Exploring the Unexplored: Searching for 10meV-6GeV Dark Matter with Solid State Detectors Matt Pyle **UC Berkeley** P5 2/22/23

Well motivated theoretical models throughout 10meV<M_{DM}<6GeV

Cosmic Visions 1707.04591, NIDM BRN, and SNOWMASS 2203.08297

Detection Strategies

Production at Accelerators

Complementarity with Accelerators

BRN: Dark Matter Small Projects New Initiatives

Freeze-In Dark Matter

Dark sector couplings are so small that DM never comes fully into thermal equilibrium

 The σ ∝ 1/q² for this class of models, means Direct Detection is the likely discovery technique.

Light Mass DM Direct Detection Design Drivers

Light Mass DM Design Drivers: Exposure

Interaction Rate scales with 1/M_{DM}

Light Mass Dark Matter Search experiments are tabletop and have small project cost scales: <10M

Kinematics: 2 Body Elastic Nuclear Scattering

$$\begin{split} K_n &= \frac{\mu^2 v_{DMo}^2}{M_n} \big(1 - \cos(\theta) \big) \\ & \text{When } \mathsf{M}_{\mathsf{n}} \! > \!\!\!> \mathsf{M}_{\mathsf{DM}} \\ &\sim \frac{2 M_{DM}^2 v_{DMo}^2}{M_n} = \frac{(2 P_{DMo})^2}{2 M_n} \end{split}$$

 Transfer of DM kinetic energy to nucleus is really inefficient for elastic 2 Body Scatters when M_n >> M_{DM}

Ionization Production in eV Scale Nuclear Recoils

Midgal Ionization

Midgal Ionization: Signal Suppression 10^{-32} No background 10^{-34} rtual electric field 10^{-36} **x10**⁶ 10^{-38} Tu-40 Penalty in $\bar{\sigma}_n$ Şignal 10^{-42} 10^{-44} Si, Migdal (1 kg \times yr) Si, NR+phonon (1 kg \times yr, $E_n > 20$ meV) 10^{-46} Ge, Migdal (100 kg \times yr) Ge, NR (100 kg × yr, $E_n > 500 \text{ eV}$) Knapen 10^{-48} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} $m_{\rm ev}$ [MeV]

Midgal, like all processes with off-shell particles, will have significantly suppressed signal rates

- x10⁶ greater exposure needed if exposure limited
- x10⁶ less backgrounds needed if background limited

Nucleonic Interactions: Current Status

Even now, small prototype solidstate detectors offer competitive reach because of these signal advantages

23.6g underground

Nucleonic Interactions: Future

Design Driver #2: Backgrounds

- Midgal Ionization
 Detectors must
 decrease
 backgrounds
- Solid State Phonon
 Detectors must
 increase sensitivity
 and decrease
 backgrounds

Inelastic e⁻ Recoils in Semiconductors

Crystal e-Momentum and Energy Scales Match MeV DM perfectly

Electronic Interactions: Current Status and Future

Future sensitivity improvements depend solely on background mitigation (Design Driver #2)

Light Mass DM Design Driver Summary

- 0. Absorbers with small energy excitations
- 1.Sensitivity to Excitations
- 2. Backgrounds

OSCURA: 10kg Si Skipper CCDs

Current Status: DOE NIDM Pre-project Phase OSCURA Cost:

- Pre-Project: 4M
- Project: 10M
- Timescale:
- 100g SENSEI SNOLAB: now – FY26
- 1kg DAMIC-M: FY24-FY29
- 10kg OSCURA: First Science FY26

x10⁷ planned improvement in DM sensitivity!

OSCURA: Skipper CCD

- Pixel = 15um x15um x675um
- 5.5Mpixels per 2g device

- "Skipper" CCD readout suppresses 1/f noise by having multiple short time scale measurements of ionization moving the charge off and on the sensing pixel
- $\sigma_q = 0.068 e^- (rms)$
- Design Driver #1: Single Ionization Sensitivity Achieved!

OSCURA: Backgrounds

- SENSEI @MINOS: 3500 evt/(keVkgd) shielding
- Single e- background rate seen to strongly correlate with background radiation
- 2011.13939 predicts backgrounds around this level from near gap photon secondaries from high energy backgrounds
- OSCURA solution: Better shielding!
 - SENSEI SNOLAB: 5 evt/(keVkgd)
 - DAMIC M 0.1 evt/(keVkgd)
 - OSCURA 0.01 evt/(keVkgd) (the world's best cryostat)
- Design Driver #2: Plan in place to suppress backgrounds by x10⁷

 Multiple Targets with Complementary DM Science readout by identical athermal phonon sensor technology

Status	Cost	Timescale
DOE NIDM Pre-project (Delayed 2 years due to funding)	R&D: 2.8M Project: 9.2M (mostly cryostats)	Early Science before FY25 Pre-Project ends FY25 Project complete FY28

TESSERACT: Energy Sensitivity

 $\propto \sqrt{T_c^6 N_{tes} V_{tes}}$

 σ_E (

Energy Sensitivity Plan:

- 1. Lower Tc: 60mK -> 15mK
 - x4³ sensitivity improvement
 - Done
- 2. Decrease IR and EMI backgrounds by x4⁶
 - Ongoing

Design Driver #1: Plan and Significant Progress

 $\frac{4k_b T_c^2 G(\tau_{collect} + \tau_{sensor})}{\epsilon_{collect} \epsilon_{sensor}}$

Phonon Detector Backgrounds

Mysterious monotonically increasing background rate at low energies

- Background varies with time/time since cooldown
- Background produces no ionization
- Scales with surface or sensor area

Stress Induced Microfractures?

Detector under stress due to thermal contraction,manufacturing, etc.

Detector

- Evidence: Using glue with high thermal contraction stress can increase low energy event rate by x10²
- Mitigation Plan: Decrease residual stress everywhere in detector

Detector relaxes releasing phonon energy

Detector

Discriminating between DM Signals and Backgrounds

TESSERACT Discrimination: Superfluid Helium

- Superfluid Helium: it's a liquid ... no stress microfractures
- Multiple Pixel Coincidence for He DM events discriminates DM from pixel microfractures
- Pulse Shape Discrimination: Helium is slow!

SuperCDMS Upgrades G2+

Next Generation HV

Small Volume iZIP 259cm³ -> 11cm³

Phonon Only iZIP 259cm³ -> 11cm³

0V 1cm³

All concepts discussed in 2203.08463

Status	Cost	Timescale
Concept Development	Cryostat exists <10M R&D + Project	 Early Science upgrade prototypes @ CUTE FY25 Full Deployment in SNOLAB cryostat in FY29

SuperCDMS G2: Excitation Sensitivity

- Drifting charges release kinetic energy via NTL Phonon Production
- $E_{total} = E_{recoil} + E_{NTL}$ = $E_{recoil} + n_{eh}e\Delta V$
- $\lim_{\Delta V \to \infty} E_{total} \propto Q$

Design Driver #1:

- Single charge sensitivity achieved
- Brute phonon sensitivity plan
- Direct charge -plan

SuperCDMS G2+: HV Backgrounds

- Run 2 >= 2e⁻/h⁺ quantized backgrounds dominated by scintillation production in FR4 support structure
- Run 4: Primarily limited by OQLEE just like all phonon detectors
- Design Driver #2 (Backgrounds):
 - Mitigate OQLEE
 - Go to 500V to separate 2 e-/h+ from 0QLEE

LAMPOST:Optical/IR Haloscope

- Design Driver #1: Single Photon Sensitivity seen in SNSPDs, TES, MKIDs
- Design Driver #2:
 - Singles rate in SNSPDs is 6x10-6 Hz

- Not currently funded by DOE
- 1709.05354,1803.11455,2110.
 01582
- 4 Momentum matching via multilayer stack
- Can do axions and dark photons

... and so much more

NIDM funded	New Ideas
TESSERACT: GaAs	Implementation of new Quantum Sensing Technologies
TESSERACT: Polar	SNSPD readout of scintillating crystals
	Small gap semiconductor detectors
	SuperCDMS 0V 1cm ³ , iZIP, and piZIP concepts
	Liquid Noble TPCs optimized for low leakage
	Scintillating Bubble Chamber

It's an exciting time!

Conclusions I

Light Mass DM Design Drivers

0. Small excitation energies: motivation for solid state

- 1. Excitation Sensitivity: motivation for integration of quantum sensing
- 2. Backgrounds: lots of viable plans to decrease by many orders of magnitude

Conclusions II

- High Science/\$: O(1M) R&D, <10M project
- Lots of excitement and new ideas ... field is changing so fast
- New Initiatives in Dark Matter Program
 - Absolutely critical, but underfunding has hampered the program
 - Lots of exciting, viable new concepts could really succeed and warrant a significant expansion of the program in \$ and cadence (only NIDM and G2 funding calls in the last decade)
 - NIDM should be structured to expect failure.
 - more pre-project/R&D awards, fewer project awards
 - R&D/science boundary is fuzzy. World leading results can occur with 1g detectors at surface. NIDM pre-projects
 - should have science funding
 - expectation of real science from successful prototypes

Backup

Motivation

Observational Evidence for Dark Matter

Dark Matter & Particle Physics

- What are its properties?
 - mass
 - Is it charged under a new force(s)?
 - How was it generated?
- Can this knowledge help us understand the laws of physics at high energies?

US Cosmic Visions: New Ideas in Dark Matter: 1707.04591

Past 35 years: A Focus on WIMPs *

Backgrounds

Problem #2: Detector Backgrounds in TPCs / PMTs

1110.3056

PMT, TPCs, SiPMs, SuperCDMS HV all have dark currents / dark counts ...

Hope: If we just get rid of the E-field ...

TESSERACT

TESSERACT Discrimination: GaAs

EDELWEISS-III (860 g Ge @ 8V)

- To discriminate zero charge phonon only events in GaAs ER DM detector, one can require photon+phonon coincidence
- Design Driver #2 (Backgrounds)
 - Mitigation Plan
 - Discrimination Plan

TESSERACT Discrimination: Polar Crystal

- If stress is occurring in phonon sensor films, energy will preferentially deposited in a single channel
- Design Driver 2 (Backgrounds)
 - Plan to mitigate
 - Plan to discriminate

NRDM Search Sensitivity @ Surface

Achieving pre-project energy threshold goals leads to world leading science @ surface 47

Nearly everything the same

 Having multiple targets with complementary DM science (NRDM, ERDM, Absorption) and orthogonal risks doesn't increase cost (time & money) significantly since almost everything is identical (phonon sensor development, wiring, electronics, DAQ, data handling, processing, and analysis software) except the substrate.

Athermal Phonon Collection Fins (Al)

TES and Fin-Overlap Regions (W)

(Si)

1) HeRALD: Helium Roton Apparatus for Light Dark matter

	Required Threshold	Goal Threshold	Stretch Goal Threshold
Si 4cmx4cm	6.7eV	900 meV	12 meV
Не	21 eV	570 meV	24meV

#1 Design Driver for Light Mass Dark Matter Searches: Energy Sensitivity

2) SPICE: GaAs ERDM

3) SPICE: Sub-ev Polar Interactions Cryogenic Experiment

SuperCDMS

SuperCDMS G2+ iZIP: Backgrounds

- Design Driver #2 (Backgrounds)
 - Mitigation Plan
 - Discrimination Plan

To discriminate zero charge phonon only events from nuclear recoils, one needs to independently measure ionization and phonon energy Improve ionization sensitivity with improved HEMT charge amplifier and smaller detector [σ_q =50eVee, 17 eVee]

