Building a Light Mass Detector

Matt Pyle University of California Berkeley

Phys 290e 15/09/16

The low-mass WIMP Direct Detection Challenge

#1 Design Driver for a Light Mass
Dark Matter Detector :
A Massive Detector with Amazing
Energy Sensitivity

Calorimeter Basics

Calorimeter Sensitivity

Calorimeter Optimization

 $\sigma_{\langle E \rangle}^2 = Ck_b T^2$

- Minimize T
 - **Dilution Refrigerators can cool** ٠ detectors to 5mK
- Minimize C
 - -Small Volume
 - Low TInsulators Freeze out

$$C = \frac{\partial E}{\partial T} = \frac{\partial E}{\partial \beta} \frac{\partial \beta}{\partial T} = \frac{\partial E}{\partial \beta} \frac{-1}{k_b T^2} \qquad \text{tr}_{constrained}$$
$$= \left(\frac{\sum_i E_i^2 e^{-\beta E_i}}{\sum_j e^{-\beta E_j}} - \langle E \rangle^2\right) \frac{1}{k_b T^2}$$

States with $E_i >> k_b T$ aren't thermally accessible, and don't contribute to the heat capacity

Excitation Collection and Concentration

 $\sigma_{\langle E \rangle}^2 = Ck_b T^2$

Collect non-thermal excitations in a sensor with small volume & small heat capacity before they can thermalize

Athermal Phonon Sensors

Phonon Signal Bandwidth

Transition Edge Sensor: Dynamics

Transition Edge Sensor: Noise

DC noise scales with G

Bandwidth Optimization Rule $\nu_{sensor} < \nu_{signal}$

15

New: G23R Sensor Bandwidth

Why is it taking so long?

What are the fundamental limits in phonon resolution?

Problem #1: Parasitic Power

As we lower $T_{c,}$ we become more sensitive to nuclear recoils, but we also become more sensitive to environmental noise

Resolution Limits: Parasitic Power

SAFARI has created devices with x75 smaller G & x9 smaller P_{bias} than we require

	SuperCDMS (modeled)	SAFARI (measured)
Тс	30 mK	111 mK
G	12800 fW/K	170 fW/K
P _{bias}	76 fW	8.9 fW
S _{NEP}	6x10 ⁻¹⁹ W/rthz	4.2x10 ⁻¹⁹ W/ rthz

We're far from the fundamental limits on phonon resolution due to parasitic power

Problem #2: W TES Sensitivity Degradation at low T_c?

- As we continue to lower T_c, does the W TES lose sensitivity? Does it become impossible to fabricate?
- Who knows?
- 100mK -> 50mK sensitivity remained invariant
- If yes, there are lots of other TES material out there

Problem #3: Base Temperature

- Dilution Fridge base temperature < $\sim 70\% T_c$
- Short Term: Definitely an issue for SuperCDMS – UCB 75uW: 35 mK
- Long Term: Shouldn't be a problem
 - New DF at UCB (10mK)

Summary

- Light mass dark matter detectors need amazing energy resolution
- Ultra sensitive calorimeters:
 - very low T
 - Small sensor volumes -> collection / concentration
 - Final Ingredient: Bandwidth matching
 - Over the next 5 years, there should be huge improvements in detector performance
 - 1eV baseline noise
 - ER/NR discrimination for subkeV recoils

