Development of X-ray Thermal Microwave Kinetic Inductance Detector (MKID) Arrays for Astrophysics, and MKID Photonic Spectrometers.

Miguel Daal University of California, Santa Barbara

> LBL Instrumentation Seminar March 8, 2023

Technology & Funding Justification

- Space-Borne For *Physics of the Cosmos* NASA needs:
 - Priority #1: fast, low-noise, megapixel X-ray imaging arrays with moderate resolution, ΔE ≈ 5 eV
 - Priority #2: large-format, high-spectralresolution, small-pixel X-ray focal plane arrays
 - TKID arrays provide a path to eventually satisfying priority #1 and #2

Hitomi SXS: <7 eV @ 6 keV, 6 x 6 pixels, 50mK, Si Thermistors Suzaku XIS: 130 eV @ 6keV, 1025 x 1024 pixels, CCD

Science Enabled with $\Delta E \approx 5 \text{ eV}$ microcalorimeter array

- High Energy Astrophysics:
 - spatially resolved spectroscopy of extended sources, as well as sensitivity in the detection and spectral analysis of point-like objects
 - Understanding Cooling Flows: turbulent velocities of the gas in clusters of galaxies could be mapped with a precision of 200 km/sec. . . What keeps cluster gas hot?
 - Mapping the cosmic web and its evolution: Map Warm-Hot Intergalactic Medium (WHIM) in both emission and absorption
 - Studying Neutron Stars: can get energy-, time- and spatially- resolved pulse profile of an X-ray pulsar, to locate site of the pulsed X-ray production near the neutron star, and a thermal spectral signature at pulse minimum could indicate the surface temperature of the neutron star
- Materials Analysis:
 - Synchrotron beam-line studies and x-ray microanalysis
 - Micro-calorimeter array provides faster acquisition than scanning crystal diffractometers for similar energy resolution, and added time-resolution.

Funded Objectives

NASA APRA Funding for:

- X-Ray detector array, > 1,000 pixels
- Multiplex factor, 1 signal line : \geq 250 pixels
- Soft x-rays, 0.2 10 keV
- Moderate energy resolution, ΔE ≤ 5 eV @ 6 keV
- Moderate fill factor, $\geq 75\%$
- Pixel quantum efficiency (QE), ≥ 95% @ 6 keV
- Microsecond photon arrival time resolution

Resources

- 1 Full-time postdoc
- UCSB Nanofab
- Dedicated UHV sputter system
- Two Dilution Fridges

Approach

- Use microcalorimeter format to couple an x-ray absorber to an MKID.
- X-rays warm up absorber which warms up MKID.
- Use temperature rise to measure x-ray energy.

Development History 1

- 75 eV at 5.9keV
 - Ulbricht et al., APL, 106, 251103, 2015
- Long rise time, ≈45 µs, ⇒ degraded energy resolution
 - Probably due to perforated absorbers, necessary or XeF₂ etch
 - Membrane conductance too low giving ≈500 µs fall times ⇒ low count rate
- Resonator phase sensitivity (d θ per dT) was too high resulting in easy saturation
- 2D format did not provide path for high fill factor and rapid absorber thermalization

Development History 2

- Switched to WSi_x
 - TiN_x sputter system repossessed by DOE!
- Switched to KOH etch
 - Allow for non-perforated absorbers to speed up rise time
 - Avoids excess heat capacity due to XeF₂ etch
- This design was unsuccessful
 - KOH attacked resonators
 - WSi_x found to have anomalously high heat capacity. (W has high C)

Goals for Current Design Iteration

- Thick, cantilevered (3D) absorbers
 - Faster thermalization
 - X-ray stopping power
 - Admits high fill factor
- Hybrid resonators
 - Disentangle phase sensitivity, f_0 & Qc control, heat capacity, and readout power
- Suppress TLS noise using large capacitor and high readout power
 - Go to ~20x smaller pixels later

Resonator Design

- Wide inductor for high current operation
- Low T_c , High L_{Kin} 'Sensor element'
 - β -Tantalum
- High T_c, Low L_{Kin} ground, capacitor, inductor, feedline
 - *α*-Tantalum
- Tapers and Fillets to control current density
- Q_c controlled by distance to feedline
- f_0 controlled by inductor length
 - Capacitor geometry/TLS-noise fixed across array

MKIDs read out surface impedance changes

Detector Response: df, dQ, $d\theta$

11

Membrane Design 1

- Membrane thickness and patterning are used to control conductance
 - Using 250 nm thickness for low ballistic conductance limit

Membrane Design 2

- Estimate membrane conductance based on phonon transport simulations
- Test devices use solid membrane and meshed membranes
- Neglected α-Tantalum lead conductance.

Membrane Heat Capacity

- Heat capacity: α -Ta absorber $\gg \beta$ -Ta sensor + α -Ta + SiN membrane
- All resonators designed to have the same heat capacity (α -Ta + β -Ta +SiN + Absorber)
- Minimize SiN heat capacity using REI etch

Absorber Design: δ T, QE

- Match dynamic range of resonator, total $\Delta\theta$, to δ T of absorber for target energy
- Thickness chosen to achieve QE objective

Minimum thickness, <i>t</i> , for 97% x-ray absorption at 6 keV				
Ві	7.41 μm			
Та	6.22 μm			
Au	4.26 μm			
Sn	9.06 µm			

Absorber Design: Eddy Currents

- Eddy currents must not diminish Q_i
 - Use superconducting absorber
 - Possibly cap SC absorber with Au for fast & uniform thermalization.

Q with Ø40 μm absorber, 4.2 μm above inductor, Qc ≈ 42000, f_0 ≈ 3.5 GHz				
	Qi			
Ta Absorber	>10 ⁶			
Au Absorber, (2e-9 Ω∙cm)	50e3			
Ta then Au (5 μm separation)	340e3			

Absorber Design: Stem

- Want fast thermalization, but
 - SC have low thermal conductivity
 - qp generation slows thermalization?
 - E.g. ~35 μ s qp lifetime for Ta
- Use 'Stem' size to tune conductance to 'Sensor Element' and allow for absorber thermalization
- Ring-down time, Q/ $2\pi f_0$, lower limit of rise time shortest time scale of the resonator

Sensor Element Design

- First: Estimate $d\theta$ response from absorber $\delta T = \frac{E}{C_{tot}}$.
- Then: choose sensor element volume to avoid saturation

Assuming Ta absorber: Vol = $t \bullet \pi$ (120/2) ² µm ³ ; Hf Sensor: 120 nm thick; T _{bath} = 70 mK, Q ≈ 40,000						
Sensor	@ 2 keV @		@ 10 keV			
length	df/f	d $ heta$	df/f	d $ heta$		
2 µm	2.1e-6	18°	2.1e-5	190°		
6 µm	5.7e-6	52°	5.9e-5	545°		
20 µm	18e-6	171°	19e-5	1780°		

- 9 Resonators
 - Multiple absorber and stem sizes
- Air bridges
- 3 6 GHz

Fabrication, ~2 weeks

- 1. Start with Si wafer with 250nm SiN
- 2. Etch out SiN membrane patterns and capacitor area
- 3. Deposit α -Ta then etch out resonators/feedline
- 4. Lift off β -Ta sensor element
- 5. PR mask/sacrificial layer for absorber stems/air bridges
- 6. Deposit thick α -Ta for absorbers
- 7. Etch out absorber profile
- 8. Flip over wafer, attach to handle, and pattern then etch away Si from membranes
- 9. Release from handle and clean.

- Pulses saturated for 60 $\mu \rm m$ absorber but not for 120 $\mu \rm m$ absorber
- Expected $\tau \sim 1$ msec. Measure $\tau \sim 20 \ \mu sec$

counts per bin width

• 15 mK operation

Conclusions/Problems to Fix

- Devices work but not well
- τ too short.
 - absorber not thermalizing completely → try adding gold
 - Membrane G too high → increase membrane diameter
 - Heat conduction through α -Ta leads dominates
- Resonance lock point moving
 - Shifts → problem in readout system
 - Drifts → magnetic field susceptibility
 - Use narrower traces / magnetic shielding

Fiber-fed spectrometer on a chip:

Spectral separation by photonic circuitry, then photon detection by MKIDs

Key Advantages:

- Reduction in cost and miniaturization of MOS, IFU spectroscopy instrumentation allowing efficient use of emerging extremely Large telescopes
- Exploitation of on-chip photonic processing capabilities
- Size weight power reduction for eventual space applications
- Light detection by MKIDs at low temperature is free of dark count and read noise; affords individual photon arrival time and energy resolution

Current State of the Art: E.G. NEID Precision Radial Velocity Spectrograph at Kitt Peak National Observatory. 60k < R < 90k

Specification Goals:

•
$$R = \frac{\lambda}{\delta\lambda} \sim 5000$$

- Bandwidth: 400 nm -- 800 nm
- Fiber to MKID throughput: 60%
- Number of channels: 1024
- Operation temperature: $\sim 100 \text{ mK}$
- Integrated MKID + Waveguide Chip $\lesssim 10~\mbox{cm}^2$

Echelle Grating

Prism

Conclusions

- WG-MKID Integration is the Challenge
- Identifying the right process and material combo so that:
 - WGs have low loss (currently > 10dB/cm)
 - MKIDs have low noise and high Q (currently Q_i > 80k)
 - Next improve WG materials / Processing to get low loss (< 5dB/cm)
- Add Fiber array to WG-MKID chip and measure photons
- Work on light channelization structures (AWGs in particular) to get high R

- END -

Readout

- Phase, $d\theta$, only readout
- \leq 250 resonators assuming current ROACH board readout, limited by:
 - Amplifier saturation (high power readout)
 - Relatively large ADC dynamic range (frequency shift) needed for signal band (xray energies)
- 2 K HEMT at low temp

Frequency Domain multiplexed

- The resonator phase is monitored at a <u>fixed frequency</u>.
- 1.8 2 MHz spacing per pixel
 - 100kHz optical pulse BW, 5000 CPS/Px
- Current readout:
 - Dual 2 GSPS 12 bit ADC per board
 - 1024 pixels in 2 GHz
 - 2 boards per feedline in 4-8.5 GHz
 - \$5-\$10/pixel excluding HEMT and FPGA (Free)
- Moving to RFSoC-based readout
 - \lesssim 8096 pixels per board
 - 4 feedlines per board, 4 GHz each
 - 10-50% the power consumption (Flight!)
 - Tone tracking

Definition: Spectral resolution
$$R = \lambda / \Delta \lambda = E / \Delta E$$

$$R \propto \sqrt{\frac{1}{T_C}}$$

