-vanishing contribution from Q_1 , which was absent for $(\bar\psi\psi)^3$ operators (BBNS)

*based on naive conformal counting

We see some analogies with heavy-to-light form factors but soft physics more complicated:

- The (ψψ)²A[⊥] operators ...
 - $\rightarrow~$ seem to be free of endpoint divergences in SCET_{II} in soft* and coll sector
 - \rightarrow they give rise to two (being agnostic to color) soft operators for $Q^{(u)}$:

$$\langle 0 | \left[\bar{\mathcal{Q}}_{n}^{(d)} \frac{\hbar \bar{\hbar}}{4} \gamma_{\perp}^{\mu} (1 - \gamma_{5}) \mathcal{H}_{n}^{(\nu)} \right] \left[\bar{\mathcal{Q}}_{\bar{n}}^{(s)} \frac{\hbar \hbar}{4} \gamma_{\perp}^{\mu} (1 - \gamma_{5}) (S_{\bar{n}}^{\dagger} S_{n}) \mathcal{Q}_{n}^{(s)} \right] | \bar{B}_{d}^{0} \rangle$$

- → new and likely complex soft functions (no LCDAs!) (cf. "negative energies" in QED [Beneke,PB,Toelstede,Vos '22])
- \rightarrow soft Wilson lines connect all fields to hard vertex via finite segments
- ightarrow non-vanishing contribution from Q_1 , which was absent for $(ar\psi\psi)^3$ operators (BBNS)

*based on naive conformal counting

- The $(\bar{\psi}\psi)^2$ operators ...
 - ightarrow give rise to six additional soft functions for $Q^{(u)}$ (\sim A_{s}^{\perp} and different Dirac structure)
 - \rightarrow they seem to appear in endpoint-divergent convolutions*
 - $\rightarrow~$ they multiply endpoint-divergent integrals of tw-2 and tw-3 collinear LCDAs

... work in progress!

Conclusion

- 1.) Endpoint singularities are a generic problem of SCET@NLP, and a consistent treatment would be a major breakthrough in controlling the underlying power-expansion!
- In certain cases factorization can be cured via refactorization conditions [PB '18, Neubert/Liu '19] and additive rearrangements [Neubert/Liu '19], e.g. in
 - ightarrow bottom induced $h
 ightarrow\gamma(gg)$ decay
 - \rightarrow off-diagonal gluon thrust
 - \rightarrow QED corrections in leptonic *B* decays
 - \rightarrow power-corrections in inclusive $\bar{B} \rightarrow X_s \gamma$

[Neubert et al. '19-22] [Beneke et al. '22] [Feldmann et al. '22, Cornella et al. '23] [Hurth, Szafron '23]

- 3.) However, endpoint-singularities manifest in a non-additive way in power corrections to hadronic hard-exclusive processes (aka Brodsky-Lepage), e.g. in
 - \rightarrow heavy-to-light form factors [PB '18] + [Bell,PB,Feldm
 - $ightarrow \ \mu$ -e backscattering

[PB '18] + [Bell,PB,Feldmann,Horstmann, to appear] [Bell,PB,Feldmann '22]

4.) Weak annihilation amplitudes belong to this class, and a proper SCET analysis reveals the complexity of the problem, which shares some similarities with the form factor but with more complicated soft physics. A better understanding of this problem remains key to further progress. Whether (a generalization of) the above-mentioned methods can be applied in this case remains to be investigated.

Thank you!

Backup-Slides

Modes in $\text{SCET}_{\rm II}$

