q_T spectrum for Higgs production via quark annihilation at N³LL'+ aN³LO.

Rebecca von Kuk

Deutsches Elektronen-Synchrotron

SCET workshop 2023 Berkeley

European Research Council Established by the European Commission based on work with Pedro Cal, Matthew Lim, Frank Tackmann 23XX.XXXX

Outline.

Why is qar q o H interesting?

- Access Yukawa coupling in production
- Channel separation

$q\bar{q}H$ @ N³LL'+aN³LO

- Difference between Drell-Yan and q ar q H
- Resummation at N³LL[']
- Matching to fixed-order and N³LO approximation
- Results

Summary and Outlook

Motivation.

Why $qar{q} o H$?

- Allows to access the Yukawa from the initial side
 - Complementary to measuring it from the final state
- Allows initial state discrimination [Ebert et al. '16, Bishara et al. '16]
 - The q_T spectra of $s\bar{s}H$, $c\bar{c}H$, $b\bar{b}H$, and ggH have different shapes
- Precise prediction for $q\bar{q} \rightarrow H$ allows Yukawa fit from initial state

Motivation.

Why $qar{q} o H$?

- Allows to access the Yukawa from the initial side
 - Complementary to measuring it from the final state
- Allows initial state discrimination [Ebert et al. '16, Bishara et al. '16]
 - ▶ The q_T spectra of $s\bar{s}H$, $c\bar{c}H$, $b\bar{b}H$, and ggH have different shapes
- Precise prediction for $q\bar{q}
 ightarrow H$ allows Yukawa fit from initial state

Motivation.

ATLAS measurement [ATLAS, '22]

- Combined fit of the H
 ightarrow ZZ and $H
 ightarrow \gamma\gamma \; q_T$ spectrum
- ggH : N³LL' prediction from SCETLib
- $bar{b}H$ and $car{c}H$: only from <code>MadGraph5_aMC@NLO</code>

4/21.

$q\bar{q}H \otimes N^3LL'+aN^3LO.$

Factorization and Resummation.

Factorization

• SCET factorization separates the scales at cross section level

$$rac{\mathsf{d}\sigma}{\mathsf{d}q_T} = oldsymbol{H}(\mu_H) imes oldsymbol{B}(\mu_B) \otimes oldsymbol{B}(\mu_B) \otimes oldsymbol{S}(\mu_S) \left[1 + \mathcal{O}\left(rac{q_T^2}{m_H^2}
ight)
ight]$$

Resummation @ N³LL':

- Resummation with <code>SCETlib</code> in b_T space [Billis, Ebert, Michel, Tackmann]
- ingredients for N³LL' resummation:
 - Final Hard function $H(\mu_H)$ @ N³LO [Gehrmann, Kara '14; Ebert, Michel, Tackmann '17]
 - Beam function $B(\mu_B)$ @ N³LO [Luo, Yang, Zhu, Zhu '19; Ebert, Mistlberger, Vita '20]
 - Soft function $S(\mu_S)$ @ N³LO [Li, Zhu, Neill '16; Li, Zhu, '16]
 - 4-loop cusp and 3-loop non-cusp anom. dim. [Henn, Korchemsky, Mistlberger '20; v. Manteuffel, Panzer, Schabinger '20] [Li, Zhu, '16; Vladimirov '16]
- For $q_T \sim m_H$ use hybrid profiles to turn off resummation

$q \bar{q} H + j$ fixed order predictions:

- LO1: analytic expression implemented in SCETLib
- NLO_1: implemented q ar q H process in Geneva[Alioli et al.]
 - Use OpenLoops matrix elements [Buccioni et al. '19]
- aNNLO₁: approximate something that could be NNLO₁

$s\bar{s}H$ vs. $b\bar{b}H$

- $s\bar{s}H$: looks very similar to DY
- $bar{b}H$: large nonsingular, very sensitive matching procedure

$s\bar{s}H$ vs. $b\bar{b}H$

- $s\bar{s}H$: looks very similar to DY
- $bar{b}H$: large nonsingular, very sensitive matching procedure

Use hybrid profile scales to turn off resummation

• Scales depend on q_T and b_T , and transition from the canonical scales to the fixed order scale:

 $\mu(b_T,q_T)\sim 1/b_T ~~{
m for}~q_T\ll m_H$ $\mu(b_T,q_T)
ightarrow \mu_H=\mu_{FO} ~~{
m for}~q_T\sim m_H$

• Governed by double quadratic with transition points (x_1, x_2, x_3) for smooth transition

9/21.

March 2023

Matching to fixed-order.

Standard procedure:

- Pick x_1 and x_3 and set $x_2 = (x_1 + x_3)/2$
- Vary x_i to get matching uncertainty estimate

Matching to fixed-order.

Standard procedure:

- Pick x_1 and x_3 and set $x_2 = (x_1 + x_3)/2$
- Vary x_i to get matching uncertainty estimate
- Disadvantage: one-sided matching uncertainty \rightarrow unphysical!

Matching.

New approach:

- Take previous min. x_1 and max. x_3 and vary only x_2
- Advantage: avoids one-sided uncertainties!
- Bonus: single parameter to parameterize uncertainty (avoids enveloping)

Matching to N³LL'

- Consistent matching requires NNLO₁ to match to N³LL[']
- NNLO1: implemented in MCFM, but not publicly available

Approximation for NNLO₁

• Write $d\sigma^{nons}$ in terms of coefficients c_i

$$\mathrm{d}\sigma^{\mathsf{nons}} = |y_b|^2 \left[lpha_s c_1 + lpha_s^2 c_2 + lpha_s^3 c_3
ight]$$

Want to come up with an approximation for c₃

Decorrelation.

- Problem: $d\sigma^{sing}$ and $d\sigma^{nons}$ are strongly correlated at large q_T
 - ▶ Need to ensure proper cancellation between $d\sigma^{nons}$ and $d\sigma^{sing}$ to recover correct $d\sigma^{full}$
- **Decorrelation**: add and subtract a term $d\sigma^{corr}$, which is as of yet unspecified:

$$d\sigma^{\text{match}} = d\sigma^{\text{res}} + d\sigma^{\text{nons}}$$
$$= \underbrace{d\sigma^{\text{res}} + d\sigma^{\text{corr}}}_{d\tilde{\sigma}^{\text{res}}} + \underbrace{d\sigma^{\text{nons}} - d\sigma^{\text{corr}}}_{d\tilde{\sigma}^{\text{nons}}} \equiv d\tilde{\sigma}^{\text{res}} + d\tilde{\sigma}^{\text{nons}}$$

• Need to satisfy conditions:

$${
m d} ilde{\sigma}^{
m nons} o {
m d}\sigma^{
m full}$$
 for $q_T \sim m_H$
 ${
m d} ilde{\sigma}^{
m nons} \sim q_T^2/m_H^2$ for $q_T \ll m_H$

• Choose function that freezes at κm_H :

$$\mathrm{d}\sigma^{\mathrm{corr}}(q_T) = -\mathrm{d}\sigma^{\mathrm{sing}}(q_T)$$
 for $q_T \sim m_H$
 $\mathrm{d}\sigma^{\mathrm{corr}}(q_T) = -\mathrm{d}\sigma^{\mathrm{sing}}(\kappa m_H) = \mathrm{const.}$ for $q_T \ll m_H$

at NNLO:

- $\mathrm{d} ilde{\sigma}^{\mathrm{sing}}$ and $\mathrm{d} ilde{\sigma}^{\mathrm{nons}}$ do depend on κ
- κ -dependence cancels exactly in $d\sigma^{\text{full}} = d\tilde{\sigma}^{\text{sing}} + d\tilde{\sigma}^{\text{nons}}$

aN³LO.

Approximation for $d\tilde{\sigma}_{nons}$ at N³LO:

$$egin{aligned} \mathrm{d} ilde{\sigma}_{\mathsf{nons}} &= |y_b(\mu_R)|^2 \left[lpha_s(\mu_R) ilde{c}_1 + lpha_s^2(\mu_R) \left(ilde{c}_2 + \#\lograc{\mu_R}{m_H}
ight)
ight. \ &+ lpha_s^3(\mu_R) \left(ilde{c}_3 + \#\lograc{\mu_R}{m_H} + \#\log^2rac{\mu_R}{m_H}
ight)
ight] \end{aligned}$$

- Use naive Pade approximation for $ilde{c}_3 = K rac{ ilde{c}_2^2}{ ilde{c}_1}$
 - Correct power of logs
 - Pick K factor from existing NNLO₁ results at large qT
- Implement correct μ_R dependence
- μ_F -dependence: repeat procedure for μ_F variation

aN³LO.

at aN³LO:

- No strong κ -dependence in $\mathrm{d}\tilde{\sigma}^{\mathrm{full}}$
- Need to choose
 k such that they are no singularities

Results.

Convergence:

• Good convergence for higher orders

Results.

Convergence:

- Good convergence for higher orders
- Uncertainties for $c\bar{c}H$ and $s\bar{s}H$ are in general smaller

Separating initial states.

- Gluon and quark induced processes can be distinguished by the shape of the q_T spectrum
- $b\bar{b}H$ vs. $c\bar{c}H$ vs. $s\bar{s}H$: also differences in the shape of the q_T spectrum
- ► uncertainties for the channels overlap → more precise predictions needed to cleanly distinguish channels
- Optimistic that channels can be distinguished with N³LL'+aN³LO

Summary.

Relevance of $q\bar{q}H$

- Initial state discrimination
- Possibility to measure the Yukawa coupling

Matching

- Modify matching uncertainties to avoid one-sided uncertainties
- Much easier to use in experimental fits

aN³LO

- Need NNLO₁ for consistent matching with N³LL'
- Problem: $d\sigma^{nons}$ and $d\sigma^{sing}$ are strongly correlated \rightarrow decorrelation

Outlook:

- Soon: N^3LL'+ aN^3LO predictions for $bar{b}H$, $car{c}H$ and $sar{s}H$
 - Theory nuisance parameters to account for correlations between channels

Acknowledgements.

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE).

European Research Council

Established by the European Commission

Backup.

Hybrid profile scales

$$\mu_H = \nu_B = \mu_{\text{FO}}, \tag{1}$$
$$\mu_B = \mu_S = \nu_S = \mu_{\text{FO}} f_{\text{run}} \left(\frac{q_T}{m_H}, \frac{b_0}{b_T m_H} \right) \tag{2}$$

with

$$f_{\mathsf{run}}(x,y) = 1 + g_{\mathsf{run}}(x)(y-1)\,,$$

and

$$g_{\mathsf{run}}(x) = egin{cases} 1 & 0 < x \leq x_1\,, \ 1 - rac{(x-x_1)^2}{(x_2-x_1)(x_3-x_1)} & x_1 < x \leq x_2\,, \ rac{(x-x_3)^2}{(x_3-x_1)(x_3-x_2)} & x_2 < x \leq x_3\,, \ 0 & x_3 \leq x\,. \end{cases}$$

March 2023

(3)

Backup.

Decorrelation:

• choose function that freezes at $\mathrm{d}\sigma^{\mathrm{sing}}(\kappa m_H)$:

$$\mathrm{d}\sigma^{\mathsf{corr}}(q_T) = -\mathrm{d}\sigma^{\mathsf{sing}}(ilde{q}_T)\,,$$

• \tilde{q}_T is itself a function of q_T , κ is a constant of our choice

Decorrelation:

 $ilde q_T(q_T) = \kappa \, g_{\mathsf{run}}(q_T) + q_T [1 - g_{\mathsf{run}}(q_T)] \,,$ κ is a constant of our choice and $g_{\mathsf{run}}(q_T)$ is (again) double quadratic

$$g_{\mathsf{run}}(x) = egin{cases} 1 & 0 < x \leq x_1\,, \ 1 - rac{(x-x_1)^2}{(x_2-x_1)(x_3-x_1)} & x_1 < x \leq x_2\,, \ rac{(x-x_3)^2}{(x_3-x_1)(x_3-x_2)} & x_2 < x \leq x_3\,, \ 0 & x_3 \leq x\,. \end{cases}$$

(4)

Backup.

How to choose κ ?

- prefer higher values of κ (= freeze earlier)
 - decorrelate resummation and singular region
- make sure not to introduce artificial divergences

