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U.S. and the Semiconductor Industry

o  Semiconductors are critical to the
Healthcare Connectivity U.S. economy, national security, and
technology leadership.

< i  The current shortage of chips

. TR O Vg highlights the vital role of
Communications Deféhse systems semiconductors throughout the
entire economy - including
aerospace, automobiles,
communications, defense systems,
information technology,
manufacturing, medical technology,
and countless others, including
instrumentation for our experiments

Computing
Transportation The U.S. semiconductor leadership is at risk
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U.S. semiconductor leadership is at risk

Industry and government spending on semiconductor R&D
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Opportunities

CHIPS Act - $52B package to revitalize U.S. Semiconductor Industry and support for R&D on advanced manufacturing and
sustainability, Metrology, Energy efficiency, and workforce training

« DOC Research and Development (“R&D”): $11 billion for DOC research and development. authorized and
appropriated

« National Semiconductor Technology Center (“NSTC”): Advanced semiconductor manufacturing R&D and
prototyping, expand workforce training and development opportunities.

* National Advanced Packaging Manufacturing Program: A Federal R&D program to strengthen advanced
assembly, test, and packaging (“ATP”) capabilities, in coordination with the NSTC.

* Microelectronics Metrology R&D: A NIST research program to advance measurement science, standards,
material characterization, instrumentation, testing, and manufacturing capabilities.

«  CHIPS for America Defense Fund: $2 billion for the DoD to implement the Microelectronics Commons, a national
network for onshore, university-based prototyping, lab-to-fab transition of semiconductor technologies—including

DoD-unique applications—and semiconductor workforce training. authorized and appropriated
« 9 Reginal Hubs ($35M/yr, 5+5 years) - Proposal Deadline February 28, 2023

«  Micro Act - DoE SC funds for 4 Microelectronics Centers ($25M/yr, 5+5 years) and RD funds at the level of
$100M/yr for six years in areas where SC Labs and Institutions could contribute to the Microelectronics industry
(material science synthesis and characterization, new devices, circuits and architectures for sensing and operation
in extreme environments, computational methods for big data, co-design methodologies for efficiency,
translation lab-to-fab by system scaling, workforce development) - authorized not yet appropriated
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The 5 key challenges for Microelectronics - SRC Decadal Plan

The Analog Data Deluge

. The Growth of Memory and Storage Demands

Memory &
Storage

Q)

Communication

Communication Capacity vs. Data Generation

ICT Security Challenges

Security
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- [:] - Compute Energy vs. Global Energy PRoduction

L B
Energy
Efficiency
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Radar
Bad weather conditions,
long range, low light situations

Camera
Interprets objects/signs,
practical cost and FOV

Lidar
Depth perception,
medium range

Ultrasonic
Low cost, short range

Process information
from diverse sensors

Immense compute resources
Sensor fusion
Machine learning

Path planning

Users / Operator
Local or remote

©
L4
Q

V2X wireless sensor
See through, 360 non-line of sight
sensing, extended range sensing

3D HD maps
HD live map update, sub-meter
level accuracy of landmarks

Precise positioning
GNSS positioning, dead
reckoning, VIO

Cloud / Edge

Al, crowdsourcing, data
collection, infotainment

A world of interconnected devices



The 5 key challenges for Microelectronics - SRC Decadal Plan
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Eratay Global demand for memory and storage

Eificlakicy (utilizing silicon wafers) is projected to exceed the amount
of global silicon that can be converted into wafers.
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The 5 key challenges for Microelectronics - SRC Decadal Plan

The Analog Data Deluge
Smart
Sgnsing

>\ The Growth of Memory and Storage Demands

Memory &
Storage

Communication Capacity vs. Data Generation

Communication

ICT Security Challenges
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The Global Communication Data Generation Crossover occurs
when the data generated exceeds the world’s technological
information storage and communication capacities creating

limitations to transmission of data.



The 5 key challenges for Microelectronics - SRC Decadal Plan

The Analog Data Deluge

Smart
Sensing

(f\ WORLD’S ENERGY PRODUCTION

The Growth of Memory and Storage Demands

Memory &
Storage

(A? Communication Capacity vs. Data Generation

Communication

ICT ENERGY IN JIYEAR

ICT Security Challenges

Security

N *Decadal Plan model (validated by independent estimates)
=4 [j E **Decadal Plan model (validation on-going)

- Compute Energy vs. Global Energy PRoduction :

Enerdy 2010 2020 2030 2040

Efficiency
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Energy consumption trend in computing vs. the world energy production.
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The Data Deluge Problem in Scientific Experiments and Beyond

In Science:

Xray and Ultrafast " ypcs Of the

ANALYSIS

o AW 0T eI

X-ray Large Synoptic
scattering Survey Telescope

Up to 1,000 GB/s 100 GB/s &

& 1,000 PFLOPS 1 PFLOPS
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Machine Learning
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Accelerator
diagnostics

4

1GB/s &
5 PFLOPS

HED Science

g

Plasma
simulation

$

5GB/s &
5 PFLOPS

Cryo-EM

4

100 MB/s &
50 PFLOPS

Detectors = Network of high
precision independent sensing
units densely distributed with local
and exa-scale computing

e.g., a 2Mpix MHz detector for
LCLS would generate 5 Terabytes/s.
Equivalent to ~75 Zettabytes/year
(assuming 6 months operation per
year)

e.g. just 1 detector at HL LHC can
produce up to few PB/s data (same
rate as average internet traffic
in all of North America)

In Society:

loT = Network of low
precision independent
sensing units widely
distributed with Cloud
computing
> 30 billion connected
devices generating ~100
Zettabytes/year



What's the path forward for HEP?

Pushing microelectronics technology boundaries and add additional design elements to the traditional HEP
detector workflow

Push computing as close as
possible to the source

Distributed processing for efficiency
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Where is industry going?

Lisa Su, CEO of Advanced Micro Devices, keynote speaker at the 2023 IEEE International Solid State Circuits Conference (ISSCC), in
San Francisco

Driving Performance Gains Over the Next Decade
Requires Relentless Focus on Energy Efficiency

* Insatiable demand for more compute
* Energy efficiency is the primary limiter
* We must innovate in new dimensions:

System level optimizations
Domain specific architectures

Tight integration of compute and memory with chiplet
architectures, advanced packaging, new interconnects

Leveraging Al holistically

* Deep collaboration required across materials,
process, circuits, system design, architecture,
software, and applications
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Co-Design as a key principle for Microelectronics R&D

— ASCR

ALGORITHMS

ARCHITECTURES

—  HEP, NP Instrumentation

INTEGRATION

ANLININO gy
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CIRCUITS .
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PHY%ICS : BES, FES

MATERIALS AND
CHEMISTRY

% APPLICATIONS

DOE SC has the capabilities to contribute across the entire microelectronics stack including manufacturing

We have been early adopters of new technology and we have prototyping and scaling capabilit{czes
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Take away

* Microelectronics Technologies are essential for HEP Detectors and advances are required for HEP future
needs.

 HEP can play an important role in driving microelectronics innovation in synergy with industry in particular
in the area of microelectronics for sensing, communication and edge computing.
* We share similar challenges and intend to pursue similar R&D directions in our systems
« National Labs and their infrastructure can offer prototyping capabilities facilitating lab to fab transition

« Opportunities in Microelectronics can increase foundational (not only applied) R&D on technologies for
future experiments
* Critical given the few generic R&D funding opportunities available in HEP

« Opportunities in Microelectronics can attract and retain workforce in technology fields (currently at risk)
« Cutting-edge problems feed the passion of microelectronics engineers that are researchers in their own
field while serving the HEP mission
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