
Laser-Plasma Accelerators for Multi-TeV Lepton or Gamma-Gamma Colliders Lieselotte Obst-Huebl, Early Career Scientist, BELLA Center, LBNL

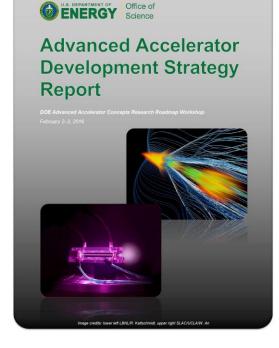
Laser-plasma accelerators (LPAs)

•

- Ultrahigh fields 10-100 GV/m (1000x conventional)
 - Small footprint, reduced cost
- Ultrashort bunches ~ few fs
- Rapidly evolving laser tech (2018 Nobel Prize)
- Vigorous international research program (100s papers/yr)
 - 8 GeV high quality e⁻ bunches (BELLA)
 - Stable operation many hours (DESY)
 - LPA driven FEL (China, Italy, Germany)

- Collider based on staged LPAs
 - Stages (~10 GeV in 1 m) with compact coupling
 - Each stage: ~10 J laser driver
 - Few GV/m average gradient: compact linacs
 - Short bunches improve interaction and reduce overall power required (reduced Beamstrahlung)
 - Laser and plasma energy recovery proposed
 - Rep-rate for luminosity: ~10's of kHz
 - Fiber lasers: high efficiency + high average power
- Additional R&D required
 - More efficient methods for positron acceleration
 - Low emittance injectors + emittance preservation
 - \circ Compact cooling methods
 - Compact beam delivery systems
 - High-average power laser technology
 - Integrated design study
- Serious investments overseas
 - Challenges US leadership

The Advanced Accelerator Community recommends (see Snowmass White Papers)


- Continue and enhance the General Accelerator R&D program
- Upgrades to the US Beam Test Facilities that serve the community
 - o BELLA at LBNL

kBELLA: mid-scale project

kHz precision LPA facility proposed

- $\circ~$ FACET II at SLAC
- Argonne Wakefield Accelerator at ANL
- Accelerator Test Facility at BNL
- University programs
- Enhanced support for high power laser drivers
- Initiation of an integrated design study for an advanced collider

Please join us for a tour of the BELLA PW laser facility Friday afternoon

2016 R&D Roadmap