HADRON-STRUCTURE DEPENDENT QED CORRECTIONS In rare exclusive B decays

MATTHIAS NEUBERT, CLAUDIA CORNELLA

MAINZ INSTITUTE FOR THEORETICAL PHYSICS (MITP) JOHANNES GUTENBERG UNIVERSITY, MAINZ, GERMANY

based on CC, M. König, MN: arXiv:2212.14430

Leptonic decays $B^- \rightarrow \ell^- \bar{\nu}_\ell$ are interesting for several reasons:

Determination of |V_{ub}| largely unaffected by hadronic uncertainties

- Chiral suppression offers sensitive probe of new scalar interactions
- Comparing different lepton flavors yields test of lepton universality \Rightarrow Belle II will measure $\ell = \mu, \tau$ channels with 5-7% uncertainty [Belle II Physics Book]

Leptonic decays $B^- \rightarrow \ell^- \bar{\nu}_\ell$ are interesting for several reasons:

Determination of |V_{ub}| largely unaffected by hadronic uncertainties

- OCD matrix element is known with <1% accuracy: [FNAL/MILC 2017] $\langle 0 | \bar{u} \gamma^{\mu} \gamma_5 b | B^-(p) \rangle = i f_{B_u} p^{\mu}$ with $f_{B_u} = (189.4 \pm 1.4) \,\text{MeV}$
- QED corrections can be of similar magnitude or even larger, due to presence of large logarithms $\alpha \ln(m_b/m_\ell)$ and $\alpha \ln(m_\ell/E_s)$

QED effects are well under control for $\mu > m_b$ and $\mu \ll \Lambda_{\text{QCD}}$:

• Effective weak Hamiltonian contains all short-distance effects ($\mu > m_b$)

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \left(\bar{u} \gamma^{\mu} P_L b \right) \left(\bar{\ell} \gamma_{\mu} P_L \nu_{\ell} \right)$$

Very soft photons see B meson as point-like particle

QED effects are well under control for $\mu > m_b$ and $\mu \ll \Lambda_{\rm QCD}$:

• Effective weak Hamiltonian contains all short-distance effects ($\mu > m_b$)

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \left(\bar{u} \gamma^{\mu} P_L b \right) \left(\bar{\ell} \gamma_{\mu} P_L \nu_{\ell} \right)$$

- Very soft photons see B meson as point-like particle
- Intermediate scale range $\Lambda_{QCD} < \mu < m_b$ gives rise to more intricate effects, as virtual photons can resolve inner structure of *B* meson

SCET 2023

[CC, König, MN 2022]

QED effects are well under control for $\mu > m_b$ and $\mu \ll \Lambda_{\text{QCD}}$:

• Effective weak Hamiltonian contains all short-distance effects ($\mu > m_b$)

$$\mathcal{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \left(\bar{u} \gamma^{\mu} P_L b \right) \left(\bar{\ell} \gamma_{\mu} P_L \nu_{\ell} \right)$$

Very soft photons see B meson as point-like particle

effective 4-fermion interaction

from W-boson exchange

b

g (

u /

- $B_s \rightarrow \mu^+ \mu^-$ [Beneke, Bobeth, Szafron 2017 & 2019]
- $B o K\pi, D\pi$ [Beneke, Böer, Toelstede, Vos 2020; Beneke, Böer, Finauri, Vos 2021]

RELEVANT SCALES

 $B \to \mu \bar{\nu}$

In the presence of QED effects, $\stackrel{B}{\underset{B}{\to}} \rightarrow \mu \overline{\nu}_{\mu} \overline{\nu} B^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu}$ is sensitive to eight different energy scales:

RELEVANT SCALES

 $B \to \mu \bar{\nu}$

In the presence of QED effects, $\stackrel{B}{\underset{B}{\to}} \rightarrow \mu \overline{\nu}_{\mu} \overline{\nu} B^{-} \rightarrow \mu^{-} \overline{\nu}_{\mu}$ is sensitive to eight different energy scales:

QED CORRECTIONS IN LEPTONIC B DECAY

- Fact that external particles are charged under QED invalidates naive factorization, but scale separation can still be studied using SCET
- For power-suppressed processes such as $B^- \rightarrow \ell^- \bar{\nu}_{\ell}$, derivation of SCET factorization theorems is far more complicated than at leading power and has been understood only recently [Liu, MN 2019; Liu, Mecaj, MN, Wang 2020; Beneke *et al.* 2022; Liu, MN, Schnubel, Wang 2022]
- Our work is one of the first derivations of a subleading-power factorization theorem for a process involving nonperturbative hadronic dynamics [along with: Feldmann, Gubernari, Huber, Seitz 2022;

see also: Hurth, Szafron 2023]

- Quark current $\bar{u} \gamma^{\mu} P_L b$ is not gauge invariant under QED \Rightarrow add a Wilson line to account for soft photon interactions with charged lepton
- One option: light-like Wilson line $\bar{u} \gamma^{\mu} P_L b S_n^{(\ell)\dagger}$ [Beneke, Bobeth, Szafron 2019]
 - anomalous dimension sensitive to IR regulators
 - matching onto point-like meson theory not fully understood

- Quark current $\bar{u} \gamma^{\mu} P_L b$ is not gauge invariant under QED \Rightarrow add a Wilson line to account for soft photon interactions with charged lepton
- One option: light-like Wilson line $\bar{u} \gamma^{\mu} P_L b S_n^{(\ell)\dagger}$ [Beneke, Bobeth, Szafron 2019]
 - anomalous dimension sensitive to IR regulators
 - matching onto point-like meson theory not fully understood
- Our choice: time-like Wilson line $\bar{u} \gamma^{\mu} P_L b S_{\nu_{\ell}}^{(\ell)\dagger}$ [CC, König, MN 2022]
 - $S_{v_{\ell}}^{(\ell)} = S_n^{(\ell)} C_{v_{\ell}}^{(\ell)}$ arises since both soft and soft-collinear photons can resolve the structure of the *B* meson
 - soft-collinear photons interactions with charged lepton described in "boosted HLET" and decoupled via a field redefinition

[Fleming, Hoang, Mantry, Stewart 2007]

- Quark current $\bar{u} \gamma^{\mu} P_L b$ is not gauge invariant under QED \Rightarrow add a Wilson line to account for soft photon interactions with charged lepton
- One option: light-like Wilson line $\bar{u} \gamma^{\mu} P_L b S_n^{(\ell)\dagger}$ [Beneke, Bobeth, Szafron 2019]
 - anomalous dimension sensitive to IR regulators
 - matching onto point-like meson theory not fully understood
- Our choice: time-like Wilson line $\bar{u} \gamma^{\mu} P_L b S_{\nu_{e}}^{(\ell)\dagger}$ [CC, König, MN 2022]
 - well-defined anomalous dimension (after refactorization) 😌
 - consistent matching onto point-like meson theory 😌

Have analyzed the factorization properties (scale separation) of the $B^- \rightarrow \mu^- \bar{\nu}_\mu$ amplitude including QED corrections in SCET

- Relevant modes for virtual QED corrections:
 - hard
 - hard-collinear <--</p>
 - soft
 - collinear

resolve the light-cone structure of the *B* meson

SCET 2023

- soft-collinear
- Relevant modes for real QED corrections:
 - ultra-soft
 - ultra-soft-collinear

Have analyzed the factorization properties (scale separation) of the $B^- \rightarrow \mu^- \bar{\nu}_\mu$ amplitude including QED corrections in SCET

(1, 1, 1)

 $(\lambda, 1, \lambda^{\frac{1}{2}})$

 $(\lambda, \lambda, \lambda)$

 $(\lambda_{\ell}^2, 1, \lambda_{\ell})$

 $\lambda(\lambda_{\ell}^2, 1, \lambda_{\ell})$

- Relevant modes for virtual QED corrections:
 - hard
 - hard-collinear
 - soft
 - collinear
 - soft-collinear
- Relevant modes for real QED corrections:
 - ultra-soft
 - ultra-soft-collinear

 $(\lambda_E, \frac{\lambda_E}{\lambda_E}, \lambda_E)$

 $\lambda_E(\lambda_\ell^2, \mathbf{1}, \lambda_\ell)$

Expansion parameters: $\lambda = \frac{\Lambda_{\text{QCD}}}{m_b}$ $\lambda_{\ell} = \frac{m_{\mu}}{m_b} \sim \lambda$ $\lambda_E = \frac{E_s}{m_b} \sim \lambda_{\ell}^2$

[CC, König, MN 2022]

STRATEGY

We want to disentangle all these scales by

- identifying the appropriate EFT description
- deriving a factorization theorem to describe the multi-scale problem in terms of convolutions of single-scale objects

STRATEGY

We want to disentangle all these scales by

- identifying the appropriate EFT description
- deriving a factorization theorem to describe the multi-scale problem in terms of convolutions of single-scale objects

In the following, we will

- describe the EFT construction across all scales
- discuss the factorization & refactorization of the "virtual" amplitude
- sketch the low-energy theory describing real emissions

KINEMATICS

In the *B*-meson rest frame, the muon and the neutrino are back to back. We identify the direction of the **muon** as the "**collinear**" one.

$$v^{\mu} \xrightarrow{B} \overline{n}^{\mu} p_{B}^{\mu} = m_{B}v^{\mu}, \quad v^{\mu} = (1,0,0,0)$$

$$p_{\mu}^{\mu} = \frac{m_{B}}{2} \left(1 + \lambda_{\mu}^{2}, 0, 0, +1 - \lambda_{\mu}^{2} \right) \approx \frac{m_{B}}{2} (1,0,0, +1) = \frac{m_{B}}{2} n^{\mu}$$

$$p_{\nu}^{\mu} = \frac{m_{B}}{2} \left(1 - \lambda_{\mu}^{2}, 0, 0, -1 + \lambda_{\mu}^{2} \right) \approx \frac{m_{B}}{2} (1,0,0, -1) = \frac{m_{B}}{2} \bar{n}^{\mu}$$

$$\lambda_{\mu} = \frac{m_{\mu}}{m_{b}} \ll 1$$

Initial state quark are bound in the meson, with residual momenta of $\mathcal{O}(\Lambda_{\text{OCD}})$

$$p_b = m_b v + k_b, \quad p_q = k_q \qquad k_b, k_q \sim m_b(\lambda, \lambda, \lambda) \qquad \lambda = \frac{\Lambda_{\rm QCD}}{m_b}$$

SCET 2023

$\mu \sim m_b$: FROM THE FERMI THEORY TO HQET imes SCET-1

Below m_b, radiation is too soft to affect the b-quark momentum
 the right description is HQET

$\mu \sim m_b$: FROM THE FERMI THEORY TO HQET imes SCET-1

- Below m_b, radiation is too soft to affect the b-quark momentum
 the right description is HQET
- Remaining fields can have large momenta, but small invariant mass
 the right EFT is SCET-1

$\mu \sim m_b$: FROM THE FERMI THEORY TO HQET imes SCET-1

- Below m_b, radiation is too soft to affect the b-quark momentum
 the right description is HQET
- Remaining fields can have large momenta, but small invariant mass
 the right EFT is SCET-1
- In practice, the fields & power counting we need at this stage are:

$$\begin{split} \nu &\to \chi_{hc}^{(\nu)} & \chi_{hc}^{(\ell)}, \chi_{hc}^{(q)}, \chi_{hc}^{(\nu)} \sim \lambda^{1/2} \\ \ell &\to \chi_{hc}^{(\ell)} & h_v, q_s \sim \lambda^{3/2} \\ b &\to h_v & \mathcal{A}_{hc\perp}^{\mu}, \mathcal{G}_{hc\perp}^{\mu} \sim \lambda^{1/2} \\ q &\to \chi_{hc}^{(q)}, q_s & & & & \\ (+ \text{ photons, gluons}) & & & & & \text{photons} & & & \text{gluons} \end{split}$$

- All operators stem from the Fermi Lagrangian
 - ⇒ massless fields (neutrino and spectator) have to be left-handed

- All operators stem from the Fermi Lagrangian
 ⇒ massless fields (neutrino and spectator) have to be left-handed
- The leading contribution to the amplitude is of order λ^6 \Rightarrow need operators with SCET-2 power counting λ^6 and mass dim 6

- All operators stem from the Fermi Lagrangian
 ⇒ massless fields (neutrino and spectator) have to be left-handed
- The leading contribution to the amplitude is of order λ^6 \Rightarrow need operators with SCET-2 power counting λ^6 and mass dim 6
- Only two irreducible Dirac structures can enter the leptonic current in SCET-1: $\bar{\chi}_{hc}^{(\ell)} \Gamma_{\ell} P_L \chi_{\overline{hc}}^{(\nu)}$ with $\Gamma_{\ell} = 1, \gamma_{\mu}^{\perp}$

- All operators stem from the Fermi Lagrangian
 ⇒ massless fields (neutrino and spectator) have to be left-handed
- The leading contribution to the amplitude is of order λ^6 \Rightarrow need operators with SCET-2 power counting λ^6 and mass dim 6
- Only two irreducible Dirac structures can enter the leptonic current in SCET-1: $\bar{\chi}_{hc}^{(\ell)} \Gamma_{\ell} P_L \chi_{\overline{hc}}^{(\nu)}$ with $\Gamma_{\ell} = 1, \gamma_{\mu}^{\perp}$
 - for $\Gamma_{\ell} = 1$ the muon is right-handed \Rightarrow the chirality flip gives a factor m_{ℓ} , included in the operator definition

Given this, we have five classes of 4-fermion operators:

- A. Operators with soft spectator
- B. Operators with hard-collinear spectator
- C. Operators with soft spectator + hard-collinear photon
- D. Operators with hard-collinear spectator + hard-collinear photon
- E. Operators hard-collinear spectator + two perp objects

Given this, we have five classes of 4-fermion operators:

- A. Operators with soft spectator
- B. Operators with hard-collinear spectator
- C. Operators with soft spectator + hard-collinear photon
- D. Operators with hard-collinear spectator + hard-collinear photon
- E. Operators hard-collinear spectator + two perp objects

Only these are needed at $\mathcal{O}(\alpha)$.

- A. Operators with soft spectator
- Obtained from hard matching:

power counting $\mathcal{O}_{A,1}^{(5)} = m_{\ell} \left(\bar{q}_s \frac{\not{n}}{2} P_L h_v \right) \left(\bar{\chi}_{hc}^{(\ell)} \frac{1}{i\bar{n} \cdot \overleftarrow{\partial}} P_L \chi_{\overline{hc}}^{(\nu)} \right) \\
\mathcal{O}_{A,2}^{(5)} = m_{\ell} \left(\bar{q}_s \frac{\not{n}}{2} P_L h_v \right) \left(\bar{\chi}_{hc}^{(\ell)} \frac{1}{in \cdot \overrightarrow{\partial}} P_L \chi_{\overline{hc}}^{(\nu)} \right)$

- A. Operators with soft spectator
- Obtained from hard matching:

power counting

$$\mathcal{O}_{A,1}^{(5)} = m_{\ell} \left(\bar{q}_s \frac{\not{n}_l}{2} P_L h_v \right) \left(\bar{\chi}_{hc}^{(\ell)} \frac{1}{i\bar{n} \cdot \overleftarrow{\partial}} P_L \chi_{\overline{hc}}^{(\nu)} \right) \\
\mathcal{O}_{A,2}^{(5)} = m_{\ell} \left(\bar{q}_s \frac{\not{n}_l}{2} P_L h_v \right) \left(\bar{\chi}_{hc}^{(\ell)} \frac{1}{in \cdot \overrightarrow{\partial}} P_L \chi_{\overline{hc}}^{(\nu)} \right)$$

• Only the first contributes at tree level:

Matthias Neubert, Claudia Cornella – 12

SCET 2023

- A. Operators with soft spectator
- Obtained from hard matching:

power counting $\mathcal{O}_{A,1}^{(5)} = m_{\ell} \left(\bar{q}_s \frac{\not{h}}{2} P_L h_v \right) \left(\bar{\chi}_{hc}^{(\ell)} \frac{1}{i\bar{n} \cdot \overleftarrow{\partial}} P_L \chi_{\overline{hc}}^{(\nu)} \right) \\
\mathcal{O}_{A,2}^{(5)} = m_{\ell} \left(\bar{q}_s \frac{\not{h}}{2} P_L h_v \right) \left(\bar{\chi}_{hc}^{(\ell)} \frac{1}{in \cdot \overrightarrow{\partial}} P_L \chi_{\overline{hc}}^{(\nu)} \right)$

• Only the first contributes at tree level:

$$i\mathcal{A}_{\text{tree}} = -\frac{4G_F}{\sqrt{2}} V_{ub} \begin{bmatrix} \text{no projection on } \mathcal{B} \text{ meson} \\ \left(\bar{v}_q \gamma_{\perp}^{\mu} P_L u_b \right) (\bar{u}_\ell \gamma_{\perp \mu} P_L v_\nu) \\ + \frac{2m_\ell}{m_B} \left(\bar{v}_q \frac{\vec{\eta}}{2} P_L u_b \right) (\bar{u}_\ell P_L v_\nu) \end{bmatrix}$$

$$\lim_{\mu \to \infty} \left[\frac{m_\ell}{2} = \frac{m_\ell}{m_B} \bar{u}_\ell - \frac{2m_\ell^2}{m_B^2} \bar{u}_\ell \frac{\vec{\eta}}{2}, \qquad \frac{\vec{\eta}}{2} v_\nu = 0 \right]$$

Matthias Neubert, Claudia Cornella – 12

SCET 2023

B. Operators with hard-collinear spectator

Their one-loop matrix elements reproduce the hard-collinear loops in the Fermi theory

B. Operators with hard-collinear spectator

- Their one-loop matrix elements reproduce the hard-collinear loops in the Fermi theory
- B operators are power-enhanced with respect to A ones, but need one insertion of the (power-suppressed) soft-collinear interactions
 ⇒ they contribute at the same order

- C. Operators with with soft spectator + hard-collinear photon
- Arise from hard-collinear emission from muon, b or spectator quark

- C. Operators with with soft spectator + hard-collinear photon
- Arise from hard-collinear emission from muon, b or spectator quark

Moving to SCET-2, these reproduce the collinear loops of the Fermi theory

$$\mu \sim \sqrt{m_b \Lambda}$$
: FROM SCET-1 TO SCET-2

At $\mu \sim \sqrt{m_b \Lambda}$, integrate out hard-collinear modes and lower virtuality \Rightarrow now collinear and soft modes live at the same scale: SCET-2

 $p_c \sim (1, \lambda^2, \lambda), \qquad p_s \sim (\lambda, \lambda, \lambda), \qquad p_c^2 \sim p_s^2 \sim \mathcal{O}\left(\lambda^2\right)$

$$\mu \sim \sqrt{m_b \Lambda}$$
: FROM SCET-1 TO SCET-2

- At $\mu \sim \sqrt{m_b \Lambda}$, integrate out hard-collinear modes and lower virtuality \Rightarrow now collinear and soft modes live at the same scale: SCET-2 $p_c \sim (1, \lambda^2, \lambda), \quad p_s \sim (\lambda, \lambda, \lambda), \quad p_c^2 \sim p_s^2 \sim \mathcal{O}(\lambda^2)$
- When integrating out hard-collinear modes, intermediate propagators introduce non-local operators:

$$\psi_{hc} \rightarrow \psi_c + \psi_c \cdot \psi_s + \psi_c \cdot \psi_s^2 + \dots$$

$$\underbrace{ \begin{array}{c} \bullet \\ c \end{array}}^{c} + \underbrace{ \begin{array}{c} \bullet \\ hc \end{array}}^{c} s + \underbrace{ \begin{array}{c} \bullet \\ hc \end{array}}^{s} + \underbrace{ \begin{array}{c} \bullet \\ hc \end{array}}^{s} s + \underbrace{ \begin{array}{c} \bullet \\ hc \end{array}}^{s} s + \ldots \\ \frac{1}{n \cdot \partial} q_{s}, \quad \left(\frac{1}{n \cdot \partial} \mathcal{A}^{\mu}_{\perp s} \right) \left(\frac{1}{n \cdot \partial} q_{s} \right), \quad \ldots$$

⇒ now contain more fields, but are of the same order!

SCET 2023

(NOT) OVERCOMING THE CHIRAL SUPPRESSION

Inverse derivative operators can probe the meson structure, and possibly overcome the chiral suppression

$$\left\langle 0 \left| \left(\frac{1}{n \cdot \partial} \overline{q}_s \right) \dots h_v \left| B \right\rangle \sim \frac{1}{\lambda_B} \sim \mathcal{O}\left(\Lambda_{\text{QCD}}^{-1} \right) \right.$$
(NOT) OVERCOMING THE CHIRAL SUPPRESSION

Inverse derivative operators can probe the meson structure, and possibly overcome the chiral suppression

$$\left\langle 0 \left| \left(\frac{1}{n \cdot \partial} \overline{q}_s \right) \dots h_v \left| B \right\rangle \sim \frac{1}{\lambda_B} \sim \mathcal{O}\left(\Lambda_{\text{QCD}}^{-1} \right) \right.$$

• Happens for $B_s \to \mu^+ \mu^-$, but not for $B \to \mu \bar{\nu}_{\mu}$ [Beneke, Bobeth, Szafron 2017, 2019]

(NOT) OVERCOMING THE CHIRAL SUPPRESSION

Inverse derivative operators can probe the meson structure, and possibly overcome the chiral suppression

$$\left\langle 0 \left| \left(\frac{1}{n \cdot \partial} \overline{q}_s \right) \dots h_v \right| B \right\rangle \sim \frac{1}{\lambda_B} \sim \mathcal{O}\left(\Lambda_{\text{QCD}}^{-1} \right)$$

- Happens for $B_s \to \mu^+ \mu^-$, but not for $B \to \mu \bar{\nu}_{\mu}$ [Beneke, Bobeth, Szafron 2017, 2019]
- For left-handed currents, these contributions come with evanescent Dirac structures:

$$\left(\bar{v}\frac{\not{n}}{2}\gamma_{\perp}^{\mu}\gamma_{\perp}^{\nu}P_{L}u\right)_{h}\left(\bar{u}\gamma_{\mu}^{\perp}\gamma_{\nu}^{\perp}\left[\frac{v-a\gamma_{5}}{2}\right]v\right)_{\ell}=2(v-a)\left(\bar{v}\frac{\not{n}}{2}P_{L}u\right)_{h}\left(\bar{u}P_{R}v\right)_{\ell}+\mathcal{O}\left(\epsilon\right)$$

 \Rightarrow structure-dependent contributions to $B \rightarrow \mu \bar{\nu}_{\mu}$ carry the same suppression as the tree level result!

SCET-2 BASIS

$$\begin{aligned} \mathcal{Q}_{A,1} &= \frac{m_{\ell}}{i\bar{n}\cdot\partial_{c}} \left(\bar{q}_{s}\frac{\not{p}}{2}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{A,2} &= \frac{m_{\ell}}{in\cdot\partial_{c}} \left(\bar{q}_{s}\frac{\not{p}}{2}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,1} &= \left(\bar{q}_{s}\frac{1}{in\cdot\overleftarrow{\partial}_{s}}\mathcal{A}_{c}^{(u)\perp}\frac{i\overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n}\cdot\overleftarrow{\partial}_{c}}\frac{\not{p}}{4}\gamma_{\perp}^{\mu}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}\gamma_{\mu}^{\perp}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,2} &= \left(\bar{q}_{s}\frac{1}{in\cdot\overleftarrow{\partial}_{s}}\mathcal{A}_{c}^{(u)\perp}\frac{\not{p}}{4}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}\frac{i\overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n}\cdot\overleftarrow{\partial}_{c}}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,3} &= \left(\bar{q}_{s}\frac{1}{in\cdot\overleftarrow{\partial}_{s}}\mathcal{A}_{c}^{(u)\perp}\frac{\not{p}}{4}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}\frac{m_{\ell}}{i\bar{n}\cdot\overleftarrow{\partial}_{c}}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,4} &= \frac{1}{in\cdot\partial_{c}} \left(\bar{q}_{s}\frac{\not{p}}{2}\gamma_{\perp}^{\mu}\gamma_{\perp}^{\nu}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}\mathcal{A}_{c\nu}^{(b)\perp}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,5} &= \frac{1}{i\bar{n}\cdot\partial_{c}} \left(\bar{q}_{s}\frac{\not{p}}{2}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}\mathcal{A}_{c}^{(\ell)\perp}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,6} &= \left(\bar{q}_{s}\mathcal{A}_{c,\perp}^{(u)}\frac{1}{i\bar{n}\cdot\overleftarrow{\partial}_{c}}\frac{\not{p}}{2}\gamma_{\perp}^{\mu}P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)}\gamma_{\mu}^{\perp}P_{L}\chi_{\bar{c}}^{(\nu)} \right) \end{aligned}$$

Matthias Neubert, Claudia Cornella – 17

in SCET-1

SCET-2 BASIS

$$\begin{aligned} \mathcal{Q}_{A,1} &= \frac{m_{\ell}}{i\bar{n}\cdot\partial_{c}} \left(\bar{q}_{s} \frac{\dagger}{2} P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{A,2} &= \frac{m_{\ell}}{in\cdot\partial_{c}} \left(\bar{q}_{s} \frac{\dagger}{2} P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,1} &= \left(\bar{q}_{s} \frac{1}{in\cdot\overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u)\perp} \frac{i\overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n}\cdot\overleftarrow{\partial}_{c}} \frac{\dagger}{4} \gamma_{\perp}^{\mu} P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,2} &= \left(\bar{q}_{s} \frac{1}{in\cdot\overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u)\perp} \frac{\dagger}{4} \overline{\mathcal{P}}_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \frac{i\overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n}\cdot\overleftarrow{\partial}_{c}} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,3} &= \left(\bar{q}_{s} \frac{1}{in\cdot\overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u)\perp} \frac{\dagger}{4} \overline{\mathcal{P}}_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \frac{m_{\ell}}{i\bar{n}\cdot\overleftarrow{\partial}_{c}} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,4} &= \frac{1}{in\cdot\partial_{c}} \left(\bar{q}_{s} \frac{\dagger}{2} \gamma_{\perp}^{\mu} \gamma_{\perp}^{\nu} P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} \mathcal{A}_{c\nu}^{(b)\perp} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,5} &= \frac{1}{i\bar{n}\cdot\partial_{c}} \left(\bar{q}_{s} \frac{\dagger}{2} P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \mathcal{A}_{c}^{(\ell)\perp} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \\ \mathcal{Q}_{B,6} &= \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}\cdot\overleftarrow{\partial}_{c}} \frac{\dagger}{2} \gamma_{\perp}^{\mu} P_{L}h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L}\chi_{\bar{c}}^{(\nu)} \right) \end{aligned}$$

Matthias Neubert, Claudia Cornella – 17

SCET-2 BASIS

$$\begin{aligned} & \left(\mathcal{Q}_{A,1} = \frac{m_{\ell}}{i\bar{n} \cdot \partial_{c}} \left(\bar{q}_{s} \frac{\#}{2} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{A,2} = \frac{m_{\ell}}{in \cdot \partial_{c}} \left(\bar{q}_{s} \frac{\#}{2} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,1} = \left(\bar{q}_{s} \frac{1}{in \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u)\perp} \frac{i\overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_{c}} \frac{\#\pi}{4} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,2} = \left(\bar{q}_{s} \frac{1}{in \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u)\perp} \frac{\#\pi}{4} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \frac{i\overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_{c}} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,3} = \left(\bar{q}_{s} \frac{1}{in \cdot \overleftarrow{\partial}_{s}} \mathcal{A}_{c}^{(u)\perp} \frac{\#\pi}{4} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \frac{m_{\ell}}{i\bar{n} \cdot \overleftarrow{\partial}_{c}} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,4} = \frac{1}{in \cdot \partial_{c}} \left(\bar{q}_{s} \frac{\#}{2} \gamma_{\perp}^{\mu} \gamma_{L} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \mathcal{A}_{c}^{(\ell)\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,5} = \frac{1}{i\bar{n} \cdot \partial_{c}} \left(\bar{q}_{s} \frac{\#}{2} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \mathcal{A}_{c}^{(\ell)\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \cdot \overleftarrow{\partial}_{c}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \cdot \overleftarrow{\partial}_{c}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \cdot \overleftarrow{\partial}_{c}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \cdot \overleftarrow{\partial}_{c}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\perp} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \left(\bar{\chi}_{c}^{(\ell)} \gamma_{\mu}^{\mu} P_{L} \chi_{\bar{c}}^{(\nu)} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{s} \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n}} \frac{\#}{2} \gamma_{\perp}^{\mu} P_{L} h_{v} \right) \\ & \mathcal{Q}_{B,6} = \left(\bar{q}_{$$

ID

SCET-2 BASIS

$\begin{aligned} \mathcal{Q}_{A,1} &= \frac{m_{\ell}}{i\bar{n}\cdot\partial_{c}} \left(\bar{q}_{s}\frac{\not{n}}{2}P_{L}h_{v}\right) \left(\bar{\chi}_{c}^{(\ell)}P_{L}\chi_{\overline{c}}^{(\nu)}\right) \\ \mathcal{Q}_{A,2} &= \frac{m_{\ell}}{in\cdot\partial_{c}} \left(\bar{q}_{s}\frac{\not{n}}{2}P_{L}h_{v}\right) \left(\bar{\chi}_{c}^{(\ell)}P_{L}\chi_{\overline{c}}^{(\nu)}\right) \end{aligned}$	descend directly from A-type operators in SCET-1
$\mathcal{Q}_{B,1} = \left(\bar{q}_s \frac{1}{in \cdot \overleftarrow{\partial}_s} \mathcal{A}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\not n \not n}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{i \vec{n} \cdot \vec{n}}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{i \vec{n} \cdot \vec{n}}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{i \vec{n} \cdot \vec{n}}{4} \gamma_{\perp}^{\mu} P_L h_v \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}}{i\bar{n} \cdot \vec{n}} \right) \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}} \right) \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}} \right) \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}} \right) \left(\bar{\chi}_c^{(u)\perp} \frac{i \vec{n} \cdot \vec{n}} \right) \right) \left(\bar$	$(\gamma_{\mu}^{\perp}P_{L}\chi_{\overline{c}}^{(\nu)})$ stem from matching B-type SCET-1 operators to SCET-2 at tree level
$\mathcal{Q}_{B,2} = \left(\bar{q}_s \frac{1}{in \cdot \overleftarrow{\partial}_s} \mathcal{A}_c^{(u)\perp} \frac{\not n \vec{n}}{4} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v \right) \right) \right) \left(\bar{\chi}_c^{(\ell)} \frac{i \overleftarrow{\mathcal{D}}_{\perp,s}}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v$	$P_L \chi_{\overline{c}}^{(\nu)}$) $h_{\nu} \chi_{c}^{(\ell)}$ $h_{\nu} \chi_{c}^{(\ell)}$
$\mathcal{Q}_{B,3} = \left(\bar{q}_s \frac{1}{in \cdot \overleftarrow{\partial}_s} \mathcal{A}_c^{(u)\perp} \frac{\not n \not n}{4} P_L h_v\right) \left(\bar{\chi}_c^{(\ell)} \frac{m_\ell}{i\bar{n} \cdot \overleftarrow{\partial}_c} P_L h_v\right)$	$P_L\chi_{\overline{c}}^{(\nu)} \end{pmatrix} \xrightarrow{\mathcal{A}_{c_1}} \begin{array}{c} \chi_{h_c}^{(q_1)} \otimes \\ q_s & \beta \end{array} \xrightarrow{\mathcal{A}_{c_1}} \begin{array}{c} \chi_{h_c}^{(q_1)} \otimes \\ q_s & \beta \end{array} \xrightarrow{\mathcal{A}_{c_1}} \begin{array}{c} \chi_{h_c}^{(\nu)} \\ \eta_s & \chi_{h_c}^{(\nu)} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \begin{array}{c} \chi_{h_c}^{(\nu)} \\ \eta_s & \chi_{h_c}^{(\nu)} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \begin{array}{c} \chi_{h_c}^{(\nu)} \\ \chi_{h_c}^{(\nu)} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \end{array} \xrightarrow{\mathcal{A}_{c_1}} \end{array}$
$\mathcal{Q}_{B,4} = \frac{1}{in \cdot \partial_c} \left(\bar{q}_s \frac{\not{h}}{2} \gamma_{\perp}^{\mu} \gamma_{\perp}^{\nu} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \gamma_{\mu}^{\perp} \mathcal{A}_{c\nu}^{(b)\perp} P_L \chi_c^{(b)} \right)$	$(z_{ar{c}}^{(u)})$
$\mathcal{Q}_{B,5} = \frac{1}{i\bar{n}\cdot\partial_c} \left(\bar{q}_s \frac{\not{\!\!\!\!\!\!\!\!n}}{2} P_L h_v \right) \left(\bar{\chi}_c^{(\ell)} \mathcal{A}_c^{(\ell)\perp} P_L \chi_{\bar{c}}^{(\nu)} \right)$	descend directly from C-type operators in SCET-1
$\mathcal{Q}_{B,6} = \left(\bar{q}_s \mathcal{A}_{c,\perp}^{(u)} \frac{1}{i\bar{n} \cdot \overleftarrow{\partial}_c} \frac{\vec{n}}{2} \gamma_{\perp}^{\mu} P_L h_v\right) \left(\bar{\chi}_c^{(\ell)} \gamma_{\mu}^{\perp} P_L \chi_{\bar{c}}^{(\nu)}\right)$))

IP

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_j S_j K_j + \sum_{i} H_i \otimes J_j \otimes S_i \otimes K_i,$$

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_{j} S_{j} K_{j} + \sum_{i} H_{i} \otimes J_{j} \otimes S_{i} \otimes K_{i},$$

• hard function: matching corrections at $\mu \sim m_b$

Matthias Neubert, Claudia Cornella – 18

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_j S_j K_j + \sum_{i} H_i \otimes J_j \otimes S_i \otimes K_i,$$

- hard function: matching corrections at $\mu \sim m_b$
- hard-collinear function: matching corrections at $\mu \sim (m_b \Lambda_{\rm QCD})^{1/2}$

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_j S_j K_j + \sum_{i} H_i \otimes J_j \otimes S_i \otimes K_i,$$

- hard function: matching corrections at $\mu \sim m_b$
- hard-collinear function: matching corrections at $\mu \sim (m_b \Lambda_{\text{OCD}})^{1/2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_j \, \underbrace{S_j}_{j} \, K_j \, + \sum_{i} H_i \, \otimes \, J_j \, \otimes \underbrace{S_i}_{i} \otimes K_i,$$

- hard function: matching corrections at $\mu \sim m_b$
- hard-collinear function: matching corrections at $\mu \sim (m_b \Lambda_{\text{OCD}})^{1/2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- **soft** (& soft-collinear) function: HQET *B* meson matrix elements

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_j S_j K_j + \sum_{i} H_i \otimes J_j \otimes S_i \otimes K_i,$$

SCET-1 operators with soft spectator (A-type)

- hard function: matching corrections at $\mu \sim m_b$
- hard-collinear function: matching corrections at $\mu \sim (m_b \Lambda_{\text{OCD}})^{1/2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- **soft** (& soft-collinear) function: HQET *B* meson matrix elements

$$\mathscr{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = \sum_{j} H_{j} S_{j} K_{j} + \sum_{i} H_{i} \bigotimes J_{j} \bigotimes S_{i} \bigotimes K_{i},$$
SCET-1 operators with soft spectator (A-type) SCET-1 operators with how spectator (B-type)

- hard function: matching corrections at $\mu \sim m_b$
- hard-collinear function: matching corrections at $\mu \sim (m_b \Lambda_{\text{OCD}})^{1/2}$
- collinear function: leptonic matrix elements, $\mu \sim m_{\mu}$
- **soft** (& soft-collinear) function: HQET *B* meson matrix elements

$$\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_\ell}{m_b} K_A(m_\ell) \bar{u}(p_\ell) P_L v(p_\nu) \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b, x) \, J_B(m_b \omega, x) S_B(\omega) \right] \qquad \omega = n \cdot p_u$$

$$\mathcal{A}_{B\to\ell\bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_\ell}{m_b} K_A(m_\ell) \bar{u}(p_\ell) P_L v(p_\nu) \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b, x) \, J_B(m_b\omega, x) S_B(\omega) \right] \qquad \omega = n \cdot p_u \int S_A = \langle O_A \rangle O_A = \bar{u}_s \, \vec{\eta} \, P_L h_v \, S_{v_\ell}^{\dagger} \qquad O_B(\omega) = \int \frac{dt}{2\pi} e^{i\omega t} \bar{u}_s(tn)[tn, 0] \, \vec{\eta} \, P_L h_v(0) \, S_{v_\ell}^{\dagger}(0)$$

$$\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_\ell}{m_b} K_A(m_\ell) \bar{u}(p_\ell) P_L v(p_\nu) \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b, x) J_B(m_b \omega, x) S_B(\omega) \right] \qquad \omega = n \cdot p_u$$

• Focus on second term:

- Hard and jet function share a variable x = collinear momentum fraction carried by the spectator
- They scale as $H_B \sim x^{-\epsilon}, J_B \sim x^{-1-\epsilon}$
 - \Rightarrow $H_B \otimes J_B$ has an endpoint divergence in x = 0!

$$\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_\ell}{m_b} K_A(m_\ell) \bar{u}(p_\ell) P_L v(p_\nu) \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b, x) J_B(m_b \omega, x) S_B(\omega) \right] \qquad \omega = n \cdot p_u$$

Focus on second term:

- Hard and jet function share a variable x = collinear momentum fraction carried by the spectator
- They scale as $H_B \sim x^{-\epsilon}, J_B \sim x^{-1-\epsilon}$

 \Rightarrow $H_B \otimes J_B$ has an endpoint divergence in x = 0!

This cannot be removed with standard RG techniques, but is systematically treatable with refactorization-based subtraction (RBS) scheme

[Liu, MN 2019; Liu, Mecaj, MN, Wang 2020; Beneke et al. 2022]

$$\mathcal{A}_{B\to\ell\bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_\ell}{m_b} K_A(m_\ell) \bar{u}(p_\ell) P_L v(p_\nu) \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b, x) \, J_B(m_b\omega, x) S_B(\omega) \right]$$

Start from the second term

ID

$$\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = -\frac{4G_F}{\sqrt{2}} K_{\text{EW}}(\mu) V_{ub} \frac{m_{\ell}}{m_b} K_A(m_{\ell}) \bar{u}(p_{\ell}) P_L v(p_{\nu}) \\ \left[H_A(m_b) S_A + \int d\omega \int_0^1 dx \, H_B(m_b, x) \, J_B(m_b\omega, x) S_B(\omega) \right] \\ \downarrow \\ \int_0^1 dx \left[H_B(m_b, x) J_B(m_b\omega, x) - \theta(\lambda - x) [[H_B(m_b, x)]] [[J_B(m_b\omega, x)]] \right] \\ 0 < \lambda < 1 \overset{\downarrow}{\checkmark} \\ \left[[f]] = \text{singular part of } f \text{ for } x \to 0 \end{cases}$$

- Start from the second term
- Remove the divergence from $H_B \otimes J_B$ with a plus subtraction

- Start from the second term
- Remove the divergence from $H_B \otimes J_B$ with a plus subtraction
- Add the subtraction term back, combining it with the other term in the factorization formula

• The new soft function $S_A^{(\Lambda)}$ defines a renormalized decay "constant":

$$S_{A}^{(\Lambda)} = \langle 0 | O_{A}^{(\Lambda)} | B^{-}(v) \rangle = -\frac{i\sqrt{m_{B}}}{2} F(\mu, \Lambda, w) \langle 0 | S_{v_{B}}^{(B)} S_{v_{\ell}}^{(\ell)\dagger} | 0 \rangle \qquad w = v_{B} \cdot v_{\ell} \approx \frac{m_{B}}{2m_{\ell}}$$

$$O_A^{(\Lambda)} = \bar{u}_s \, \bar{n} P_L h_{v_B} \, S_{v_\ell}^{(\ell)\dagger} \left[1 + Q_\ell \, Q_u \, \frac{\alpha}{2\pi} \, \frac{e^{\epsilon \gamma_E} \, \Gamma(\epsilon)}{\epsilon \, (1-\epsilon)} \int d\omega \, \phi_-(\omega) \left(\frac{\mu^2}{\omega \Lambda} \right)^\epsilon \right]$$

VIRTUAL QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

 $\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = i\sqrt{2}G_F K_{\text{EW}}(\mu) V_{ub} \frac{m_{\ell}}{m_b} \sqrt{m_B} F(\mu, m_b, w) \bar{u}(p_{\ell}) P_L v(p_{\nu}) \Big[\mathcal{M}_{2p}(\mu) + \mathcal{M}_{3p}(\mu) \Big]$ with:

$$\begin{split} \mathcal{M}_{2p}(\mu) &= 1 + \frac{C_F \alpha_s}{4\pi} \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] \\ &+ \frac{\alpha}{4\pi} \left\{ Q_b^2 \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] - Q_\ell Q_b \left[\frac{1}{2} \ln^2 \frac{m_b^2}{\mu^2} + 2 \ln \frac{m_b^2}{\mu^2} - 3 \ln \frac{m_\ell^2}{\mu^2} + 1 + \frac{5\pi^2}{12} \right] \\ &+ 2Q_\ell Q_u \int_0^\infty d\omega \phi_-(\omega) \ln \frac{m_b \omega}{\mu^2} + Q_\ell^2 \left[\frac{1}{\epsilon_{\mathrm{IR}}} \left(\ln \frac{m_B^2}{m_\ell^2} - 2 \right) + \frac{1}{2} \ln^2 \frac{m_\ell^2}{\mu^2} - \frac{1}{2} \ln \frac{m_\ell^2}{\mu^2} + 2 + \frac{5\pi^2}{12} \right] \right\} \\ \mathcal{M}_{3p}(\mu) &= \frac{\alpha}{\pi} Q_\ell Q_u \int_0^\infty d\omega \int_0^\infty d\omega_g \phi_{3g}(\omega, \omega_g) \left[\frac{1}{\omega_g} \ln \left(1 + \frac{\omega_g}{\omega} \right) - \frac{1}{\omega + \omega_g} \right] \quad \text{[CC, König, MN 2022]} \end{split}$$

 \Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

Matthias Neubert, Claudia Cornella – 22

VIRTUAL QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

 $\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = i\sqrt{2}G_F K_{\text{EW}}(\mu) V_{ub} \frac{m_{\ell}}{m_b} \sqrt{m_B} F(\mu, m_b, w) \bar{u}(p_{\ell}) P_L v(p_{\nu}) \Big[\mathcal{M}_{2p}(\mu) + \mathcal{M}_{3p}(\mu) \Big]$ with:

$$\begin{split} \mathcal{M}_{2p}(\mu) &= 1 + \frac{C_F \alpha_s}{4\pi} \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] \\ &+ \frac{\alpha}{4\pi} \left\{ Q_b^2 \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] - Q_\ell Q_b \left[\frac{1}{2} \ln^2 \frac{m_b^2}{\mu^2} + 2 \ln \frac{m_b^2}{\mu^2} - 3 \ln \frac{m_\ell^2}{\mu^2} + 1 + \frac{5\pi^2}{12} \right] \\ &+ 2Q_\ell Q_u \int_0^\infty d\omega \phi_-(\omega) \ln \frac{m_b \omega}{\mu^2} + Q_\ell^2 \left[\frac{1}{\epsilon_{\mathrm{IR}}} \left(\ln \frac{m_B^2}{m_\ell^2} - 2 \right) + \frac{1}{2} \ln^2 \frac{m_\ell^2}{\mu^2} - \frac{1}{2} \ln \frac{m_\ell^2}{\mu^2} + 2 + \frac{5\pi^2}{12} \right] \right\} \\ \mathcal{M}_{3p}(\mu) &= \frac{\alpha}{\pi} Q_\ell Q_u \int_0^\infty d\omega \int_0^\infty d\omega_g \phi_{3g}(\omega, \omega_g) \left[\frac{1}{\omega_g} \ln \left(1 + \frac{\omega_g}{\omega} \right) - \frac{1}{\omega + \omega_g} \right] \\ \end{split}$$

 \Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

Matthias Neubert, Claudia Cornella – 22

VIRTUAL QED CORRECTIONS IN LEPTONIC B DECAY

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

 $\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = i\sqrt{2}G_F K_{\text{EW}}(\mu) V_{ub} \frac{m_{\ell}}{m_b} \sqrt{m_B} F(\mu, m_b, w) \bar{u}(p_{\ell}) P_L v(p_{\nu}) \Big[\mathcal{M}_{2p}(\mu) + \mathcal{M}_{3p}(\mu) \Big]$ with:

$$\begin{split} \mathcal{M}_{2p}(\mu) &= 1 + \frac{C_F \alpha_s}{4\pi} \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] \\ &+ \frac{\alpha}{4\pi} \left\{ Q_b^2 \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] - Q_\ell Q_b \left[\frac{1}{2} \ln^2 \frac{m_b^2}{\mu^2} + 2 \ln \frac{m_b^2}{\mu^2} - 3 \ln \frac{m_\ell^2}{\mu^2} + 1 + \frac{5\pi^2}{12} \right] \\ &+ 2Q_\ell Q_u \int_0^\infty d\omega \phi_-(\omega) \ln \frac{m_b \omega}{\mu^2} + Q_\ell^2 \left[\frac{1}{\epsilon_{\mathrm{IR}}} \left(\ln \frac{m_B^2}{m_\ell^2} - 2 \right) + \frac{1}{2} \ln^2 \frac{m_\ell^2}{\mu^2} - \frac{1}{2} \ln \frac{m_\ell^2}{\mu^2} + 2 + \frac{5\pi^2}{12} \right] \right\} \\ \mathcal{M}_{3p}(\mu) &= \frac{\alpha}{\pi} Q_\ell Q_u \int_0^\infty d\omega \int_0^\infty d\omega_g \phi_{3g}(\omega, \omega_g) \left[\frac{1}{\omega_g} \ln \left(1 + \frac{\omega_g}{\omega} \right) - \frac{1}{\omega + \omega_g} \right] \quad \text{[CC, König, MN 2022]} \end{split}$$

 \Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

Matthias Neubert, Claudia Cornella – 22'

Below $\mu \sim \Lambda_{\rm QCD}$ quarks hadronize: move to effective description with a Yukawa theory, with the meson treated as a heavy scalar:

$$\mathcal{L}_{y} = y e^{-im_{B}(v \cdot x)} \varphi_{B} \left(\bar{\chi}_{c}^{(\ell)} P_{L} \chi_{\bar{c}}^{(\nu)} \right) + \text{h.c.}$$

- Yukawa coupling is fixed by matching hadronic matrix elements between this and the previous description:

 $\langle \ell \, \nu \, | \, \mathcal{L}_{\text{SCET II} \otimes \text{HQET}} \, | \, B \rangle = \langle \ell \, \nu \, | \, \mathcal{L}_{\text{SCET II} \otimes \text{HSET}} \, | \, B \rangle$

$$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & &$$

- Yukawa coupling is fixed by matching hadronic matrix elements between this and the previous description:

 $\langle \ell \, \nu \, | \, \mathcal{L}_{\text{SCET II} \otimes \text{HQET}} \, | \, B \rangle = \langle \ell \, \nu \, | \, \mathcal{L}_{\text{SCET II} \otimes \text{HSET}} \, | \, B \rangle$

• Since $\Lambda_{QCD} \sim m_{\mu'}$ we integrate out the muon in the same step and describe it as a boosted heavy lepton field: $\ell(x) = e^{-im_{\ell}v_{\ell}\cdot x}\chi_{v_{\ell}}(x)$ \Rightarrow low-E theory is a heavy scalar effective theory \otimes bHLET

It's a theory of Wilson lines: all interactions of the B and the muon with ultrasoft and ultrasoft-collinear photons can be moved into Wilson lines, and decoupled via field redefinitions:

$$Y_{v}^{(s)}(x) = \mathcal{P} \exp\left\{ie \int_{-\infty}^{0} ds \, v \cdot A_{s}(x+sv)\right\}$$
$$Y_{v}^{(sc)}(x) = \mathcal{P} \exp\left\{ie \int_{-\infty}^{0} ds \, v \cdot A_{sc}(x+sv)\right\}$$

It's a theory of Wilson lines: all interactions of the B and the muon with ultrasoft and ultrasoft-collinear photons can be moved into Wilson lines, and decoupled via field redefinitions:

$$Y_{v}^{(s)}(x) = \mathcal{P} \exp\left\{ie \int_{-\infty}^{0} ds \, v \cdot A_{s}(x+sv)\right\}$$
$$Y_{v}^{(sc)}(x) = \mathcal{P} \exp\left\{ie \int_{-\infty}^{0} ds \, v \cdot A_{sc}(x+sv)\right\}$$

Real corrections are matrix elements of these Wilson lines:

$$W_{s}(\omega_{s},\mu) = \left[\sum_{n_{s}=0}^{\infty} \prod_{i=1}^{n_{s}} \int d\Pi_{i}(q_{i})\right] \left| \left\langle n_{s}\gamma_{s}(q_{i}) \right| Y_{v}^{(\mathrm{s})}Y_{n}^{(\mathrm{s})\dagger} \left| 0 \right\rangle \right|^{2} \delta\left(\omega_{s} - q_{0}^{(\mathrm{s})}\right) ,$$
$$W_{sc}(\omega_{sc},\mu) = \left[\sum_{n_{sc}=0}^{\infty} \prod_{j=1}^{n_{s}} \int d\Pi_{j}(q_{j})\right] \left| \left\langle n_{sc}\gamma_{sc}(q_{j}) \right| Y_{\bar{n}}^{(\mathrm{sc})\dagger}Y_{v_{l}}^{(\mathrm{sc})} \left| 0 \right\rangle \right|^{2} \delta\left(\omega_{sc} - q_{0}^{(\mathrm{sc})}\right)$$

Matthias Neubert, Claudia Cornella – 24

Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$S(E_s,\mu) = \int_0^\infty d\omega_s \int_0^\infty d\omega_{sc} \left(\theta \left(\frac{E_s}{2} - \omega_s - \omega_{sc} \right) W_s(\omega_s,\mu) W_{sc}(\omega_{sc},\mu) \right)$$

Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$S(E_s,\mu) = \int_0^\infty d\omega_s \int_0^\infty d\omega_{sc} \left(\theta \left(\frac{E_s}{2} - \omega_s - \omega_{sc} \right) W_s(\omega_s,\mu) W_{sc}(\omega_{sc},\mu) \right)$$

Integration and renormalisation of the bare functions can be carried out in Laplace space ⇒ resummation of ultra-soft and ultrasoftcollinear logs.

Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$S(E_s,\mu) = \int_0^\infty d\omega_s \int_0^\infty d\omega_{sc} \left(\theta \left(\frac{E_s}{2} - \omega_s - \omega_{sc} \right) W_s(\omega_s,\mu) W_{sc}(\omega_{sc},\mu) \right)$$

- Integration and renormalisation of the bare functions can be carried out in Laplace space ⇒ resummation of ultra-soft and ultrasoftcollinear logs.
- Full factorization formula:

$$\Gamma = |\mathcal{A}^{\text{virtual}}|^2 \otimes W_{us}(\mu) \otimes W_{usc}(\mu)$$
non-radiative radiative

Convoluted with the measurement function involving the experimental cut, they yields the complete radiative function:

$$S(E_s,\mu) = \int_0^\infty d\omega_s \int_0^\infty d\omega_{sc} \left(\theta \left(\frac{E_s}{2} - \omega_s - \omega_{sc} \right) W_s(\omega_s,\mu) W_{sc}(\omega_{sc},\mu) \right)$$

- Integration and renormalisation of the bare functions can be carried out in Laplace space ⇒ resummation of ultra-soft and ultrasoftcollinear logs.
- Full factorization formula:

$$\Gamma = |\mathcal{A}^{\text{virtual}}|^2 \otimes W_{us}(\mu) \otimes W_{usc}(\mu)$$
non-radiative radiative

HADRONIC QUANTITIES

Decay amplitude including virtual QED corrections at $\mathcal{O}(\alpha)$:

 $\mathcal{A}_{B \to \ell \bar{\nu}}^{\text{virtual}} = i\sqrt{2}G_F K_{\text{EW}}(\mu) V_{ub} \frac{m_{\ell}}{m_b} \sqrt{m_B} F(\mu, m_b, w) \bar{u}(p_{\ell}) P_L v(p_{\nu}) \Big[\mathcal{M}_{2p}(\mu) + \mathcal{M}_{3p}(\mu) \Big]$ with:

$$\begin{aligned} \mathcal{M}_{2p}(\mu) &= 1 + \frac{C_F \alpha_s}{4\pi} \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] \\ &+ \frac{\alpha}{4\pi} \left\{ Q_b^2 \left[\frac{3}{2} \ln \frac{m_b^2}{\mu^2} - 2 \right] - Q_\ell Q_b \left[\frac{1}{2} \ln^2 \frac{m_b^2}{\mu^2} + 2 \ln \frac{m_b^2}{\mu^2} - 3 \ln \frac{m_\ell^2}{\mu^2} + 1 + \frac{5\pi^2}{12} \right] \\ &+ 2Q_\ell Q_u \int_0^\infty d\omega \phi_-(\omega) \ln \frac{m_b \omega}{\mu^2} + Q_\ell^2 \left[\frac{1}{\epsilon_{\mathrm{IR}}} \left(\ln \frac{m_B^2}{m_\ell^2} - 2 \right) + \frac{1}{2} \ln^2 \frac{m_\ell^2}{\mu^2} - \frac{1}{2} \ln \frac{m_\ell^2}{\mu^2} + 2 + \frac{5\pi^2}{12} \right] \right\} \\ \mathcal{M}_{3p}(\mu) &= \frac{\alpha}{\pi} Q_\ell Q_u \int_0^\infty d\omega \int_0^\infty d\omega_g \phi_{3g}(\omega, \omega_g) \left[\frac{1}{\omega_g} \ln \left(1 + \frac{\omega_g}{\omega} \right) - \frac{1}{\omega + \omega_g} \right] \end{aligned}$$

 \Rightarrow significant hadronic uncertainties in $\mathcal{O}(\alpha)$ terms!

Matthias Neubert, Claudia Cornella – 26

HADRONIC QUANTITIES

Generalization of the decay "constant" in presence of QED effects

- Matching relation (with X_{γ} an *n*-soft-photon state): $\langle X_{\gamma}|O_A^{(\Lambda)}|B^-\rangle = -\frac{i}{2}\sqrt{m_B}F(\mu,\Lambda,w)\langle X_{\gamma}|S_{v_B}^{(B)}S_{v_\ell}^{(\ell)\dagger}|0\rangle$ with $w \equiv v_B \cdot v_\ell \approx \frac{m_B}{2m_\ell}$ \Rightarrow a form factor (like the Isgur-Wise function in $B \rightarrow D^{(*)}$ transitions) [CC, König, MN 2022]
- Defining F as a Wilson coefficient implements the nonperturbative matching of SCET onto the point-like meson effective theory envisioned in [Beneke, Bobeth, Szafron 2019]

HADRONIC QUANTITIES

Generalization of the decay "constant" in presence of QED effects

- Matching relation (with X_{γ} an *n*-soft-photon state): $\langle X_{\gamma}|O_A^{(\Lambda)}|B^-\rangle = -\frac{i}{2}\sqrt{m_B}F(\mu,\Lambda,w)\langle X_{\gamma}|S_{v_B}^{(B)}S_{v_\ell}^{(\ell)\dagger}|0\rangle$ with $w \equiv v_B \cdot v_\ell \approx \frac{m_B}{2m_\ell}$ \Rightarrow a form factor (like the Isgur-Wise function in $B \rightarrow D^{(*)}$ transitions) [CC, König, MN 2022]
- Evolution equations:

$$\frac{d\ln F}{d\ln\mu} = C_F \frac{3\alpha_s}{4\pi} - \frac{3\alpha}{4\pi} \left(Q_\ell^2 - Q_b^2 + \frac{2}{3} Q_\ell Q_u \ln \frac{\Lambda^2}{\mu^2} \right)$$
$$\frac{d\ln F}{d\ln\Lambda} = Q_\ell Q_u \frac{\alpha}{2\pi} \left[\int d\omega \phi_-(\omega) \ln \frac{\omega \Lambda}{\mu^2} - 1 + \dots \right]$$

well-defined and insensitive to IR regulators

HADRONIC UNCERTAINTIES

Nonperturbative hadronic matrix elements:

Several model LCDAs have been proposed, e.g.:

$$\phi_{-}(\omega) = \frac{1}{\omega_{0}} e^{-\omega/\omega_{0}} , \qquad \phi_{3g}(\omega, \omega_{g}) = \frac{\lambda_{E}^{2} - \lambda_{H}^{2}}{3\omega_{0}^{5}} \omega \omega_{g} e^{-(\omega + \omega_{g})/\omega_{0}}$$

SCET 2023

HADRONIC UNCERTAINTIES

Model-independent results for the form factor $F(\mu, m_b, v_B \cdot v_\ell)$

• Relation to lattice QCD results for the *B*-meson decay constant:

$$\sqrt{m_B} f_B^{\text{QCD}} = \left[1 - C_F \frac{\alpha_s(m_b)}{2\pi} \right] F(m_b, m_b, w) \Big|_{\alpha \to 0}$$

- For $w \gtrsim 1$, it would be possible to determine *F* using lattice QCD, in analogy with the Isgur-Wise function
- However, this seems illusive for $2w = m_B/m_\mu \approx 50$ (cf. the $B \to \pi$ form factor at $q^2 = 0$, corresponding to maximum recoil)
- However, unlike in QCD, it is sufficient to work to first order in α

HADRONIC UNCERTAINTIES

Model-independent results for the form factor $F(\mu, m_b, v_B \cdot v_\ell)$

• **Preliminary** finding:

with nonperturbative parameters $c_0(\Lambda, \mu)$ and c_1

• This may offer a path to a lattice determination of *F* by varying *w*

 m_{ℓ}

CONCLUSIONS

- Subleading-power factorization theorem with endpoint divergences subtracted in a nonperturbative context
- First consistent matching of SCET onto point-like meson theory
- Structure-dependent QED corrections a generic feature resulting from contributions of (hard-, soft-) collinear modes in SCET
 - important source of large logarithmic corrections
 - missed in previous treatments based on point-like meson model
- Results are relevant for consistent analyses of QED effects also in other rare B decays and allow for a precision determination of |V_{ub}|