HADRON-STRUCTURE DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

MATTHIAS NEUBERT, CLAUDIA CORNELLA

MAINZ INSTITUTE FOR THEORETICAL PHYSICS (MITP)
JOHANNES GUTENBERG UNIVERSITY, MAINZ, GERMANY
based on CC, M. König, MN: arXiv:2212.14430

MOTIVATION

Leptonic decays $B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}$ are interesting for several reasons:

- Determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ largely unaffected by hadronic uncertainties

- Chiral suppression offers sensitive probe of new scalar interactions
- Comparing different lepton flavors yields test of lepton universality \Rightarrow Belle II will measure $\ell=\mu, \tau$ channels with $5-7 \%$ uncertainty [Belle II Physics Book]

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

MOTIVATION

Leptonic decays $B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}$ are interesting for several reasons:

- Determination of $\left|\mathrm{V}_{\mathrm{ub}}\right|$ largely unaffected by hadronic uncertainties

QCD matrix element is known with < 1% accuracy: [FNAL/MILC 2017]

$$
\langle 0| \bar{u} \gamma^{\mu} \gamma_{5} b\left|B^{-}(p)\right\rangle=i f_{B_{u}} p^{\mu} \text { with } f_{B_{u}}=(189.4 \pm 1.4) \mathrm{MeV}
$$

- QED corrections can be of similar magnitude or even larger, due to presence of large logarithms $\alpha \ln \left(m_{b} / m_{\ell}\right)$ and $\alpha \ln \left(m_{\ell} / E_{s}\right)$

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

MOTIVATION

QED effects are well under control for $\mu>m_{b}$ and $\mu \ll \Lambda_{\mathrm{QCD}}$:

- Effective weak Hamiltonian contains all
effective 4-fermion interaction from W-boson exchange short-distance effects ($\mu>m_{b}$)
$\mathcal{L}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b}\left(\bar{u} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right)$
- Very soft photons see B meson as point-like particle

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

MOTIVATION

QED effects are well under control for $\mu>m_{b}$ and $\mu \ll \Lambda_{\mathrm{QCD}}$:

- Effective weak Hamiltonian contains all
effective 4-fermion interaction from W-boson exchange

- Very soft photons see B meson as point-like particle
- Intermediate scale range $\Lambda_{\mathrm{QCD}}<\mu<m_{b}$ gives rise to more intricate effects, as virtual photons can resolve inner structure of B meson

[CC, König, MN 2022]

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

MOTIVATION

QED effects are well under control for $\mu>m_{b}$ and $\mu \ll \Lambda_{\mathrm{QCD}}$:

- Effective weak Hamiltonian contains all
effective 4-fermion interaction from W-boson exchange short-distance effects ($\mu>m_{b}$)
$\mathcal{L}_{\text {eff }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b}\left(\bar{u} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} P_{L} \nu_{\ell}\right)$
- Very soft photons see B meson as point-like particle

- Intermediate scale range $\Lambda_{\mathrm{QCD}}<\mu<m_{b}$ gives rise to more intricate effects, as virtual photons can resolve inner structure of B meson
$\rightarrow B_{S} \rightarrow \mu^{+} \mu^{-} \quad$ [Beneke, Bobeth, Szafron 2017 \& 2019]
- $B \rightarrow K \pi, D \pi \quad$ [Beneke, Böer, Toelstede, Vos 2020; Beneke, Böer, Finauri, Vos 2021]

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

RELEVANT SCALES

In the presence of QED effects, the decay $B^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ is sensitive to eight different energy scales:

Fock-state description of B meson: $|\bar{u} b\rangle+|\bar{u} g b\rangle+\ldots$
[see: Beneke, Bobeth, Szafron 2019]
description of B meson as a point-like pseudo-scalar boson

[see: Isidori, Nabeebaccus, Zwicky 2020; Zwicky 2021; Dai, Kim, Leibovich 2021]

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

RELEVANT SCALES

In the presence of QED effects, the decay $B^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ is sensitive to eight different energy scales:

Fock-state description of B meson: $|\bar{u} b\rangle+|\bar{u} g b\rangle+\ldots$
[see: Beneke, Bobeth, Szafron 2019]
description of B meson as a point-like pseudo-scalar boson

[see: Isidori, Nabeebaccus, Zwicky 2020; Zwicky 2021;
Dai, Kim, Leibovich 2021]

QED CORRECTIONS IN LEPTONIC B DECAY

- Fact that external particles are charged under OED invalidates naive factorization, but scale separation can still be studied using SCET
- For power-suppressed processes such as $B^{-} \rightarrow \ell^{-} \bar{\nu}_{\ell}$, derivation of SCET factorization theorems is far more complicated than at leading power and has been understood only recently
[Liu, MN 2019; Liu, Mecaj, MN, Wang 2020;
Beneke et al. 2022; Liu, MN, Schnubel, Wang 2022]
- Our work is one of the first derivations of a subleading-power factorization theorem for a process involving nonperturbative hadronic dynamics [along with: Feldmann, Gubernari, Huber, Seitz 2022;
see also: Hurth, Szafron 2023]

QED CORRECTIONS IN LEPTONIC B DECAY - CHALLENGES

- Quark current $\bar{u} \gamma^{\mu} P_{L} b$ is not gauge invariant under OED \Rightarrow add a Wilson line to account for soft photon interactions with charged lepton
- One option: light-like Wilson line $\bar{u} \gamma^{\mu} P_{L} b S_{n}^{(\ell) \dagger} \quad$ [Beneke, Bobeth, Szafron 2019]
- anomalous dimension sensitive to IR regulators
- matching onto point-like meson theory not fully understood

QED CORRECTIONS IN LEPTONIC B DECAY - CHALLENGES

- Quark current $\bar{u} \gamma^{\mu} P_{L} b$ is not gauge invariant under OED \Rightarrow add a Wilson line to account for soft photon interactions with charged lepton
- One option: light-like Wilson line $\bar{u} \gamma^{\mu} P_{L} b S_{n}^{(\ell) \dagger} \quad$ [Beneke, Bobeth, Szafron 2019]
- anomalous dimension sensitive to IR regulators
- matching onto point-like meson theory not fully understood
- Our choice: time-like Wilson line $\bar{u} \gamma^{\mu} P_{L} b S_{v_{\ell}}^{(\ell) \dagger}$ [CC, König, MN 2022]
- $S_{v_{\ell}}^{(\ell)} \hat{=} S_{n}^{(\ell)} C_{v_{\ell}}^{(\ell)}$ arises since both soft and soft-collinear photons can resolve the structure of the B meson
- soft-collinear photons interactions with charged lepton described in "boosted HLET" and decoupled via a field redefinition
[Fleming, Hoang, Mantry, Stewart 2007]

QED CORRECTIONS IN LEPTONIC B DECAY - CHALLENGES

- Quark current $\bar{u} \gamma^{\mu} P_{L} b$ is not gauge invariant under OED \Rightarrow add a Wilson line to account for soft photon interactions with charged lepton
- One option: light-like Wilson line $\bar{u} \gamma^{\mu} P_{L} b S_{n}^{(\ell) \dagger} \quad$ [Beneke, Bobeth, Szafron 2019]
- anomalous dimension sensitive to IR regulators
- matching onto point-like meson theory not fully understood
- Our choice: time-like Wilson line $\bar{u} \gamma^{\mu} P_{L} b S_{v_{f}}^{(\ell) \dagger}$ [CC, König, MN 2022]
- well-defined anomalous dimension (after refactorization) ©
- consistent matching onto point-like meson theory

QED CORRECTIONS IN LEPTONIC B DECAY - CHALLENGES

Have analyzed the factorization properties (scale separation) of the $B^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ amplitude including OED corrections in SCET
[CC, König, MN 2022]

- Relevant modes for virtual QED corrections:
- hard
- hard-collinear
- soft
- collinear
- soft-collinear

- Relevant modes for real OED corrections:
- ultra-soft
- ultra-soft-collinear

QED CORRECTIONS IN LEPTONIC B DECAY - CHALLENGES

Have analyzed the factorization properties (scale separation) of the $B^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}$ amplitude including OED corrections in SCET
[CC, König, MN 2022]

- Relevant modes for virtual QED corrections:
- hard
- hard-collinear
- soft
- collinear
- soft-collinear
$(1,1,1)$
$\left(\lambda, 1, \lambda^{\frac{1}{2}}\right)$
$(\lambda, \lambda, \lambda)$
$\left(\lambda_{\ell}^{2}, 1, \lambda_{\ell}\right)$
$\lambda\left(\lambda_{\ell}^{2}, 1, \lambda_{\ell}\right)$
- Relevant modes for real OED corrections:
- ultra-soft
$\left(\lambda_{E}, \lambda_{E}, \lambda_{E}\right)$
- ultra-soft-collinear
$\lambda_{E}\left(\lambda_{\ell}^{2}, 1, \lambda_{\ell}\right)$

Expansion parameters:

$$
\begin{aligned}
\lambda & =\frac{\Lambda_{\mathrm{QCD}}}{m_{b}} \\
\lambda_{\ell} & =\frac{m_{\mu}}{m_{b}} \sim \lambda \\
\lambda_{E} & =\frac{E_{s}}{m_{b}} \sim \lambda_{\ell}^{2}
\end{aligned}
$$

STRATEGY

We want to disentangle all these scales by

- identifying the appropriate EFT description
- deriving a factorization theorem to describe the multi-scale problem in terms of convolutions of single-scale objects

STRATEGY

We want to disentangle all these scales by

- identifying the appropriate EFT description
- deriving a factorization theorem to describe the multi-scale problem in terms of convolutions of single-scale objects

In the following, we will

- describe the EFT construction across all scales
" discuss the factorization \& refactorization of the "virtual" amplitude
- sketch the low-energy theory describing real emissions

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

KINEMATICS

In the B-meson rest frame, the muon and the neutrino are back to back. We identify the direction of the muon as the "collinear" one.

Initial state quark are bound in the meson, with residual momenta of $\mathcal{O}\left(\Lambda_{\mathrm{QCD}}\right)$

$$
p_{b}=m_{b} v+k_{b}, \quad p_{q}=k_{q} \quad k_{b}, k_{q} \sim m_{b}(\lambda, \lambda, \lambda) \quad \lambda=\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}
$$

$\mu \sim m_{b}$: FROM THE FERMI THEORY TO HOET \times SCET- 1

- Below m_{b}, radiation is too soft to affect the b-quark momentum \Rightarrow the right description is HOET

$\mu \sim m_{b}$: FROM THE FERMI THEORY TO HOET \times SCET- 1

- Below m_{b}, radiation is too soft to affect the b-quark momentum \Rightarrow the right description is HOET
- Remaining fields can have large momenta, but small invariant mass \Rightarrow the right EFT is SCET-1

$\mu \sim m_{b}$: FROM THE FERMI THEORY TO HOET \times SCET- 1

- Below m_{b}, radiation is too soft to affect the b-quark momentum \Rightarrow the right description is HOET
- Remaining fields can have large momenta, but small invariant mass \Rightarrow the right EFT is SCET-1
- In practice, the fields \& power counting we need at this stage are:

$$
\begin{array}{rlrl}
\nu & \rightarrow \chi_{\frac{(\nu)}{h c}} & \chi_{h c}^{(\ell)}, \chi_{h c}^{(q)}, \chi_{h c}^{(\nu)} & \sim \lambda^{1 / 2} \\
\ell & \rightarrow \chi_{h c}^{(\ell)} & h_{v}, q_{s} & \sim \lambda^{3 / 2} \\
b & \rightarrow h_{v} & \mathcal{A}_{h c \perp}^{\mu}, \mathcal{G}_{h c \perp}^{\mu} & \sim \lambda^{1 / 2} \\
q & \rightarrow \chi_{h c}^{(q)}, q_{s} & \bigoplus_{1} \\
(+ \text { photons, gluons) } & \text { photons } &
\end{array}
$$

CONSTRUCTION OF SCET-1 BASIS

To keep in mind when building the basis:

- All operators stem from the Fermi Lagrangian
\Rightarrow massless fields (neutrino and spectator) have to be left-handed

CONSTRUCTION OF SCET-1 BASIS

To keep in mind when building the basis:

- All operators stem from the Fermi Lagrangian
\Rightarrow massless fields (neutrino and spectator) have to be left-handed
- The leading contribution to the amplitude is of order λ^{6}
\Rightarrow need operators with SCET-2 power counting λ^{6} and mass dim 6

CONSTRUCTION OF SCET-1 BASIS

To keep in mind when building the basis:

- All operators stem from the Fermi Lagrangian
\Rightarrow massless fields (neutrino and spectator) have to be left-handed
- The leading contribution to the amplitude is of order λ^{6}
\Rightarrow need operators with SCET-2 power counting λ^{6} and mass dim 6
- Only two irreducible Dirac structures can enter the leptonic current in SCET-1: $\bar{\chi}_{h c}^{(\ell)} \Gamma_{\ell} P_{L} \chi_{\overline{h c}}^{(\nu)}$ with $\Gamma_{\ell}=1, \gamma_{\mu}^{\perp}$

CONSTRUCTION OF SCET-1 BASIS

To keep in mind when building the basis:

- All operators stem from the Fermi Lagrangian
\Rightarrow massless fields (neutrino and spectator) have to be left-handed
- The leading contribution to the amplitude is of order λ^{6}
\Rightarrow need operators with SCET-2 power counting λ^{6} and mass dim 6
- Only two irreducible Dirac structures can enter the leptonic current in SCET-1: $\bar{\chi}_{h c}^{(\ell)} \Gamma_{\ell} P_{L} \chi_{\overline{h c}}^{(\nu)}$ with $\Gamma_{\ell}=1, \gamma_{\mu}^{\perp}$
- for $\Gamma_{\ell}=1$ the muon is right-handed \Rightarrow the chirality flip gives a factor m_{ℓ}, included in the operator definition

CONSTRUCTION OF SCET-1 BASIS

Given this, we have five classes of 4-fermion operators:
A. Operators with soft spectator
B. Operators with hard-collinear spectator
C. Operators with soft spectator + hard-collinear photon
D. Operators with hard-collinear spectator + hard-collinear photon
E. Operators hard-collinear spectator + two perp objects

CONSTRUCTION OF SCET-1 BASIS

Given this, we have five classes of 4-fermion operators:
A. Operators with soft spectator
B. Operators with hard-collinear spectator
C. Operators with soft spectator + hard-collinear photon
D. Operators with hard-collinear spectator + hard-collinear photon
E. Operators hard-collinear spectator + two perp objects

Only these are needed at $\mathcal{O}(\alpha)$.

CONSTRUCTION OF SCET-1 BASIS

A. Operators with soft spectator

- Obtained from hard matching:

$$
\begin{aligned}
& \text { power counting } \\
& \mathcal{O}_{A, 1}^{(5)}=m_{\ell}\left(\bar{q}_{s} \frac{\not \hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}} P_{L} \chi \frac{(\nu)}{h c}\right) \\
& \mathcal{O}_{A, 2}^{(5)}=m_{\ell}\left(\bar{q}_{s} \frac{\not \hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i n \cdot \bar{\partial}} P_{L} \chi \frac{(\nu)}{h c}\right)
\end{aligned}
$$

CONSTRUCTION OF SCET-1 BASIS

A. Operators with soft spectator

- Obtained from hard matching:

$$
\begin{aligned}
& \text { power counting } \\
& \mathcal{O}_{A, 1}^{(5)}=m_{\ell}\left(\bar{q}_{s} \frac{\not \hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}} P_{L} \chi \frac{(\nu)}{h c}\right) \\
& \mathcal{O}_{A, 2}^{(5)}=m_{\ell}\left(\bar{q}_{s} \frac{\not \hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i n \cdot \bar{\partial}} P_{L} \chi \frac{(\nu)}{h c}\right)
\end{aligned}
$$

- Only the first contributes at tree level:

$$
\begin{aligned}
& i \mathcal{A}_{\text {tree }}=-\frac{4 G_{F}}{\sqrt{2}} V_{u b}\left[\left(\bar{v}_{q} \gamma_{\perp}^{\mu} P_{L} u_{b}\right)\left(\bar{u}_{\ell} \gamma_{\perp \mu} P_{L} v_{\nu}\right)+\frac{2 m_{\ell}}{m_{B}}\left(\bar{v}_{q} \frac{\not \hbar}{2} P_{L} u_{b}\right)\left(\bar{u}_{\ell} P_{L} v_{\nu}\right)\right] \\
& \text { lepton EOM: } \quad \bar{u}_{\ell} \frac{\not \downarrow}{2}=\frac{m_{\ell}}{m_{B}} \bar{u}_{\ell}-\frac{2 m_{\ell}^{2}}{m_{B}^{2}} \bar{u}_{\ell} \frac{\bar{\eta}}{2}, \quad \frac{\bar{q}}{2} v_{\nu}=0
\end{aligned}
$$

CONSTRUCTION OF SCET-1 BASIS

A. Operators with soft spectator

- Obtained from hard matching:

$$
\begin{aligned}
& \text { power counting } \\
& \left(\mathcal{O}_{A, 1}^{(5)}=m_{\ell}\left(\bar{q}_{s} \frac{\not \hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}} P_{L} \chi \frac{(\nu)}{h c}\right)\right. \\
& \mathcal{O}_{A, 2}^{(5)}=m_{\ell}\left(\bar{q}_{s} \frac{\not h}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i n \cdot \vec{\partial}} P_{L} \chi_{\frac{(\nu)}{h c}}\right)
\end{aligned}
$$

- Only the first contributes at tree level:

$$
\begin{aligned}
& i \mathcal{A}_{\text {tree }}=-\frac{4 G_{F}}{\sqrt{2}} V_{u b}\left[\left(\bar{v}_{q}{ }_{\sim}^{\mu}{ }_{\perp}^{\text {nojection on } B \text { meson }} P_{L} u_{b}\right)\left(\bar{u}_{\ell} \gamma_{\perp \mu} P_{L} v_{\nu}\right)+\left(\frac{2 m_{\ell}}{m_{B}}\left(\bar{v}_{q} \frac{\not \hbar}{2} P_{L} u_{b}\right)\left(\bar{u}_{\ell} P_{L} v_{\nu}\right)\right]\right. \\
& \text { lepton EOM: } \quad \bar{u}_{\ell} \frac{\not \eta}{2}=\frac{m_{\ell}}{m_{B}} \bar{u}_{\ell}-\frac{2 m_{\ell}^{2}}{m_{B}^{2}} \bar{u}_{\ell} \frac{\bar{\eta}}{2}, \quad \frac{\bar{\phi}}{2} v_{\nu}=0
\end{aligned}
$$

CONSTRUCTION OF SCET-1 BASIS

B. Operators with hard-collinear spectator

$$
\begin{aligned}
& \Longrightarrow \quad \Longrightarrow \quad x_{s}^{(v)} \\
& \mathcal{O}_{B, 1}^{(7 / 2)}=\left(\bar{\chi}_{h c}^{(q)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}} i \overleftarrow{D D}_{\perp s} \frac{\hbar}{2} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \gamma_{\perp \mu} P_{L} \chi_{\bar{C}}^{(\nu)}\right), \\
& \mathcal{O}_{B, 2}^{(7 / 2)}=\left(\bar{\chi}_{h c}^{(q)} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}} i \overleftarrow{\mathscr{D}}_{\perp s} P_{L} \chi_{\overline{h c}}^{(\nu)}\right), \\
& \mathcal{O}_{B}^{(4)}=m_{\ell}\left(\bar{\chi}_{h c}^{(q)} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}} P_{L} \chi_{\overline{h c}}^{\nu}\right) .
\end{aligned}
$$

- Their one-loop matrix elements reproduce the hard-collinear loops in the Fermi theory

CONSTRUCTION OF SCET-1 BASIS

B. Operators with hard-collinear spectator

$$
\begin{array}{ll}
\text { b }
\end{array}
$$

- Their one-loop matrix elements reproduce the hard-collinear loops in the Fermi theory
- B operators are power-enhanced with respect to A ones, but need one insertion of the (power-suppressed) soft-collinear interactions \Rightarrow they contribute at the same order

CONSTRUCTION OF SCET-1 BASIS

C. Operators with with soft spectator + hard-collinear photon

- Arise from hard-collinear emission from muon, b or spectator quark

$$
\begin{aligned}
& \text { O/l } \\
& \mathcal{O}_{C, 1}^{(5)}=\frac{1}{i n \cdot \partial_{h c}}\left(\bar{q}_{s} \frac{\not \hbar}{2} \gamma_{\perp}^{\mu} \mathcal{A}_{h c}^{(b) \perp} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\overline{h c}}^{(\nu)}\right) \\
& \mathcal{O}_{C, 2}^{(5)}=\frac{1}{i \bar{n} \cdot \partial_{h c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \mathcal{A}_{h c, \perp}^{(\ell)} P_{L} \chi_{\frac{1}{h c}}^{(\nu)}\right) \\
& \mathcal{O}_{C, 3}^{(5)}=\left(\bar{q}_{s} \mathcal{A}_{h c, \perp}^{(u)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}_{h c}} \frac{\hbar}{2} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\overline{h c}}^{(\nu)}\right)
\end{aligned}
$$

CONSTRUCTION OF SCET-1 BASIS

C. Operators with with soft spectator + hard-collinear photon

- Arise from hard-collinear emission from muon, b or spectator quark

$$
\begin{aligned}
& \text { (}{ }_{C, 1}^{(5)}=\frac{1}{i n \cdot \partial_{h c}}\left(\bar{q}_{s} \frac{\not \hbar}{2} \gamma_{\perp}^{\mu} \mathcal{A}_{h c}^{(b) \perp} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\overline{h c}}^{(\nu)}\right) \\
& \mathcal{O}_{C, 2}^{(5)}=\frac{1}{i \bar{n} \cdot \partial_{h c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \mathcal{A}_{h c, \perp}^{(\ell)} P_{L} \chi_{\frac{1}{h c}}^{(\nu)}\right) \\
& \mathcal{O}_{C, 3}^{(5)}=\left(\bar{q}_{s} \mathcal{A}_{h c, \perp}^{(u)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}_{h c}} \frac{\hbar}{2} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{h c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\overline{h c}}^{(\nu)}\right)
\end{aligned}
$$

- Moving to SCET-2, these reproduce the collinear loops of the Fermi theory
- At $\mu \sim \sqrt{m_{b} \Lambda}$, integrate out hard-collinear modes and lower virtuality \Rightarrow now collinear and soft modes live at the same scale: SCET-2

$$
p_{c} \sim\left(1, \lambda^{2}, \lambda\right), \quad p_{s} \sim(\lambda, \lambda, \lambda), \quad p_{c}^{2} \sim p_{s}^{2} \sim \mathcal{O}\left(\lambda^{2}\right)
$$

$\mu \sim \sqrt{m_{b} \Lambda}:$ FROM SCET-1 TO SCET-2

- At $\mu \sim \sqrt{m_{b} \Lambda}$, integrate out hard-collinear modes and lower virtuality \Rightarrow now collinear and soft modes live at the same scale: SCET-2

$$
p_{c} \sim\left(1, \lambda^{2}, \lambda\right), \quad p_{s} \sim(\lambda, \lambda, \lambda), \quad p_{c}^{2} \sim p_{s}^{2} \sim \mathcal{O}\left(\lambda^{2}\right)
$$

- When integrating out hard-collinear modes, intermediate propagators introduce non-local operators:

$$
\psi_{h c} \quad \rightarrow \quad \psi_{c}+\psi_{c} \cdot \psi_{s}+\psi_{c} \cdot \psi_{s}^{2}+\ldots
$$

$$
\frac{1}{n \cdot \partial} q_{s}, \quad\left(\frac{1}{n \cdot \partial} \mathcal{A}_{\perp s}^{\mu}\right)\left(\frac{1}{n \cdot \partial} q_{s}\right), \quad \ldots
$$

\Rightarrow now contain more fields, but are of the same order!

(NOT) OVERCOMING THE CHIRAL SUPPRESSION

- Inverse derivative operators can probe the meson structure, and possibly overcome the chiral suppression

$$
\langle 0|\left(\frac{1}{n \cdot \partial} \bar{q}_{s}\right) \ldots h_{v}|B\rangle \sim \frac{1}{\lambda_{B}} \sim \mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{-1}\right)
$$

(NOT) OVERCOMING THE CHIRAL SUPPRESSION

- Inverse derivative operators can probe the meson structure, and possibly overcome the chiral suppression

$$
\langle 0|\left(\frac{1}{n \cdot \partial} \bar{q}_{s}\right) \ldots h_{v}|B\rangle \sim \frac{1}{\lambda_{B}} \sim \mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{-1}\right)
$$

- Happens for $B_{s} \rightarrow \mu^{+} \mu^{-}$, but not for $B \rightarrow \mu \bar{\nu}_{\mu} \quad$ [Beneke, Bobeth, Szafron 2017, 2019]

(NOT) OVERCOMING THE CHIRAL SUPPRESSION

- Inverse derivative operators can probe the meson structure, and possibly overcome the chiral suppression

$$
\langle 0|\left(\frac{1}{n \cdot \partial} \bar{q}_{s}\right) \ldots h_{v}|B\rangle \sim \frac{1}{\lambda_{B}} \sim \mathcal{O}\left(\Lambda_{\mathrm{QCD}}^{-1}\right)
$$

- Happens for $B_{s} \rightarrow \mu^{+} \mu^{-}$, but not for $B \rightarrow \mu \bar{\nu}_{\mu} \quad$ [Beneke, Bobeth, Szafron 2017, 2019]
- For left-handed currents, these contributions come with evanescent Dirac structures:
$\left(\bar{v} \frac{\not x}{2} \gamma_{\perp}^{\mu} \gamma_{\perp}^{\nu} P_{L} u\right)_{h}\left(\bar{u} \gamma_{\mu}^{\perp} \gamma_{\nu}^{\perp}\left[\frac{v-a \gamma_{5}}{2}\right] v\right)_{\ell}=2(v-a)\left(\bar{v} \frac{\not \underline{h}}{2} P_{L} u\right)_{h}\left(\bar{u} P_{R} v\right)_{\ell}+\mathcal{O}(\epsilon)$
\Rightarrow structure-dependent contributions to $B \rightarrow \mu \bar{\nu}_{\mu}$ carry the same suppression as the tree level result!

SCET-2 BASIS

$$
\begin{aligned}
& \mathcal{Q}_{A, 1}=\frac{m_{\ell}}{i \bar{n} \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{A, 2}=\frac{m_{\ell}}{i n \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\not h}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 1}=\left(\bar{q}_{s} \frac{1}{i n \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u) \perp} \frac{i \overleftarrow{D}_{\perp, s}}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} \frac{\eta h \hbar}{4} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 2}=\left(\bar{q}_{s} \frac{1}{i n \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u) \perp} \frac{\eta \hbar \hbar}{4} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \frac{i \overleftarrow{D}_{\perp, s}}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 3}=\left(\bar{q}_{s} \frac{1}{i n \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u) \perp} \frac{\underline{\eta} \hbar}{4} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \frac{m_{\ell}}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 4}=\frac{1}{i n \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\npreceq}{2} \gamma_{\perp}^{\mu} \gamma_{\perp}^{\nu} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} \mathcal{A}_{c \nu}^{(b) \perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 5}=\frac{1}{i \bar{n} \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \mathcal{A}_{c}^{(\ell) \perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 6}=\left(\bar{q}_{s} \mathcal{A}_{c, \perp}^{(u)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} \frac{\hbar}{2} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right)
\end{aligned}
$$

SCET-2 BASIS

$$
\begin{aligned}
& \mathcal{Q}_{A, 1}=\frac{m_{\ell}}{i \bar{n} \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{A, 2}=\frac{m_{\ell}}{i n \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\not \hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 1}=\left(\bar{q}_{s} \frac{1}{i n \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u) \perp} \frac{i \overleftarrow{D}_{\perp, s}}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} \frac{\eta \hbar \hbar}{4} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 2}=\left(\bar{q}_{s} \frac{1}{i n \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u) \perp} \frac{\not \lambda \hbar \hbar}{4} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \frac{i \overleftarrow{D}_{\perp, s}}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 3}=\left(\bar{q}_{s} \frac{1}{i n \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u) \perp} \frac{\underline{\eta} \hbar}{4} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \frac{m_{\ell}}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 4}=\frac{1}{\text { in } \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\npreceq}{2} \gamma_{\perp}^{\mu} \gamma_{\perp}^{\nu} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} \mathcal{A}_{c \nu}^{(b) \perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 5}=\frac{1}{i \bar{n} \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \mathcal{A}_{c}^{(\ell) \perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \mathcal{Q}_{B, 6}=\left(\bar{q}_{s} \mathcal{A}_{c, \perp}^{(u)} \frac{1}{i \bar{n} \cdot \overleftarrow{\partial}_{c}} \frac{\hbar}{2} \gamma_{\perp}^{\mu} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
& \text { descend directly from A-type operators } \\
& \text { in SCET-1 }
\end{aligned}
$$

SCET-2 BASIS

$$
\left.\begin{array}{ll}
\left.\begin{array}{l}
\mathcal{Q}_{A, 1}=\frac{m_{\ell}}{i \bar{n} \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
\mathcal{Q}_{A, 2}
\end{array}\right) \frac{m_{\ell}}{i n \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\not h}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right)
\end{array}\right) \quad \text { descend directly from A-type operators }
$$

SCET-2 BASIS

$$
\begin{array}{ll}
\begin{array}{ll}
\mathcal{Q}_{A, 1}=\frac{m_{\ell}}{i \bar{n} \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\hbar}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right) \\
\mathcal{Q}_{A, 2}=\frac{m_{\ell}}{i n \cdot \partial_{c}}\left(\bar{q}_{s} \frac{\not h}{2} P_{L} h_{v}\right)\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right)
\end{array} & \text { descend directly from A-type operators } \\
\text { in SCET-1 }
\end{array}
$$

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=\sum_{j} H_{j} S_{j} K_{j}+\sum_{i} H_{i} \otimes J_{j} \stackrel{\text { convolution }}{\otimes} S_{i} \otimes K_{i}
$$

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=\sum_{j} H_{j} S_{j} K_{j}+\sum_{i} H_{i} \otimes J_{j} \stackrel{\text { convolution }}{\otimes} S_{i} \otimes K_{i}
$$

- hard function: matching corrections at $\mu \sim m_{b}$

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \not \subset \bar{\nu}}^{\text {virual }}=\sum_{j} H_{j} S_{j} K_{j}+\sum_{i} H_{i} \otimes J_{j} \stackrel{\text { convolution }}{\otimes} S_{i} \otimes K_{i},
$$

- hard function: matching corrections at $\mu \sim m_{b}$
- hard-collinear function: matching corrections at $\mu \sim\left(m_{b} \Lambda_{\mathrm{QCD}}\right)^{1 / 2}$

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virual }}=\sum_{j} H_{j} S_{j} K_{j}+\sum_{i} H_{i} \otimes J_{j} \stackrel{\text { convolution }}{\otimes} S_{i} \otimes K_{i},
$$

- hard function: matching corrections at $\mu \sim m_{b}$
- hard-collinear function: matching corrections at $\mu \sim\left(m_{b} \Lambda_{\mathrm{QCD}}\right)^{1 / 2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \not \subset \bar{\nu}}^{\text {virual }}=\sum_{j} H_{j} S_{j} K_{j}+\sum_{i} H_{i} \otimes J_{j} \stackrel{\text { convolution }}{\otimes} S_{i} \otimes K_{i},
$$

- hard function: matching corrections at $\mu \sim m_{b}$
- hard-collinear function: matching corrections at $\mu \sim\left(m_{b} \Lambda_{\mathrm{QCD}}\right)^{1 / 2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- soft (\& soft-collinear) function: HOET B meson matrix elements

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=\sum_{j}^{\sum^{H_{j} S_{j} K_{j}}}+\sum_{i} H_{i} \otimes J_{j} \otimes^{\swarrow} S_{i} \otimes K_{i},
$$

SCET-1 operators with soft spectator (A-type)

- hard function: matching corrections at $\mu \sim m_{b}$
- hard-collinear function: matching corrections at $\mu \sim\left(m_{b} \Lambda_{\mathrm{QCD}}\right)^{1 / 2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- soft (\& soft-collinear) function: HOET B meson matrix elements

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\mathscr{A}_{B \rightarrow \epsilon \bar{\nu}}^{\text {virtual }}=\sum_{j}^{\sum_{j} \underbrace{H_{j} S_{j} K_{j}}_{\begin{array}{c}
\text { SCET-1 operators with soft } \\
\text { spectator (A-type) }
\end{array}}}+\sum_{i} \underbrace{H_{i} \underbrace{\otimes J_{j} \otimes S_{i} \otimes} K_{i},}_{\begin{array}{c}
\text { SCET-1 operators with hc } \\
\text { spectator (B-type) }
\end{array}}
$$

- hard function: matching corrections at $\mu \sim m_{b}$
- hard-collinear function: matching corrections at $\mu \sim\left(m_{b} \Lambda_{\mathrm{QCD}}\right)^{1 / 2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- soft (\& soft-collinear) function: HOET B meson matrix elements

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& {\left[H_{A}\left(m_{b}\right) S_{A}+\int d \omega \int_{0}^{1} d x H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right) S_{B}(\omega)\right] \quad \omega=n \cdot p_{u} }
\end{aligned}
$$

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\begin{gathered}
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
{\left[H_{A}\left(m_{b}\right) S_{A}+\int d \omega \int_{0}^{1} d x H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right) S_{B}(\omega)\right] \omega=n \cdot p_{u}} \\
S_{A}=\left\langle O_{A}\right\rangle \\
O_{A}=\bar{u}_{s} \hbar P_{L} h_{v} S_{v_{\ell}}^{\dagger} \quad O_{B}(\omega)=\int \frac{d t}{2 \pi} e^{i \omega t} \bar{u}_{s}(\omega)=\left\langle O_{B}(\omega)\right\rangle \\
S_{0}(t n, 0] \hbar P_{L} h_{v}(0) S_{v_{\ell}}^{\dagger}(0)
\end{gathered}
$$

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& {\left[H_{A}\left(m_{b}\right) S_{A}+\int d \omega \int_{0}^{1} d x H_{B}\left(m_{b}, ख\right) J_{B}\left(m_{b} \omega(x) S_{B}(\omega)\right] \quad \omega=n \cdot p_{u}\right.}
\end{aligned}
$$

- Focus on second term:
- Hard and jet function share a variable $x=$ collinear momentum fraction carried by the spectator
- They scale as $H_{B} \sim x^{-\epsilon}, J_{B} \sim x^{-1-\epsilon}$
$\Rightarrow H_{B} \otimes J_{B}$ has an endpoint divergence in $x=0$!

FACTORIZATION FORMULA (VIRTUAL CORRECTIONS)

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& {\left[H_{A}\left(m_{b}\right) S_{A}+\int d \omega \int_{0}^{1} d x H_{B}\left(m_{b}, ख\right) J_{B}\left(m_{b} \omega \circledast\right) S_{B}(\omega)\right] \quad \omega=n \cdot p_{u} }
\end{aligned}
$$

- Focus on second term:
- Hard and jet function share a variable $x=$ collinear momentum fraction carried by the spectator
- They scale as $H_{B} \sim x^{-\epsilon}, J_{B} \sim x^{-1-\epsilon}$
$\Rightarrow H_{B} \otimes J_{B}$ has an endpoint divergence in $x=0$!

- This cannot be removed with standard RG techniques, but is systematically treatable with refactorization-based subtraction (RBS) scheme
[Liu, MN 2019; Liu, Mecaj, MN, Wang 2020; Beneke et al. 2022]

REFACTORIZATION

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& {\left[H_{A}\left(m_{b}\right) S_{A}+\int d u \int_{0}^{1} d x H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right) S_{B}(\omega)\right] }
\end{aligned}
$$

- Start from the second term

REFACTORIZATION

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& {[H_{A}\left(m_{b}\right) S_{A}+\int d u \underbrace{\int_{0}^{1} d x H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right)}_{0} S_{B}(\omega)] } \\
& \int_{0<\lambda<1 \ll}^{\int_{0}^{1} d x\left[H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right)-\theta(\lambda-x)\left[\left[H_{B}\left(m_{b}, x\right)\right]\right]\left[\left[J_{B}\left(m_{b} \omega, x\right)\right]\right]\right]}=\text { singular part of } f \text { for } x \rightarrow 0
\end{aligned}
$$

- Start from the second term
- Remove the divergence from $H_{B} \otimes J_{B}$ with a plus subtraction

REFACTORIZATION

$$
\begin{aligned}
& \mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
& \Lambda=\lambda m_{b} \quad H_{A}\left(m_{b}\right) S_{A}^{(\Lambda)}+\int_{0}\left(m_{b}\right) S_{A}+\int_{0}^{1} d x\left[H_{B}^{1} d x H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right) J_{B}\left(m_{b} \omega, x\right)-\theta(\lambda-x)\left[\left[H_{B}\left(m_{b}, x\right)\right]\right]\left[\left[J_{B}\left(m_{b} \omega, x\right)\right]\right]\right] \\
& 0<\lambda<1 \ll[[f]]=\text { singular part of } f \text { for } x \rightarrow 0
\end{aligned}
$$

- Start from the second term
- Remove the divergence from $H_{B} \otimes J_{B}$ with a plus subtraction
- Add the subtraction term back, combining it with the other term in the factorization formula

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

REFACTORIZATION

$$
\begin{gathered}
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=-\frac{4 G_{F}}{\sqrt{2}} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} K_{A}\left(m_{\ell}\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right) \\
\Lambda=\lambda m_{b} \quad H_{H_{A}\left(m_{b}\right) S_{A}^{(\Lambda)}}^{H_{A}\left(m_{b}\right) S_{A}}+\int d u \int_{0}^{\left.\int_{0}^{1} d x H_{B}\left(m_{b}, x\right) J_{B}\left(m_{b} \omega, x\right) S_{B}(\omega)\right]} \\
0<\lambda<1 \ll[[f]]=\text { singular part of } f \text { for } x \rightarrow 0
\end{gathered}
$$

" The new soft function $S_{A}^{(\Lambda)}$ defines a renormalized decay "constant":

$$
\begin{aligned}
& S_{A}^{(\Lambda)}=\langle 0| O_{A}^{(\Lambda)}\left|B^{-}(v)\right\rangle=-\frac{i \sqrt{m_{B}}}{2} F(\mu, \Lambda, w)\langle 0| S_{v_{B}}^{(B)} S_{v_{\ell}}^{(\ell) \dagger}|0\rangle \quad w=v_{B} \cdot v_{\ell} \approx \frac{m_{B}}{2 m_{\ell}} \\
& O_{A}^{(\Lambda)}=\bar{u}_{s} \not \hbar P_{L} h_{v_{B}} S_{v_{\ell}}^{(\ell) \dagger}\left[1+Q_{\ell} Q_{u} \frac{\alpha}{2 \pi} \frac{e^{\epsilon \gamma_{E}} \Gamma(\epsilon)}{\epsilon(1-\epsilon)} \int d \omega \phi_{-}(\omega)\left(\frac{\mu^{2}}{\omega \Lambda}\right)^{\epsilon}\right]
\end{aligned}
$$

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

VIRTUAL QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

$$
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=i \sqrt{2} G_{F} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} \sqrt{m_{B}} F\left(\mu, m_{b}, w\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right)\left[\mathcal{M}_{2 p}(\mu)+\mathcal{M}_{3 p}(\mu)\right]
$$

with:
$\mathcal{M}_{2 p}(\mu)=1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]$

$$
\begin{aligned}
& +\frac{\alpha}{4 \pi}\left\{Q_{b}^{2}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]-Q_{\ell} Q_{b}\left[\frac{1}{2} \ln ^{2} \frac{m_{b}^{2}}{\mu^{2}}+2 \ln \frac{m_{b}^{2}}{\mu^{2}}-3 \ln \frac{m_{\ell}^{2}}{\mu^{2}}+1+\frac{5 \pi^{2}}{12}\right]\right. \\
& \left.+2 Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \phi_{-}(\omega) \ln \frac{m_{b} \omega}{\mu^{2}}+Q_{\ell}^{2}\left[\frac{1}{\epsilon_{\mathrm{IR}}}\left(\ln \frac{m_{B}^{2}}{m_{\ell}^{2}}-2\right)+\frac{1}{2} \ln ^{2} \frac{m_{\ell}^{2}}{\mu^{2}}-\frac{1}{2} \ln \frac{m_{\ell}^{2}}{\mu^{2}}+2+\frac{5 \pi^{2}}{12}\right]\right\}
\end{aligned}
$$

$\mathcal{M}_{3 p}(\mu)=\frac{\alpha}{\pi} Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \int_{0}^{\infty} d \omega_{g} \phi_{3 g}\left(\omega, \omega_{g}\right)\left[\frac{1}{\omega_{g}} \ln \left(1+\frac{\omega_{g}}{\omega}\right)-\frac{1}{\omega+\omega_{g}}\right] \quad$ [CC, König, MN 2022]
\Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

VIRTUAL QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

$$
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=i \sqrt{2} G_{F} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} \sqrt{m_{B}} F\left(\mu, m_{b}, w\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right)\left[\mathcal{M}_{2 p}(\mu)+\mathcal{M}_{3 p}(\mu)\right]
$$

with:

$$
\begin{aligned}
\mathcal{M}_{2 p}(\mu)=1 & +\frac{C_{F} \alpha_{s}}{4 \pi}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right] \\
& +\frac{\alpha}{4 \pi}\left\{Q_{b}^{2}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]-Q_{\ell} Q_{b}\left[\frac{1}{2} \ln ^{2} \frac{m_{b}^{2}}{\mu^{2}}+2 \ln \frac{m_{b}^{2}}{\mu^{2}}-3 \ln \frac{m_{\ell}^{2}}{\mu^{2}}+1+\frac{5 \pi^{2}}{12}\right]\right. \\
& \left.+2 Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \phi_{-}(\omega) \ln \frac{m_{b} \omega}{\mu^{2}}+Q_{\ell}^{2}\left[\frac{1}{\epsilon_{\mathrm{IR}}}\left(\ln \frac{m_{B}^{2}}{m_{\ell}^{2}}-2\right)+\frac{1}{2} \ln ^{2} \frac{m_{\ell}^{2}}{\mu^{2}}-\frac{1}{2} \ln \frac{m_{\ell}^{2}}{\mu^{2}}+2+\frac{5 \pi^{2}}{12}\right]\right\}
\end{aligned}
$$

$\mathcal{M}_{3 p}(\mu)=\frac{\alpha}{\pi} Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \int_{0}^{\infty} d \omega_{g} \phi_{3 g}\left(\omega, \omega_{g}\right)\left[\frac{1}{\omega_{g}} \ln \left(1+\frac{\omega_{g}}{\omega}\right)-\frac{1}{\omega+\omega_{g}}\right]$
[CC, König, MN 2022]
\Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

VIRTUAL QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

$$
\mathcal{A}_{B \rightarrow \ell \bar{\nu}}^{\text {virtual }}=i \sqrt{2} G_{F} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} \sqrt{m_{B}} F\left(\mu, m_{b}, w\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right)\left[\mathcal{M}_{2 p}(\mu)+\mathcal{M}_{3 p}(\mu)\right]
$$

with:
$\mathcal{M}_{2 p}(\mu)=1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]$
large double logarithms
$+\frac{\alpha}{4 \pi}\left\{Q_{b}^{2}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]-Q_{\ell} Q_{b}\left[\frac{1}{2} \ln ^{2} \frac{m_{b}^{2}}{\mu^{2}}+2 \ln \frac{m_{b}^{2}}{\mu^{2}}-3 \ln \frac{m_{\ell}^{2}}{\mu^{2}}+1+\frac{5 \pi^{2}}{12}\right]\right.$
$\left.+2 Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \phi_{-}(\omega) \ln \frac{m_{b} \omega}{\mu^{2}}+Q_{\ell}^{2}\left[\frac{1}{\epsilon_{\mathrm{IR}}}\left(\ln \frac{m_{B}^{2}}{m_{\ell}^{2}}-2\right)+\frac{1}{2} \ln ^{2} \frac{m_{\ell}^{2}}{\mu^{2}}-\frac{1}{2} \ln \frac{m_{\ell}^{2}}{\mu^{2}}+2+\frac{5 \pi^{2}}{12}\right]\right\}$
$\mathcal{M}_{3 p}(\mu)=\frac{\alpha}{\pi} Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \int_{0}^{\infty} d \omega_{g} \phi_{3 g}\left(\omega, \omega_{g}\right)\left[\frac{1}{\omega_{g}} \ln \left(1+\frac{\omega_{g}}{\omega}\right)-\frac{1}{\omega+\omega_{g}}\right]$
[CC, König, MN 2022]
\Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Below $\mu \sim \Lambda_{\mathrm{QCD}}$ quarks hadronize: move to effective description with a Yukawa theory, with the meson treated as a heavy scalar:

$$
\mathcal{L}_{\mathrm{y}}=y e^{-i m_{B}(v \cdot x)} \varphi_{B}\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right)+\text { h.c. }
$$

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Below $\mu \sim \Lambda_{\text {QCD }}$ quarks hadronize: move to effective description with a Yukawa theory, with the meson treated as a heavy scalar:

$$
\mathcal{L}_{y}=y e^{-i m_{B}(v \cdot x)} \varphi_{B}\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right)+\text { h.c. }
$$

- Yukawa coupling is fixed by matching hadronic matrix elements between this and the previous description:

$$
\langle\ell \nu| \mathcal{L}_{\mathrm{SCETII} \otimes \mathrm{HQET}}|B\rangle=\langle\ell \nu| \mathcal{L}_{\mathrm{SCET} \mathrm{II} \otimes \mathrm{HSET}}|B\rangle
$$

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Below $\mu \sim \Lambda_{\mathrm{QCD}}$ quarks hadronize: move to effective description with a Yukawa theory, with the meson treated as a heavy scalar:

$$
\mathcal{L}_{y}=y e^{-i m_{B}(v \cdot x)} \varphi_{B}\left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)}\right)+\text { h.c. }
$$

- Yukawa coupling is fixed by matching hadronic matrix elements between this and the previous description:

$$
\begin{aligned}
\langle\ell \nu| \mathcal{L}_{\mathrm{SCETII} \otimes \mathrm{HQET}}|B\rangle & =\langle\ell \nu| \mathcal{L}_{\mathrm{SCET} \mathrm{II} \otimes \mathrm{HSET}}|B\rangle \\
& =1 \text { ? }
\end{aligned}
$$

- Since $\Lambda_{\mathrm{QCD}} \sim m_{\mu^{\prime}}$ we integrate out the muon in the same step and describe it as a boosted heavy lepton field: $\ell(x)=e^{-i m_{e} v_{t} \cdot x} \chi_{v_{t}}(x)$ \Rightarrow low-E theory is a heavy scalar effective theory \otimes bHLET

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- It's a theory of Wilson lines: all interactions of the B and the muon with ultrasoft and ultrasoft-collinear photons can be moved into Wilson lines, and decoupled via field redefinitions:

$$
\begin{aligned}
Y_{v}^{(\mathrm{s})}(x) & =\mathcal{P} \exp \left\{i e \int_{-\infty}^{0} d s v \cdot A_{s}(x+s v)\right\} \\
Y_{v}^{(\mathrm{sc})}(x) & =\mathcal{P} \exp \left\{i e \int_{-\infty}^{0} d s v \cdot A_{\mathrm{sc}}(x+s v)\right\}
\end{aligned}
$$

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- It's a theory of Wilson lines: all interactions of the B and the muon with ultrasoft and ultrasoft-collinear photons can be moved into Wilson lines, and decoupled via field redefinitions:

$$
\begin{aligned}
Y_{v}^{(\mathrm{s})}(x) & =\mathcal{P} \exp \left\{i e \int_{-\infty}^{0} d s v \cdot A_{s}(x+s v)\right\} \\
Y_{v}^{(\mathrm{sc})}(x) & =\mathcal{P} \exp \left\{i e \int_{-\infty}^{0} d s v \cdot A_{\mathrm{sc}}(x+s v)\right\}
\end{aligned}
$$

- Real corrections are matrix elements of these Wilson lines:

$$
\begin{aligned}
W_{s}\left(\omega_{s}, \mu\right) & \left.=\left[\sum_{n_{s}=0}^{\infty} \prod_{i=1}^{n_{s}} \int d \Pi_{i}\left(q_{i}\right)\right]\left|\left\langle n_{s} \gamma_{s}\left(q_{i}\right)\right| Y_{v}^{(\mathrm{s})} Y_{n}^{(\mathrm{s}) \dagger}\right| 0\right\rangle\left.\right|^{2} \delta\left(\omega_{s}-q_{0}^{(\mathrm{s})}\right), \\
W_{s c}\left(\omega_{s c}, \mu\right) & \left.=\left[\sum_{n_{s c}=0}^{\infty} \prod_{j=1}^{n_{s}} \int d \Pi_{j}\left(q_{j}\right)\right]\left|\left\langle n_{s c} \gamma_{s c}\left(q_{j}\right)\right| Y_{\bar{n}}^{(\mathrm{sc}) \dagger} Y_{v_{l}}^{(\mathrm{sc})}\right| 0\right\rangle\left.\right|^{2} \delta\left(\omega_{s c}-q_{0}^{(\mathrm{sc})}\right)
\end{aligned}
$$

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$
S\left(E_{s}, \mu\right)=\int_{0}^{\infty} d \omega_{s} \int_{0}^{\infty} d \omega_{s c} \theta\left(\frac{E_{s}}{2}-\omega_{s}-\omega_{s c}\right) W_{s}\left(\omega_{s}, \mu\right) W_{s c}\left(\omega_{s c}, \mu\right)
$$

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$
S\left(E_{s}, \mu\right)=\int_{0}^{\infty} d \omega_{s} \int_{0}^{\infty} d \omega_{s c} \theta\left(\frac{E_{s}}{2}-\omega_{s}-\omega_{s c}\right) W_{s}\left(\omega_{s}, \mu\right) W_{s c}\left(\omega_{s c}, \mu\right)
$$

- Integration and renormalisation of the bare functions can be carried out in Laplace space \Rightarrow resummation of ultra-soft and ultrasoftcollinear logs.

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$
S\left(E_{s}, \mu\right)=\int_{0}^{\infty} d \omega_{s} \int_{0}^{\infty} d \omega_{s c} \theta\left(\frac{E_{s}}{2}-\omega_{s}-\omega_{s c}\right) W_{s}\left(\omega_{s}, \mu\right) W_{s c}\left(\omega_{s c}, \mu\right)
$$

- Integration and renormalisation of the bare functions can be carried out in Laplace space \Rightarrow resummation of ultra-soft and ultrasoftcollinear logs.
- Full factorization formula:

$\mu<\Lambda \sim m_{\mu}$: UNDERSTANDING THE LOW-ENERGY THEORY

- Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$
S\left(E_{s}, \mu\right)=\int_{0}^{\infty} d \omega_{s} \int_{0}^{\infty} d \omega_{s c} \theta\left(\frac{E_{s}}{2}-\omega_{s}-\omega_{s c}\right) W_{s}\left(\omega_{s}, \mu\right) W_{s c}\left(\omega_{s c}, \mu\right)
$$

- Integration and renormalisation of the bare functions can be carried out in Laplace space \Rightarrow resummation of ultra-soft and ultrasoftcollinear logs.
- Full factorization formula:

HADRONIC QUANTITIES

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

$$
\mathcal{A}_{B \rightarrow \ell \overline{\mathcal{J}}}^{\text {virtual }}=i \sqrt{2} G_{F} K_{\mathrm{EW}}(\mu) V_{u b} \frac{m_{\ell}}{m_{b}} \sqrt{m_{B}} F\left(\mu, m_{b}, w\right) \bar{u}\left(p_{\ell}\right) P_{L} v\left(p_{\nu}\right)\left[\mathcal{M}_{2 p}(\mu)+\mathcal{M}_{3 p}(\mu)\right]
$$

with:
$\mathcal{M}_{2 p}(\mu)=1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]$

$$
\begin{aligned}
& +\frac{\alpha}{4 \pi}\left\{Q_{b}^{2}\left[\frac{3}{2} \ln \frac{m_{b}^{2}}{\mu^{2}}-2\right]-Q_{\ell} Q_{b}\left[\frac{1}{2} \ln ^{2} \frac{m_{b}^{2}}{\mu^{2}}+2 \ln \frac{m_{b}^{2}}{\mu^{2}}-3 \ln \frac{m_{\ell}^{2}}{\mu^{2}}+1+\frac{5 \pi^{2}}{12}\right]\right. \\
& \left.+2 Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \phi_{-}(\omega) \ln \frac{m_{b} \omega}{\mu^{2}}+Q_{\ell}^{2}\left[\frac{1}{\epsilon_{\mathrm{IR}}}\left(\ln \frac{m_{B}^{2}}{m_{\ell}^{2}}-2\right)+\frac{1}{2} \ln ^{2} \frac{m_{\ell}^{2}}{\mu^{2}}-\frac{1}{2} \ln \frac{m_{\ell}^{2}}{\mu^{2}}+2+\frac{5 \pi^{2}}{12}\right]\right\}
\end{aligned}
$$

$\mathcal{M}_{3 p}(\mu)=\frac{\alpha}{\pi} Q_{\ell} Q_{u} \int_{0}^{\infty} d \omega \int_{0}^{\infty} d \omega_{g} \phi_{3 g}\left(\omega, \omega_{g}\right)\left[\frac{1}{\omega_{g}} \ln \left(1+\frac{\omega_{g}}{\omega}\right)-\frac{1}{\omega+\omega_{g}}\right]$
\Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

HADRONIC QUANTITIES

Generalization of the decay "constant" in presence of QED effects

- Matching relation (with X_{γ} an n-soft-photon state):
$\left\langle X_{\gamma}\right| O_{A}^{(\Lambda)}\left|B^{-}\right\rangle=-\frac{i}{2} \sqrt{m_{B}} F(\mu, \Lambda, w)\left\langle X_{\gamma}\right| S_{v_{B}}^{(B)} S_{v_{\ell}}^{(\ell) \dagger}|0\rangle$ with $w \equiv v_{B} \cdot v_{\ell} \approx \frac{m_{B}}{2 m_{\ell}}$
\Rightarrow a form factor (like the Isgur-Wise function in $B \rightarrow D^{(*)}$ transitions)
[CC, König, MN 2022]
- Defining F as a Wilson coefficient implements the nonperturbative matching of SCET onto the point-like meson effective theory
envisioned in [Beneke, Bobeth, Szafron 2019]

HADRONIC QUANTITIES

Generalization of the decay "constant" in presence of QED effects

- Matching relation (with X_{γ} an n-soft-photon state):

$$
\left\langle X_{\gamma}\right| O_{A}^{(\Lambda)}\left|B^{-}\right\rangle=-\frac{i}{2} \sqrt{m_{B}} F(\mu, \Lambda, w)\left\langle X_{\gamma}\right| S_{v_{B}}^{(B)} S_{v_{\ell}}^{(\ell) \dagger}|0\rangle \text { with } w \equiv v_{B} \cdot v_{\ell} \approx \frac{m_{B}}{2 m_{\ell}}
$$

\Rightarrow a form factor (like the Isgur-Wise function in $B \rightarrow D^{(*)}$ transitions)
[CC, König, MN 2022]

- Evolution equations:

$$
\begin{aligned}
& \frac{d \ln F}{d \ln \mu}=C_{F} \frac{3 \alpha_{s}}{4 \pi}-\frac{3 \alpha}{4 \pi}\left(Q_{\ell}^{2}-Q_{b}^{2}+\frac{2}{3} Q_{\ell} Q_{u} \ln \frac{\Lambda^{2}}{\mu^{2}}\right) \\
& \frac{d \ln F}{d \ln \Lambda}=Q_{\ell} Q_{u} \frac{\alpha}{2 \pi}\left[\int d \omega \phi_{-}(\omega) \ln \frac{\omega \Lambda}{\mu^{2}}-1+\ldots\right]
\end{aligned}
$$

well-defined and

STRUCTURE-DEPENDENT QED CORRECTIONS IN RARE EXCLUSIVE B DECAYS

HADRONIC UNCERTAINTIES

Nonperturbative hadronic matrix elements:

Several model LCDAs have been proposed, e.g.:

$$
\phi_{-}(\omega)=\frac{1}{\omega_{0}} e^{-\omega / \omega_{0}}, \quad \phi_{3 g}\left(\omega, \omega_{g}\right)=\frac{\lambda_{E}^{2}-\lambda_{H}^{2}}{3 \omega_{0}^{5}} \omega \omega_{g} e^{-\left(\omega+\omega_{g}\right) / \omega_{0}}
$$

HADRONIC UNCERTAINTIES

Model-independent results for the form factor $F\left(\mu, m_{b}, v_{B} \cdot v_{\ell}\right)$

- Relation to lattice OCD results for the B-meson decay constant:

$$
\sqrt{m_{B}} f_{B}^{\mathrm{QCD}}=\left.\left[1-C_{F} \frac{\alpha_{s}\left(m_{b}\right)}{2 \pi}\right] F\left(m_{b}, m_{b}, w\right)\right|_{\alpha \rightarrow 0}
$$

- For $w \gtrsim 1$, it would be possible to determine F using lattice QCD, in analogy with the Isgur-Wise function
- However, this seems illusive for $2 w=m_{B} / m_{\mu} \approx 50$ (cf. the $B \rightarrow \pi$ form factor at $q^{2}=0$, corresponding to maximum recoil)
- However, unlike in QCD, it is sufficient to work to first order in α

HADRONIC UNCERTAINTIES

Model-independent results for the form factor $F\left(\mu, m_{b}, v_{B} \cdot v_{\ell}\right)$

- Preliminary finding:

$$
F(\mu, \Lambda, w) \propto f_{B_{u}}^{\mathrm{QCD}}\{1+\frac{\alpha}{4 \pi}[c_{1} \underbrace{\ln (2 w)+c_{0}(\Lambda, \mu)}]\} \ln \frac{m_{B}}{m_{\ell}}
$$

with nonperturbative parameters $c_{0}(\Lambda, \mu)$ and c_{1}

- This may offer a path to a lattice determination of F by varying w

CONCLUSIONS

- Subleading-power factorization theorem with endpoint divergences subtracted in a nonperturbative context
- First consistent matching of SCET onto point-like meson theory
- Structure-dependent OED corrections a generic feature resulting from contributions of (hard-, soft-) collinear modes in SCET
- important source of large logarithmic corrections
- missed in previous treatments based on point-like meson model
- Results are relevant for consistent analyses of QED effects also in other rare B decays and allow for a precision determination of $\left|V_{\mathrm{ub}}\right|$

