TMD Factorization and Resummation at NLP+NLO $\,$

John Terry¹

With L. Gamberg², ZB. Kang³, DY. Shao⁴, F. Zhao³: ArXiv 2211.13209 With L. Gamberg², ZB. Kang³, DY. Shao⁴, F. Zhao³: In preparation

¹Theoretical Division, Los Alamos National Laboratory
²Division of Science, Penn State Berks
³Department of Physics and Astronomy, UCLA
⁴Department of Physics and Center for Field Theory and Particle Physics, Fudan University

SCET Workshop: March 27-30th 2023

Lawrence Berkeley National Lab

Why do we care about NLP?

LP factorization only allow imaging at trivial order in the power counting $\Lambda_{\rm QCD} \lesssim q_{\perp} \ll Q \ q_{\perp} \sim M$

Power corrections are a new frontier for increasing the perturbative precision $\frac{1,2}{2}$

Accuracy	H, \mathcal{J}	$\Gamma_{\mathrm{cusp}}(\alpha_s)$	$\gamma^q_H(lpha_s)$	$\gamma^q_r(\alpha_s)$	$\beta(\alpha_s)$
LL	Tree level	1-loop			1-loop
NLL	Tree level	2-loop	1-loop	1-loop	2-loop
NLL'	1-loop	2-loop	1-loop	1-loop	2-loop
NNLL	1-loop	3-loop	2-loop	2-loop	3-loop
NNLL'	2-loop	3-loop	2-loop	2-loop	3-loop
N ³ LL	2-loop	4-loop	3-loop	3-loop	4-loop
$N^{3}LL'$	3-loop	4-loop	3-loop	3-loop	4-loop
N ⁴ LL	3-loop	5-loop	4-loop	4-loop	5-loop
N ⁴ LL'	4-loop	5-loop	4-loop	4-loop	5-loop

³Expect a renormalon turnaround, eventually.

¹Duhr, Mistlberger, Vita 2022

TMD angular correlations in Drell-Yan

Azimuthal angles of photon and lepton are correlated at NLP. For example, the Cahn effect⁵

$$\frac{d\sigma}{d^4qd\Omega}\sim\cos\left(\phi_q-\phi_p\right)$$

Both leptonic and hadronic tensors contain power corrections in the hadronic CM frame. The situation is simplified in the leptonic CM frame.

$$\frac{d\sigma}{d^4 q \, d\Omega} = \frac{\alpha_{\rm em}^2}{4sQ^4} \left(L^0_{\mu\nu} W^{\mu\nu}_0 + L^1_{\mu\nu} W^{\mu\nu}_0 + L^0_{\mu\nu} W^{\mu\nu}_1 \right) + \mathcal{O}\left(\lambda^2\right)$$

 $W_0^{\mu\nu}$ contains leading power operators, while $W_1^{\mu\nu}$ contains sub-leading operators. ⁴Ebert, Michel, Stewart, Tackman 2022 ⁵Cahn 1978

Factorizing the cross section

Equivalent to inserting the current operator and absorbing the power suppression into the collinear distributions

$$\Gamma_{a} \in \left\{ \frac{\cancel{n}}{4}, \frac{\cancel{n}\gamma^{5}}{4}, \frac{i}{4}\sigma^{i+}\gamma^{5}, \frac{1}{2}, \frac{\gamma^{5}}{2}, \frac{\gamma^{i}}{2}, \frac{\gamma^{i}\gamma^{5}}{2}, \frac{i}{2}\sigma^{ij}\gamma^{5}, \frac{i}{4}\sigma^{+-}\gamma^{5} + \dots \right\}$$

$$LP \qquad NLP$$

⁶Mulders, Tangerman 1995

⁷Bacchetta, Diehl, et al 2006

 $^{^8 {\}rm Gamberg},$ Kang, Shao, Terry, Zhao 2022 ~~3

Factorizing the cross section continued

At NLP, we also need to consider the field strength tensor

Sub-leading fields

Three possible sub-leading field configurations. They are related through the QCD EOM $\varphi^{c}(x) = \frac{\cancel{n}\cancel{n}}{4}\psi^{c}(x) \qquad \qquad \chi^{c}(x) = \frac{\cancel{n}\cancel{n}}{4}\psi^{c}(x) \qquad \qquad \varphi^{c}(x) = -\frac{\cancel{n}}{2}\frac{\cancel{D}_{\perp}}{n\cdot D}\chi^{c}(x)$

Using properties of the Wilson lines, the relevant collinear functions are given by
$$\begin{split} \Phi_{q/P\,jj'}^{\mathrm{int}}(x,\mathbf{k}_{\perp},\mathbf{S}) &= \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\chi}_{j'}^{c}(0) \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}(0) \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}\,\dagger}(\xi) \varphi_{j}^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \mathrm{h.c.} \right] \\ \Phi_{q/P\,jj'}^{\mathrm{dyn}}(x,\mathbf{k}_{\perp},\mathbf{S}) &= \frac{ig}{k^{+}} \int d\eta^{-} \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \\ & \times \left[\left\langle P,\mathbf{S} \left| \bar{\chi}^{c}(0) \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}\,\dagger}(\eta) F^{i+}(\eta) \mathcal{U}^{\bar{n}}\left(\eta^{-},\xi^{-};\xi^{+},\xi_{\perp}\right) \,\gamma_{i}\frac{\#}{2}\chi^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \mathrm{h.c.} \right] \\ \Phi_{q/P\,jj'}^{\mathrm{kin}}(x,\mathbf{k}_{\perp},\mathbf{S}) &= \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\chi}_{j'}^{c}(0) \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}(0) \,\frac{i\partial_{\perp}^{i}}{in\cdot D} \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}\,\dagger}(\xi) \,\frac{\#}{2}\gamma_{i}^{\perp}\chi_{\mathrm{kin\,j}}^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \mathrm{h.c.} \right] \end{split}$$

All three distributions are not required to span the NLP cross section due to EOM $\Phi_{q/P\,jj'}^{\text{int}}(x,\mathbf{k}_{\perp},\mathbf{S}) = \Phi_{q/P\,jj'}^{\text{kin}}(x,\mathbf{k}_{\perp},\mathbf{S}) + \Phi_{q/P\,jj'}^{\text{dyn}}(x,\mathbf{k}_{\perp},\mathbf{S})$

Sub-leading fields

Three possible sub-leading field configurations. They are related through the QCD EOM $\varphi^{c}(x) = \frac{\cancel{n}\cancel{n}}{4}\psi^{c}(x) \qquad \qquad \chi^{c}(x) = \frac{\cancel{n}\cancel{n}}{4}\psi^{c}(x) \qquad \qquad \varphi^{c}(x) = -\frac{\cancel{n}}{2}\frac{\cancel{D}_{\perp}}{n\cdot D}\chi^{c}(x)$

Using properties of the Wilson lines, the relevant collinear functions are given by

$$\begin{split} \Phi_{q/P\,jj'}^{\mathrm{int}}(x,\mathbf{k}_{\perp},\mathbf{S}) &= \int \frac{d^{4}\xi}{(2\pi)^{3}} \, e^{ik\cdot\xi} \, \delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\chi}_{j'}^{c}(0) \, \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}(0) \, \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}^{\dagger}(\xi) \, \varphi_{j}^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \mathrm{h.c.} \right] \\ \Phi_{q/P\,jj'}^{\mathrm{dyn}}(x,\mathbf{k}_{\perp},\mathbf{S}) &= \frac{ig}{k^{+}} \int d\eta^{-} \int \frac{d^{4}\xi}{(2\pi)^{3}} \, e^{ik\cdot\xi} \, \delta\left(\xi^{+}\right) \\ &\times \left[\left\langle P,\mathbf{S} \left| \bar{\chi}^{c}(0) \, \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}(0) \, \Gamma^{a} \, \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}^{\dagger}(\eta) \, F^{i+}(\eta) \, \mathcal{U}^{\bar{n}}\left(\eta^{-},\xi^{-};\xi^{+},\xi_{\perp}\right) \, \gamma_{i} \frac{\eta}{2} \chi^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \mathrm{h.c.} \right] \\ \Phi_{q/P\,jj'}^{\mathrm{kin}}(x,\mathbf{k}_{\perp},\mathbf{S}) &= \int \frac{d^{4}\xi}{(2\pi)^{3}} \, e^{ik\cdot\xi} \, \delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\chi}_{j'}^{c}(0) \, \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}}(0) \, \frac{i\partial_{\perp}^{i}}{in\cdot D} \, \mathcal{U}_{\scriptscriptstyle \rm L}^{\bar{n}\,\dagger}(\xi) \, \frac{\eta}{2} \gamma_{i}^{\perp} \, \chi_{\mathrm{kin\,j}}^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \mathrm{h.c.} \right] \end{split}$$

All three distributions are not required to span the NLP cross section due to EOM $\Phi_{q/P\,jj'}^{\text{int}}(x, \mathbf{k}_{\perp}, \mathbf{S}) = \Phi_{q/P\,jj'}^{\text{kin}}(x, \mathbf{k}_{\perp}, \mathbf{S}) + \Phi_{q/P\,jj'}^{\text{dyn}}(x, \mathbf{k}_{\perp}, \mathbf{S})$

⁸Gamberg, Kang, Shao, Terry, Zhao 2022

8

Sub-leading fields

Three possible sub-leading field configurations. They are related through the QCD EOM $\varphi^{c}(x) = \frac{\cancel{n}\cancel{n}}{4}\psi^{c}(x) \qquad \qquad \chi^{c}(x) = \frac{\cancel{n}\cancel{n}\cancel{n}}{4}\psi^{c}(x) \qquad \qquad \varphi^{c}(x) = -\frac{\cancel{n}}{2}\frac{\cancel{D}_{\perp}}{n\cdot D}\chi^{c}(x)$

Using properties of the Wilson lines, the relevant collinear functions are given by $\Phi_{q/P\,jj'}^{\text{int}}(x,\mathbf{k}_{\perp},\mathbf{S}) = \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\chi}_{j'}^{c}(0) \mathcal{U}_{\perp}^{\bar{n}}(0) \mathcal{U}_{\perp}^{\bar{n}}^{\dagger}(\xi) \varphi_{j}^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \text{h.c.} \right]^{9} \\
\Phi_{q/P\,jj'}^{\text{dyn}}(x,\mathbf{k}_{\perp},\mathbf{S}) = \frac{ig}{k^{+}} \int d\eta^{-} \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \\
\times \left[\left\langle P,\mathbf{S} \left| \bar{\chi}^{c}(0) \mathcal{U}_{\perp}^{\bar{n}}(0) \Gamma^{a} \mathcal{U}_{\perp}^{\bar{n}}^{\dagger}(\eta) F^{i+}(\eta) \mathcal{U}^{\bar{n}}\left(\eta^{-},\xi^{-};\xi^{+},\xi_{\perp}\right) \gamma_{i} \frac{\hbar}{2} \chi^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \text{h.c.} \right] \\
\Phi_{q/P\,jj'}^{\text{kin}}(x,\mathbf{k}_{\perp},\mathbf{S}) = \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\chi}_{j'}^{c}(0) \mathcal{U}_{\perp}^{\bar{n}}(0) \frac{i\partial_{\perp}^{i}}{in\cdot D} \mathcal{U}_{\perp}^{\bar{n}}^{\dagger}(\xi) \frac{\hbar}{2} \gamma_{i}^{\perp} \chi_{\text{kin}\,j}^{c}(\xi) \right| P,\mathbf{S} \right\rangle + \text{h.c.} \right] \\$

All three distributions are not required to span the NLP cross section due to EOM $\Phi_{q/P\,jj'}^{\text{int}}(x,\mathbf{k}_{\perp},\mathbf{S}) = \Phi_{q/P\,jj'}^{\text{kin}}(x,\mathbf{k}_{\perp},\mathbf{S}) + \Phi_{q/P\,jj'}^{\text{dyn}}(x,\mathbf{k}_{\perp},\mathbf{S})$

⁹Ebert, Gao, Stewart 2021

Cross section at tree level int-dyn basis

Contribution from the leptonic tensor $d\sigma \sim W_0^{\mu\nu} L^1_{\mu\nu}$ $J^{\mu} = \bar{\chi}^{\bar{c}}(x) \gamma^{\mu}_{\perp} \chi^c(x) + \text{conjugate}$

From the intrinsic TMDs $J^{\mu} = \bar{\chi}^{\bar{c}}(x)\gamma^{\mu}\varphi^{c}(x) + \text{perms}$

From the dynamic TMDs $J^{\mu} = \bar{\chi}^{\bar{c}}(x)\gamma^{\mu}\frac{ig}{n \cdot D}F^{i+}\gamma_{i}\frac{n}{2}\chi^{c}(x) + \text{perms}$

For the Cahn effect

$$\begin{aligned} \frac{d\sigma}{d^4q \, d\Omega} &= -\frac{\alpha_{\rm em}^2}{4sQ^2} \cos\phi \sin 2\theta \Biggl[-\frac{q_\perp}{Q} \mathcal{C}^{\rm DY} \left[f \, f \right] + \mathcal{C}^{\rm DY} \left[\left(x_1 \, \frac{\mathbf{k}_{1\perp} \cdot \hat{x}}{Q} f^\perp \right) \, f - f \, \left(x_2 \, \frac{\mathbf{k}_{2\perp} \cdot \hat{x}}{Q} f^\perp \right) \right] \\ &+ \int \frac{dx_g}{x_g} \mathcal{C}^{\rm DY}_{\rm dyn \, 1} \left[\left(x_1 \, \frac{\mathbf{k}_{1\perp} \cdot \hat{x}}{Q} \, \tilde{f}^\perp \right) \, f \right] - \int \frac{dx_g}{x_g} \mathcal{C}^{\rm DY}_{\rm dyn \, 2} \left[f \, \left(x_2 \, \frac{\mathbf{k}_{2\perp} \cdot \hat{x}}{Q} \, \tilde{f}^\perp \right) \right] \Biggr] \end{aligned}$$

Cross section at tree level kin-dyn basis

For the Cahn effect

$$\begin{aligned} \frac{d\sigma}{d^4q \, d\Omega} &= -\frac{\alpha_{\rm em}^2}{4sQ^2} \cos\phi \sin 2\theta \left[-\frac{q_\perp}{Q} \mathcal{C}^{\rm DY} \left[f \, f \right] + \mathcal{C}^{\rm DY} \left[\left(\frac{\mathbf{k}_{1\perp} \cdot \hat{x}}{Q} f \right) \, f - f \left(\frac{\mathbf{k}_{2\perp} \cdot \hat{x}}{Q} f \right) \right] \\ &+ 2 \int \frac{dx_g}{x_g} \mathcal{C}^{\rm DY}_{\rm dyn\,1} \left[\left(x_1 \, \frac{\mathbf{k}_{1\perp} \cdot \hat{x}}{Q} \, \tilde{f}^\perp \right) \, f \right] - \int \frac{dx_g}{x_g} \mathcal{C}^{\rm DY}_{\rm dyn\,2} \left[f \left(x_2 \, \frac{\mathbf{k}_{2\perp} \cdot \hat{x}}{Q} \, \tilde{f}^\perp \right) \right] \right] \end{aligned}$$

The hard region

$$\hat{H}^{\text{NLP}}(Q;\mu) = 1 + \frac{\alpha_s C_F}{2\pi} \left[-\frac{1}{\epsilon^2} - \frac{2}{\epsilon} - 2L_Q^2 + \frac{2L_Q}{\epsilon} + 4L_Q + \frac{7\pi^2}{12} - 5 \right] J^{\nu} = \bar{\chi}^{\bar{c}}(x)\gamma^{\nu} \frac{\sqrt[n]{\bar{c}}}{4} \varphi^c(x) + \text{perms}$$

Double poles differ from those at LP. Issue enters due to current.

The soft region

The soft function is generated through the emissions of soft gluons in the partonic cross section

Soft emission from the sub-leading fields vanishes. NLO+NLP soft function is half the LP one

$$\Gamma^{\mu}_{\mathcal{S}\,\text{int}} = \frac{1}{2} \Gamma^{\mu}_{\mathcal{S}\,\text{LP}} \,, \qquad \Gamma^{\nu}_{\mathcal{S}\,\text{int}} = \frac{1}{2} \Gamma^{\nu}_{\mathcal{S}\,\text{LP}}$$

Double poles match what is required for RG consistency from the hard contribution.

The collinear region

Diagrams associated with the evolution of the collinear distributions

We break the integrands into the kinematic and the spinor pieces

$$\int d^{2}k_{\perp} e^{-i\mathbf{k}_{\perp}\cdot\mathbf{b}} \hat{\Phi}^{[\Gamma^{a}](1)}\left(x,\mathbf{k}_{\perp},\mathbf{S};\mu,\zeta/\nu^{2}\right) = \sum_{b} \int \frac{dx'}{x'} \int d^{2}k_{i\perp} e^{-i\mathbf{k}_{i\perp}\cdot\mathbf{b}} \Phi^{[\Gamma^{b}]}\left(x',\mathbf{k}_{\perp}^{i},\mathbf{S}\right)$$

$$\times \int d^{2}l_{\perp} e^{i\mathbf{l}_{\perp}\cdot\mathbf{b}} \left(\mathbf{I}_{\alpha\beta}\operatorname{Tr}\left[\bar{\Gamma}_{b}\gamma^{\mu}\gamma^{\alpha}\Gamma_{a}\gamma^{\beta}\gamma_{\mu}\right] + \mathbf{II}_{\alpha}\operatorname{Tr}\left[\bar{\Gamma}_{b}\gamma^{\mu}\gamma^{\alpha}\Gamma_{a}\right),$$
Kinematic only: Holds to all powers Spinor only: Controls power of dist.

12

Anomalous dimension matrices

Evolution equations naturally enter as matrices due to mixing

We find operator mixing in the Collins-Soper equation. Seen before in¹⁰⁻¹¹

 $\label{eq:LP to LP} \ ^{10} {\rm Chen}, \, {\rm Ma} \ 2016$

LP to NLP ¹¹Rodini, Vladimirov 2022 NLP to NLP

Differences from LP TMDs

NLP anomalous divergences differ from LP ones consistent with results of 10,12

$$\Gamma^{\nu} = \frac{\alpha_s C_F}{2\pi} \begin{bmatrix} 2L & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2L & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2L\delta_l^i & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & L & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{2ib_l}{xP^+} \frac{\partial L}{\partial b^2} & 0 & L & 0 & 0 & 0 \\ 0 & \frac{2ib^i}{xP^+} \frac{\partial L}{\partial b^2} & 0 & 0 & 0 & L\delta_l^i & 0 & 0 \\ 0 & \frac{2ib^i}{xP^+} \frac{\partial L}{\partial b^2} & 0 & 0 & 0 & L\delta_l^i & 0 & 0 \\ 0 & 0 & \frac{i}{xP^+} \frac{\partial L}{\partial b^2} & b^i - b^i \delta_l^j \\ 0 & 0 & \frac{2ib_l}{xP^+} \frac{\partial L}{\partial b^2} & 0 & 0 & 0 & 0 & L\delta_l^i & 0 \\ 0 & 0 & \frac{2ib_l}{xP^+} \frac{\partial L}{\partial b^2} & 0 & 0 & 0 & 0 & L \\ \end{bmatrix}$$

$$\Gamma_2^{\mu} = \frac{\alpha_s C_F}{2\pi} \left[2\ln\left(\frac{\nu^2}{\zeta}\right) + 3 \right] \quad \Gamma_3^{\mu} = \frac{\alpha_s C_F}{2\pi} \left[\ln\left(\frac{\nu^2}{\zeta}\right) + 1 \right] \qquad \Gamma_2^{\nu} = \frac{\alpha_s C_F}{\pi} \ln\left(\frac{\mu^2}{\mu_b^2}\right) \quad \Gamma_3^{\nu} = \frac{\alpha_s C_F}{2\pi} \ln\left(\frac{\mu^2}{\mu_b^2}\right) \right]$$

¹⁰Chen, Ma 2016

¹²Bacchetta, Boer, Diehl, Mulders 2008

Differences from LP TMDs

Study the interaction of the sub-leading fields with the Wilson lines

Can show that these interactions vanish trivially

Modified Universality

The presence of the sub-leading fields alters the evolution in the LP distributions. The modification is universal for SIDIS, Drell-Yan, DIA.

Wilson line interaction of the LP distribution is also altered.

$$\Gamma_2^{\mu} = \frac{\alpha_s C_F}{2\pi} \left[2 \ln \left(\frac{\nu^2}{\zeta} \right) + 3 \right] \qquad \Gamma_2^{\nu} = \frac{\alpha_s C_F}{\pi} \ln \left(\frac{\mu^2}{\mu_b^2} \right)$$
$$\Gamma_{2 \bmod}^{\mu} = \frac{\alpha_s C_F}{2\pi} \left[\ln \left(\frac{\nu^2}{\zeta} \right) + 3 \right] \qquad \Gamma_{2 \bmod}^{\nu} = \frac{\alpha_s C_F}{2\pi} \ln \left(\frac{\mu^2}{\mu_b^2} \right)$$

⁸Gamberg, Kang, Shao, Terry, Zhao 2022

Renormalization group consistency

Cross section should be invariant under changes in the rapidity and renormalization scales

We have explicitly verified that the consistency of the anomalous dimensions

$$\Gamma^{\mu}_{H \text{ int}} + \Gamma^{\mu}_{S \text{ int}} + \Gamma^{\mu}_{3 \text{ int}} + \Gamma^{\mu}_{2 \text{ mod}} = 0,$$

$$\Gamma^{\nu}_{S \text{ int}} + \Gamma^{\nu}_{3 \text{ int}} + \Gamma^{\nu}_{2 \text{ mod}} = 0.$$

Matching the LP TMDs

The LP TMDs

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_{1T}h_{1T}^{\perp}$

NLP PDFs

	U	L	Т
U			$egin{array}{c} h_1^\perp_F \end{array}$
L			$h^{\perp}_{1LF}h^{\perp}_{1LD}$
Т	f_{1TF}^{\perp}	$g_{1TF}g_{1TD}$	

Matching the LP TMDs

U

 \mathbf{L}

Т

 $f_{1T F}^{\perp}$

 $g_{1T\,F}\,g_{1T\,D}$

 h_{1F}^{\perp}

 $h_{1L\,F}^{\perp} \, h_{1L\,D}^{\perp}$

Matching coefficients for NLP monopole TMDs

We can obtain the matching coefficients from the finite parts of the loop integrals from before

Example matching of the chiral odd TMD. We can calculate all monopole matching coefficients $C_{q/q}^{ee}\left(\hat{x}, b; \mu, \zeta/\nu^2\right) = \delta(1-\hat{x}) + \frac{\alpha_s C_F}{2\pi} \left[1 - LP_{q/q}^{ee}(\hat{x}) + \frac{1}{2}L\delta\left(1-\hat{x}\right)\left(L_{\nu}+1\right)\right]$

¹³Gamberg, Kang, Shao, Terry, Zhao In preparation

Matching the LP TMDs continued

The LP PDFs

The LP TMDs

Dipole LP TMDs to NLP PDFs

Matching the dipole distributions at all twists

Dipole TMDs enter the cross section as, for example, the Sivers function $\frac{d\Delta\sigma}{d\mathcal{PS}} = \sigma_0 H\left(Q;\mu\right) \int d^2 k_{\perp} d^2 p_{\perp} \delta^2 \left(\mathbf{q}_{\perp} - \mathbf{k}_{\perp} - \mathbf{p}_{\perp}\right) \frac{\hat{\mathbf{q}}_{\perp} \cdot \mathbf{k}_{\perp}}{M} f_{1T q/P}^{\perp}\left(x, k_{\perp};\mu,\zeta/\nu^2\right) D_{h/q}\left(z, p_{\perp};\mu,\zeta/\nu^2\right) \sum_{T_{F q/P}(x,x;\mu)} \int d^2 k_{\perp} \frac{k_{\perp}^2}{M} f_{1T q/P}^{\perp}(x,k_{\perp};\mu,\zeta/\nu^2) \qquad \text{Expand in } k_{\perp}$

LO matching for k_{\perp} odd TMDs can be demonstrated trivially¹³⁻¹⁶

$$k_{\perp}^{j}\Phi_{q/P}^{\alpha\alpha'}(x,\mathbf{k}_{\perp},\mathbf{S}) = \int \frac{d^{4}\xi}{(2\pi)^{3}} e^{ik\cdot\xi} \,\delta\left(\xi^{+}\right) \left[\left\langle P,\mathbf{S} \left| \bar{\psi}^{\alpha'}(0) \,\mathcal{U}_{\perp}^{\bar{n}}(0) \,\mathcal{U}_{\perp}^{\bar{n}}(\xi) \,iD_{\perp}^{j}(\xi) \psi^{\alpha}(\xi) \right| P,\mathbf{S} \right\rangle \right. \\ \left. + ig \int d\eta^{-} \left\langle P,\mathbf{S} \left| \bar{\psi}^{\alpha'}(0) \,\mathcal{U}_{\perp}^{\bar{n}}(0) \,\mathcal{U}_{\perp}^{\bar{n}}(\xi) \,\mathcal{U}_{\perp}^{\bar{n}}(\eta) \,F^{+j}(\eta) \,\mathcal{U}^{\bar{n}}\left(\eta^{-},\xi^{-};\xi^{+},\xi_{\perp}\right) \,\psi(\xi) \right| P,\mathbf{S} \right\rangle \right] \,.$$

Integrating in the transverse momentum, you obtain the collinear distributions

$$\Phi_{q/P}^{\alpha\alpha'j}(x,\mathbf{S}) = \int \frac{d^4\xi}{(2\pi)} e^{ik\cdot\xi} \,\delta\left(\xi^+\right) \,\delta^2\left(\xi_{\perp}\right) \left[\left\langle P, \mathbf{S} \left| \bar{\psi}^{\alpha'}(0) \mathcal{U}^{\bar{n}}\left(0^-, \xi^-\right) i D_{\perp}^{j}(\xi) \psi^{\alpha}(\xi) \right| P, \mathbf{S} \right\rangle\right] \text{T-even}$$

$$\mathbf{T}\text{-odd} \left[\left[ig \int d\eta^- \left\langle P, \mathbf{S} \left| \bar{\psi}^{\alpha'}(0) \mathcal{U}^{\bar{n}}\left(0^-, \eta^-\right) F^{+j}(\eta) \mathcal{U}^{\bar{n}}\left(\eta^-, \xi^-\right) \psi(\xi) \right| P, \mathbf{S} \right\rangle\right]$$

$$^{13}\text{Gamberg, et al: In prep} \quad ^{14}\text{Ji, Qiu, Vegelsang, Yuan 2006} \quad ^{15}\text{Yuan, Zhou 2008} \quad ^{16}\text{Liang, Yuan, Zhou 2008} \quad ^{22}$$

Matching for the dipole distributions at one loop

Example factorization for the dipole distributions. Calculation ongoing, 16 graphs in total

Conclusion

We have demonstrated that the hard and soft anomalous dimensions associated with the intrinsic sub-leading distributions is modified.

We have calculated the anomalous dimension of all two parton NLP TMDs and demonstrated that they are modified relative to the LP ones.

We have clarified why the two parton NLP TMDs differ from the LP ones by considering the properties of the sub-leading fields.

We demonstrated renormalization group consistency for these terms in the cross section.

We have calculated the one loop matching coefficients for the two parton NLP TMDs.

We have demonstrated that the k_{\perp} -odd NⁿLP match onto collinear distributions of power Nⁿ⁺¹LP at tree level.

Our ongoing research is to calculate matching of the k_{\perp} -odd, T-odd TMDs at one loop.