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Charge and Scope Creep

e Charge: “give a presentation on the status of ADMX and discuss
future expansion to DMRadio and ADMX-EFR”

* My scope creep: “give a presentation on the status of ADMX and a
plan for the Wavelike Dark Matter community for the next decade”

Many slides are from Lindley Winslow and other members of the Wavelike Dark Matter community
Mistakes are entirely my own



Wave-like Dark Matter Candidates

Wave-like Definition: Mass < 1 eV
Broad Candidate Categories:

* Pseudo-scalar*

* Scalar

* Vector

Production: Athermal production (misalighment).

Detection: Coherent interaction of the wave with the
detector. Resonant amplification often key.

*The most famous candidate in this group is the QCD axion.



Community Whitepapers

The community road map, theory,
cosmology, and experimental
details are presented in our two
community white papers.
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Editors: J. Jaeckel, G. Rybka, L. Winslow

New Horizons:
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Axion Dark Matter WIMP Dark Matter

|

10-'2  10°¢ 10¢ 1012
mass [eV]

de Broglie Wavelength - 1, ~ 2= Occupancy Number - v ~ 2133,
* AXION (m~10° €V): 14 ~10* KM With v ~ 10%
* WIMP (m ~ 100 GE€V): 145 ~ 10716 KM WiIth n ~ 10736

where ,,,, = 04 GeV/cm3
Adapted from B. Safdi



To Measure a Wave: Measure Frequency

Axion Mass [eV]
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Growing Community

With advancements in cryogenics,
magnet and quantum sensing
coupled with better theoretical
understanding of the cosmology of
wave-like dark matter, the
community has grown quickly.
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The QCD Axion: Motivation

Neutron

QCD is naturally CP violating from phenomena like QCD-
instantons

One naively expects a neutron electric dipole moment of 106 e (
cm

But nEDM is measured to be below 3x102° e cm (Baker, 2006)

The best explanation? New U(1) axial symmetry, that when
broken, cancels CP violation in the strong sector (Peccei, Quinn, €
1977) 105 m

Consequence: New particle, called the axion (Weinberg, Wilczek,
1978)

v

d =10*%eem
< 3x102%%° e cm



Axions as Dark Matter

e Axions are produced athermally

* Misalignment Mechanism — Phase transition in the early
universe leaves energy in the axion field which behaves as
dark matter

* String/Defect Decay — Energy in topological defects
radiates as cold axions

* In both cases axions are produced cold and in
guantities sufficient to make up some or all of dark
matter

* Perfect knowledge of QCD, cosmology, and inflation
could, in principle, predict the axion mass that yields
the amount of dark matter we have today

Adapted from D. Marsh, “Axion Cosmology” arXiv:1510.07633
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Theoretical Preferences on Scale

* In general, things that happen before the end of inflation could
produce dark matter with any axion mass, but after inflation favors
lueV and above

108 eV 104 eV 1010 eV

e

104 Hz 1Hz 104 Hz

Pre-Inflation PQ Phase Transition

Post-Inflation PQ Phase Transition
—_—

Adapted From: PDG Axion Review 2018

 Conclusions:

* “look under the lamp post” - pursue techniques that are sensitive to QCD
dark matter at any scale

* “build brighter lamps” — push to develop techniques at every scale!



Detecting Axions
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Coupling to Photons

Coupling to Nucleon EDM

Coupling to Axial Nuclear Moment

Coupling to Axial Electron Moment

Adapted from Y. Kahn, See also Graham and Rajendran, Phys.Rev. D88 (2013) 035023
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Detecting Axions

1
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Coupling to Photons
T

Clean experimental signal
Well developed techniques
Ripe for incorporating
guantum sensing
techniques

A A A

Coupling to Nucleon EDM

| Coupling to Axial Nuclear Moment
/

Promising experimental
techniques under development

——Coupling to Axial Electron Moment

Adapted from Y. Kahn, See also Graham and Rajendran, Phys.Rev. D88 (2013) 035023
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AXI O n P h Oto n B O u n d S GitHub - cajohare/AxionLimits: Data, plots and code for

constraints on axions, axion-like particles, and dark photons
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https://github.com/cajohare/AxionLimits
https://github.com/cajohare/AxionLimits

Status: Current

e ADMX G2 has reached
DFSZ in some
parameter space.

* CAPP has recently
reached DFSZ over a
small parameter space
as well

e Other haloscopes, such
as HAYSTAC have begun
touching the upper part
of the QCD band
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Dark Matter New Initiatives (DMNI)

 The BRN for Dark Matter
New Initiatives and
subsequent call for
proposals was very
successful.

* DMRadio-m3 and ADMX-
EFR are preparing project
execution plans and are
poised to make significant
inroads into the QCD axion
parameter space.
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Demonstrator and R&D Programs

. . o (GeV] .
10% 101 104 fol ]1(]12 104 10°

. Existing Axion Limits in QCD Band
Many efforts focused on: L “ |

Black Hole Spins Existing Haloscopes Astrophysics
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ADMX Collaboration — Goal: Find the Axion

HEISING - SIMONS

FOUNDATION

Collaborating Institutions:

University of Washington

Washington University St. Louis
University of Western Australia
University of Florida

University of Sheffield

University of Western Australia
Stanford University / SLAC

UC Berkeley

Fermilab

Pacific Northwest National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory

ADMX Collaboration meeting Jan 2023
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07NA27344, No. DE-C03-76SF00098 and No. DE-SC0017987. Fermilab is a U.S. Department of Energy, Office of Science, HEP User
Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Additional
support was provided by the Heising-Simons Foundation, by the Lawrence Livermore National Laboratory and Pacific Northwest
National Laboratory LDRD offices, and NSF Grant PHY-2208847
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ADMX Design

ADMX utilizes an 8 Tesla large-
bore magnet, millikelvin
cryogenics, and Josephson
Parametric Amplifiers
operating near the quantum
limit to search for dark matter
QCD axions in the 2 to 8 ueV
range with sensitivity to the
DFSZ coupling.

Field-Free Region

Quantum Amplifier
Package

Antennas

Mixing
Chamber

Microwave
Cavity

Tuning Rods

"Magnet

4K

100-250 mK




ADMX “G2” Results and Plans
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ADMX EFR

Searching for axions above 1ueV

ADMX EFR will utilize the same technology as ADMX
G2 but with a larger magnet, lower temperatures, and

improved quantum electronics, and a new site at
Fermi National Laboratory



ADMX Extended Frequency Range (EFR) Goals

. 10—10
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ADMX EFR Design

Magnetic shield

Electronics dil. “MRI Magnet™

‘ fridge Resonator dil.
fridge

Resonator
array

Low noise
———amplifiers

25mK
0.01 Gauss Site: Fermilab

~ 5 X scan speed of current ADMX




ADMX EFR Cost and Schedule

* Construction

e 19 MS FY24 through FY27
(assuming FY24 start)

* Main magnet exists and has been
procured (though not at FNAL yet)

* Operations

= years at ZMS/year to hit initial Magnet: 9.4 T, 80cm bore Prototype resonator
goals 2-4 GHz at University of lllinois Chicago cell

e Opportunity to increase frequency
coverage with resonator R&D

* Opportunity to increase scan speed
with detector quantum sensing R&D



The DMRadio Program

Searching for axions below 1ueV
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DMRadio Science Goals

ol AR
o b M\
The DMRadio is a program to definitively search Frequency
for the QCD axion below 1 peV. KHz MLz GHz
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DMRadio-m?3: How it works!

Coupling to low frequency axion signals is different below the cavity regime.
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Low Frequency — Lumped Element
—Searches

Coupling to low frequency axion signals is different below the cavity regime.

0JOJOJOJOJOJOJOJO,
RRIIRIRIIRIRIRNRD
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Low Frequency — Lumped Element

— Searches

A COAX Structure is inserted into the high field region.
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Low Frequency — Lumped Element

— Searches

The induced signal on the COAX is coupled to the readout SQUID.
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Mature Design, Cost, and Schedule

Cryomech PT425

Bluefors XLD 1000
Dilution Refrigerator

Outer 6063 Al
Support Ring

OD Incone! 1718
Magnet Rods

6 Main Solenoid Coils

Copper COAX
20 mK

rhermal Shield
1

()

The design of DMRadio-m?3 is nearing
maturity, including an engineering
study of the magnet.

The experiment’s total cost fits well
within the DMNI program’s guidance
of ~S20M.

The construction timeline is 3 years,
driven by the construction of the
magnet.

A set of six COAX’s will be used as part
of the science scan.
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The DMRadio Scientific Collaboration
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Program for Developing Ideas

 ADMX and DMRadio are only 10 10 o TSN 10 10°
the first steps in an exhaustive Fisting Axion Limits in QOD Band
search for Wavelike Dark I W R
Matter DOE G2 and DMNI Targets |
* Many ideas and small groups FMNHWR
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small projects with QCD axion [ m =
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* The DMNI process was mn .
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Example Projects

(An incomplete listing)

* RF Squeezed State (HAYSTAC)

» Superconducting cavities (SRF)

* Low-frequency NMR (CASPEr)

* Compact Reflectors (MADMAX, BREAD, LAMPPOST)
* Short Range Force + NMR (ARIADNE)

* Solar Axion Detection (IAXO)



Example Projects — Scalar and Vector DM

Signals:

* Precession of nuclear spins

* Time variation in fundamental constants

* New short range forces

* Equivalence Principle violations

* Many opportunities to incorporate AMO
and Quantum Sensing techniques

What is needed:

* Theory support to understand
consequences of WLDM for experiments

* Support to develop these techniques into
projects

Dark Matter Candidates

Sealar B Vector Bosons
calar Bosons (gauge coupling)

10-22 10718 1071 101
| ] | |

Vector Bosons
(kinetic mixing)

10-6 102
| |

Spin Based Sensors

1 1
Particle Mass (eV/c?)

Optical Interferometers (incl. GW detectors)

Broadband Reflectors

I

Atom Interferometers

Haloscopes (cavity, plasma, dielectric)
\ |
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LC Oscillators

Quantum Materials
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The Utility of an Axion/WLDM Center

107
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Magnets are large, expensive, and critical for
most axion search techniques. They are also
potentially usable at different frequency ranges
with very different detector styles.

A user facility with large stored energy magnets
would be of use to the wavelike dark matter
community.

Many techniques share engineering
requirements in cryogenics and quantum
sensing. Shared engineering resources would
make for a more efficient axion program.

Any national laboratory with an axion center
would become the focus of US wavelike dark
matter efforts.



Consequence of Discovery
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https://cajohare.github.io/AxionLimits/docs/ap.html
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Consequence of Discovery

This is a QCD axion that was created
before inflation.
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g
<

107 CROWS  /ALPS.1

GUT-scale axion clear proof of new 0
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Line shape explores halo structure.
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Consequence of Discovery

This is an axion-like particle (ALP)
Proof of higher order theory.

Possible signatures in accelerator-
based experiments.

Tests of the nuclear and electron
couplings would be needed.

Line shape explores halo structure.
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Summary and Conclusions

* There is growing interest in Wavelike Dark Matter and technological
advancements now allow us to build sensitive experiments

 The QCD axion is the flagship model of WLDM, but not the only one

* Haloscope experiments (ADMX-EFR and DMRadio) have an excellent
chance of discovery and should be supported immediately

* A program to support R&D on upcoming techniques for Axion, Scalar,
and Vector dark matter searches and associated quantum sensing
technology should be initiated — a center dedicated to this would be
useful

* Consequences of a discovery extend beyond dark matter and will
point the way to expand the Standard Model
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