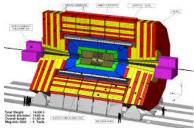
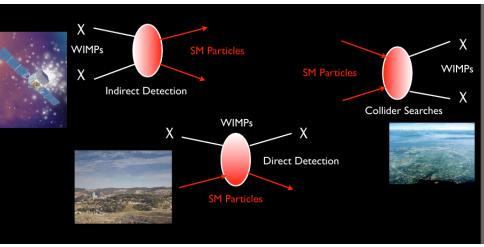
Searching for Dark Matter at the LHC


M. Shapiro

September 23, 2015


The LHC and its experiments

Complementarity of DM Search Strategies

Tim Tait: DarkMatter LHC 2013

Hopes for LHC Dark Matter Searches

In an ideal world (for us), the LHC would:

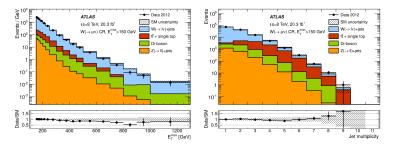
- Produce DM candidates in LHC collisions
- Produce heavier exotic particles that are relatives of the DM candidate
- Allowing us to:
 - Determine quantum numbers of the DM particles
 - Determine how DM candidates interact with SM particles
 - Relate observations to direct and indirect searches

Making Dark Matter at the LHC: the possibilities

- Create from decay of SM particle
 - Some possibilites are
 - $Z \to \chi \chi$
 - $h \rightarrow \chi \chi$
 - $t \to c \chi \chi$
 - \blacktriangleright Constraints on Z decays to DM severe
- Produce DM directly with SM particles
 - Initial State Radiation of SM particle (γ , g, etc)
 - Associated Production of DM with $t\bar{t}$, W/Z, etc
- Create BSM particles that decay to SM candidate
 - SUSY has many such possibilities
 - Exotic resonance $E \to \chi \chi$

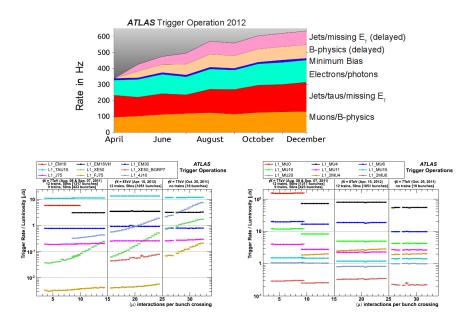
Dark Matter Interactions with SM Particles

- We know DM particles feel gravity
- We don't know what other interactions they have with SM particles
- Only SM mediators possible are ${\it Z}$ and Higgs
- Also possible that exotic BSM particles mediate SM-DM interactions
 - If these mediators light, could be produced at LHC
 - If they are heavy need to parameterize the interaction phenomenologically
 - Possible approaches:
 - Effective field theory (high mass mediator)
 - Simplified model (defined by interaction and exchanged mass)
 - A full theoretical model (eg SUSY)
 - All 3 approaches used
- Will be very important if DM is seen
 - Required to compare LHC limits with direct and indirect detection


Experimental Issues (I): Seeing the invisible

- DM particles will escape detector without being seen
- Signature is momentum imbalance
- Can only use transverse components of momentum (stuff always goes down the beampipe)
- Often call missing-*E*_t:

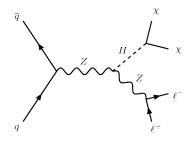
$$\not E_T = -\sum_i (\vec{p_T})_i$$


- Major sources of missing E_T in SM are:
 - Neutrinos
 - Mismeasurement of hadronic jets

Experimental Issues (II): It's the background, stupid

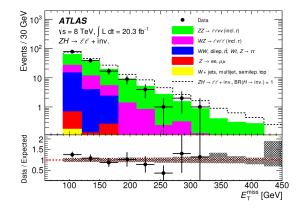
- Looking for small rate processes in environment where overall rate huge
- Must indentify signatures where signal stands out
- Must demonstrate that any potential signal is real
- Requires validation of background

Experimental Issues (III): You have to trigger first!

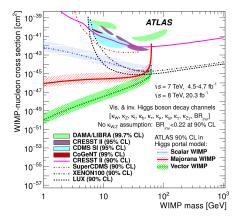

Searches we will review today

- Higgs decays to DM
- DM pairs in association with SM particles
- SUSY

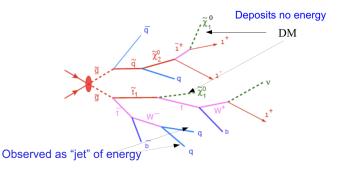
Dark Matter and the Higgs


- A simple, well defined model
 - Higgs decays to pair of DM particles
 - DM only couples to SM particles via Higgs
 - "Higgs portal"
 - Probes models relevant for current and next generation direct detection experiments (see comments by Kathryn Zurek from Sept 2)
- Measurements of Higgs properties can contrain this:
 - DM contributes to "invisible Higgs decays"
 - Requires $M_{DM} < M_h/2$
 - Bound depends on DM spin
 - Powerful for low M_{DM}

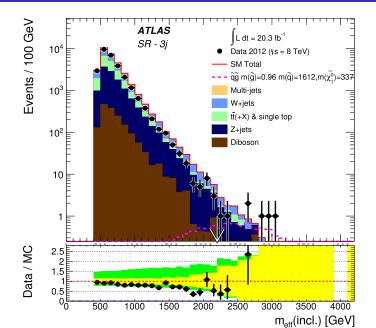
Higgs to "Invisible"


- Associated production of Higgs with a \boldsymbol{Z}
- Signature is Z with nothing balancing p_T
- Background dominated by ZZ with one $Z \rightarrow \nu \nu$
 - All backgrounds well studied for Higgs search
- Additional analyses look for Higgs plus hadronically decaying Z or Higgs produced with tagged jets from vector boson fusion

Invisible Higgs Results: Associated Production Search

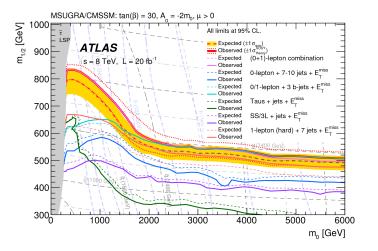

- Search only sensitive if Higgs to invisible BR large
- Current limits on BR combining all channels $\sim 22\%$
- But, this is still good enough to constrain Higgs portal models!

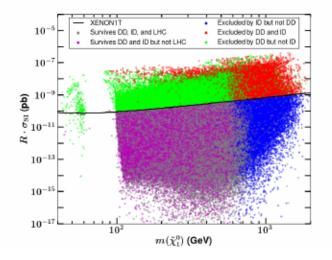
Invisible Higgs: Global Fit


- Translate limit to coupling of Higgs to DM
- Three options: scalar, majorana fermion or vector
- Can compare to direct detection experiments
- LHC results very powerful for low mass WIMP

SUSY and Dark Matter

- SUSY models can provide DM candidates
 - ► R-parity: Lighest SUSY particle (LSP) stable
 - In most models LSP is weakly interacting
 - Must be neutral to be DM candidate
- Strongly interacting SUSY particles heavier than LSP
 - Large production cross sections
 - Decay chains with LSP at the bottom
- Classic signature: missing momentum + many jets


Example: Jets and Missing Et

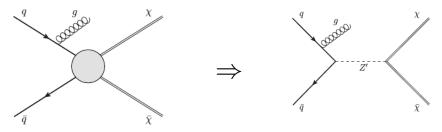


SUSY Limits and DM Constraints

- Tranlating limits on SUSY parameters into a form where we can compare with direct and indirect DM searchs requires a model
- Most general SUSY model has 100 parameters: impossible to turn into constraints
- Simplest model (CMSSM) with 5 parameters largely ruled out
- Next simplest model (PMSSM): 19 parameters
 - Difficult to characterize using a 2D plot
 - Favored space to favor large DM mass

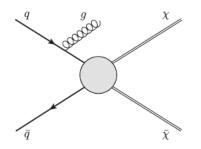
CMSSM Limits

Cahill-Rowley et al, arXiv:1305.6921

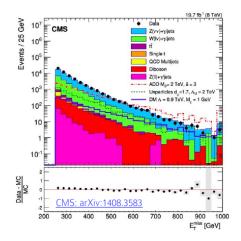

Effective Operators: Parameterization of the new physics

- Parameterize production by
 - DM mass
 - \blacktriangleright Interaction Strength M^*
- Assumptions
 - Only SM and DM producted
 - No other new particles
 - Interaction is treated as a point
 - $\bullet \ M^* > {\rm kinematics \ of \ production}$

Characterizing DM production: Effective Operators

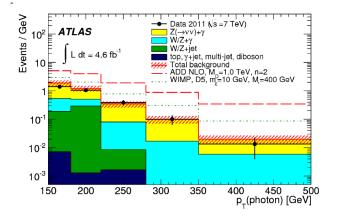

Name	Initial state	Type	Operator
C1		scalar	$rac{m_q}{M^2}\chi^\dagger\chiar q q$
C5	gg	scalar	$\frac{1}{4M_{\star}^2}\chi^{\dagger}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$
D1	qq	scalar	$rac{m_q}{M_\star^3} ar{\chi} \chi ar{q} q$
D5	qq	vector	$\frac{1}{M_{\star}^2}\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$
D8	qq	axial-vector	$\frac{1}{M_\star^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$
D9	qq	tensor	$\frac{1}{M_\star^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$
D11	gg	scalar	$\frac{1}{4M_\star^3}\bar{\chi}\chi\alpha_{\rm s}(G^a_{\mu\nu})^2$
D11		scalar	*

Beyond Effective Operators: Simplified Models

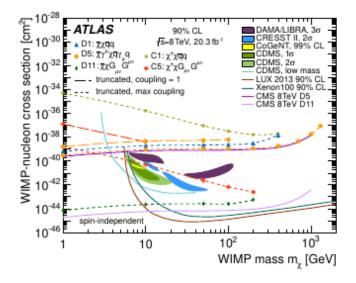

- Effective operators assume mass of mediator high
- Assumption not necessarily true at LHC where momentum transfer can be large
 - For direct detection, this is not an issue
- While form of allow operators won't change, cross sections will if mediator mass comparable to momentum transfer
- Can be important if when comparing limits from LHC to direct detection limits
- Will be important if something is found in either place

Associated Production (ISR)

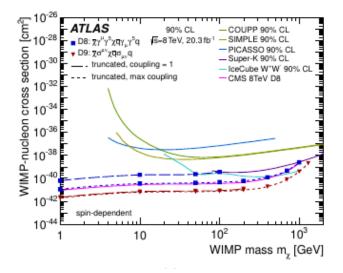
- Partons in proton can radiate before interacting
- Radiation can be $g,\,\gamma,\,W,\,Z,\,{\rm etc}$
- If interaction produces DM pair, this pair recoils against the ISR particle
- DM exits detector unobserved
 - ► Mono-X
- Depending on couplings of DM interaction, relative rates for different ISR particles will change


Example I: Monojets

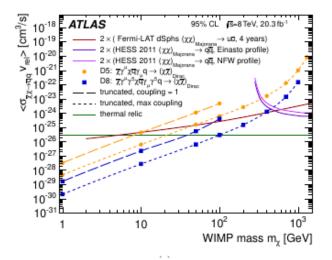
CMS:arXiv1408.3583

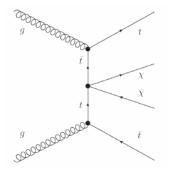

- Search for high p_T jet recoiling against nothing
- Background dominated by decays with ν (eg $W/Z{+}{\rm jets}$ and $t\bar{t})$

Example II: Mono-photon



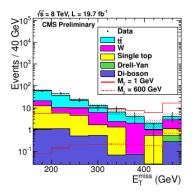
- Search for high p_T photon recoiling against nothing
- Background dominated by decays with ν (eg $W/Z{+}{\rm jets}$ and $t\bar{t})$


Limits: Spin Independent Operators

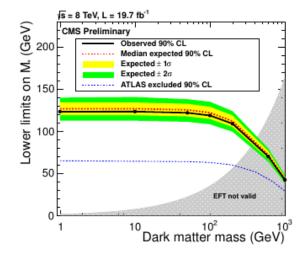

Limits: Spin Dependent Operators

Comparisons with Indirect Detection

DM in Top-Pair events



• Sensitive to C1 operator:

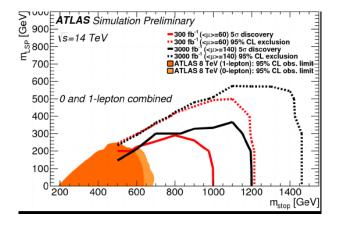

$$\frac{m_q}{{M^*}^3} \overline{q} q \overline{\chi} \chi$$

DM with $t\bar{t}$: Search Strategy

- Search for $t\bar{t}$ events where one or both *t*'s decay to leptons
- Require missing momentum recoiling agains top pair
- Look for excess at large missing momentum

Top-Pair Results

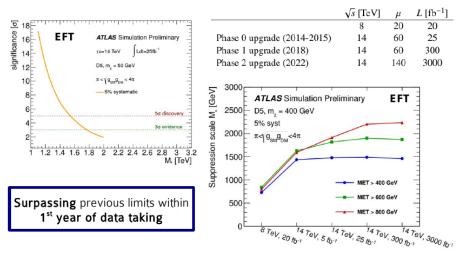
The Future


LHC Roadmap

- Run 1: $\sqrt{s}=7-8$ TeV, $\int Ldt=25$ fb⁻¹, pileup $\mu\approx 20$ LS1: phase 0 upgrade
- Run 2: √s≈13 TeV, ∫Ldt≈120 fb⁻¹, µ≈43
- LS2: phase 1 upgrade
- Run 3: √s≈14 TeV, ∫Ldt≈350 fb⁻¹, µ=50-80

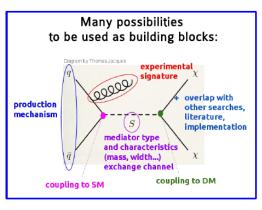
LS3: phase 2 upgrade

HL-LHC: √s≈14 TeV, ∫Ldt≈3000 fb⁻¹, µ≈140-200


Future Prospects for SUSY Discovery

- Run 2 LHC will approximately double mass reach with respect to Run 1
- Significant further increases in Runs 3 and 4

Adopting similar search strategy as 8 TeV


Generator-level backgrounds + smearing for pile-up and detector conditions

Caterina Doglioni - Dark Matter at the LHC - Moriond EW 2015

ATLAS/CMS Dark Matter Forum:

experiment/theory discussion towards Run-2 DM searches

https://twiki.cern.ch/twiki/bin/view/LHCDMF/WebHome Mailing list: lhc-dmf@cern.ch

This Forum will agree upon:

 Prioritized set of simplified models
Common model implementation and details (e.g. matching, scales) towards MC generation of benchmarks

- EFT validity assessment procedure

This Forum will document:

models and choices (arXiv write-up + SVN repository)

Conclusions

- LHC provides complementary approach to DM searchs
- Many possible models, including but not limited to SUSY
- Broad range of searches
 - Nothing found to date
- Use effective operators or simplified models to compare sensitivity to direct and indirect detection
- Run 2 will have significant increase in reach for both SUSY and non-SUSY Wimp DM

Exciting Times Ahead!