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Fit in galaxy

Standard Model scale ~ 100 GeV

One Possibility: Same scale for Dark Matter?
Weakly Interacting Massive Particles (WIMPs)

WIMPs

Other Generic Candidates: Axions, Massive Vector Bosons,  Dark 
Blobs 

10-6 eV10-15 eV
(GHz)(Hz)(yr-1)

How do we search for them?



Outline

1. Brief Theory Overview  

2. Axion Detection with Nuclear Magnetic Resonance 

3. Dark Photon Detection with Radios 

4. Bosons with Accelerometers 

5. Dark Blobs with White Dwarfs 

6. Conclusions
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Today:
Random Field 

Correlation length 
~ 1/(ma v) 

Coherence Time
~ 1/(ma v2) 

~ 1 s (MHz/ma)

Spatially uniform, oscillating field

Detect effects of oscillating dark matter field

Resonance possible. Q ~ 106 (set by v ~ 10-3)
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Cosmic Axion Spin Precession 
Experiment (CASPEr)

PRX 4 (2014) arXiv: 1306.6089 
PRD 88 (2013) arXiv: 1306.6088  
PRD 84 (2011)  arXiv: 1101.2691

Dmitry Budker 
Peter Graham 

Micah Ledbetter 
Alex Sushkov

with
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SQUID 
pickup 
loop

�Bext

�µ

Larmor frequency = axion mass ➔ resonant enhancement

CASPEr

axion “wind” ~va
OR ~E⇤

SQUID measures resulting transverse magnetization

NMR well established technology, noise understood, similar setup to previous experiments

Example materials: LXe, ferroelectric PbTiO3, many others

Axion affects physics of  nucleus, NMR is sensitive probe
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with

 arXiv: 1411.7382
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Many theories/vacua have additional, decoupled sectors, new U(1)’s

Natural coupling (dim. 4 operator): L � "FF 0
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oscillating E’ field 
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L

C
Tunable resonant LC circuit 

(a radio)

Dark Matter Radio Station



Surjeet Rajendran, UC Berkeley

Stage 2:  size ~1 m,  T= 10mK,  Q=106,  1 year scan
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Stage 1:  size ~50 cm,  T= 4K,  Q=106,  1 year scan
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Time variation of masses of fundamental particles

This force also violates the equivalence principle
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B-L Dark Matter

Acceleration Per Baryon:

gE
0

mn
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s

2
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⌘

Seems promising!

Dark Matter force depends upon net neutron number 
Time dependent equivalence principle violation!

Stanford Test Facility

Atomic Accelerometers ' 10�12 m

s2
p
Hz

(@ 1 Hz)

Without extra work, Stanford facility probes g u 10

�26

Improvements possible with resonant 
schemes



White Dwarves

A New Dark Matter Detector

arXiv:1505.04444

Surjeet Rajendran

with

Peter Graham
Jaime Varela
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Single dark matter event

e.g. transit of primordial black hole or Q ball 
through star

Localized energy deposition

Exploding White Dwarfs: Basic Idea

Triggers Type 1a Supernova, 
white dwarf explodes

Limits from sub-Chandrasekhar white dwarfs
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Individual particles, large 
number density

Strong

Chance for events in 
human-scale detectors

Large composite objects, very 
low number density

e.g. mirror QCD, Q Balls, 
Primordial Black Holes

Zero event rate in human scale 
detectors

Large space-time volume detector needed
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Single dark matter event

Exploding White Dwarfs: Basic Idea

White dwarf explodes as Type 1a supernova

Area ~ (4000 km)2 x 1000

Lifetime ~ 1010 yr

Large space-time volume detector!

Event visible everywhere

Good system for ultra heavy dark matter

Detector Capabilities



Outline

1.  Runaway fusion in White Dwarfs

2.  Primordial Black Holes

3.  Observational Constraints
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White Dwarf 101

Stellar remnant supported by electron degeneracy 
pressure

Core is mainly Carbon/Oxygen

Also, Oxygen/Neon/Magnesium

Electron degeneracy cannot support mass > 1.4 M0

(Chandrasekhar Limit)

Core can still undergo fusion

As star gets close to 1.4 M0, runaway fusion occurs causing Type 1a Supernova

Densities ~ 106 gm/cm3 for 0.5 M0 to
109 gm/cm3 for 1.3 M0

Our bounds come from causing supernovae well below this mass
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Runaway Fusion

Fusion rates are exponentially sensitive 
to temperature

R(300 keV)

R(10 keV)
' 1030

L.R. Gasques et.al. , Phys. Rev. C 72 (2005)

Carbon Fusion Rate

Each fusion releases ~ 10 MeV

Rapid Fusion of more Carbon

Small number of initial fusion reactions 
can trigger many more

Chain Reaction Possible
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Runaway Fusion
Local Increase in Temperature

Sun

P / T

Temperature leads to expansion

Expansion lowers density and cools medium 

Decreases fusion. Stable equilibrium

White Dwarf

Degenerate gas
 Pressure and density independent of 

temperature

High T leads to higher rate of fusion

Absence of self-regulation. Explosive
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Triggering Runaway Fusion

Sphere of Radius �

Set at T � T0

T0

T 2�
Heat dissipates out, lowering T

Fusion occurs, increasing T

Dissipation rate > Fusion rate.  
Trigger fizzles. No explosion.

Fusion rate > Dissipation rate. 
 Explosion.

Two Possibilities



Thermal Dissipation
The Heat Equation

T0

T 2�

@T

@t
=

1

cp⇢
r. (KcdrT )

Given T (0, r) , find T (t, r)

Kcd = Conductivity of Carrier



Thermal Dissipation
The Heat Equation

T0

T 2�

@T

@t
=

1

cp⇢
r. (KcdrT )

Given T (0, r) , find T (t, r)

Kcd = Conductivity of Carrier

Approximate Solution

O (1) change in T : Di↵usion time scale ⌧

⌧ u cp⇢

Kcd
�2
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Trigger Size

T0

T 2�

⌧ u cp⇢

Kcd
�2

O (1) change in T : Di↵usion time scale ⌧

Larger �, slower di↵usion

Require R (T ) ⌧ ' 1

=) Complete fusion within �

Fusion releases ~ 10 MeV energy. Larger region is now hotter.

Slower diffusion, fixed fusion rate. Condition more easily satisfied.

Chain reaction!

Sets trigger size �

Fusion Rate R (T )
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The Bottomline
Exploding sub-Chandrasekhar White Dwarfs

Trigger Temperature ~ 1 MeV

� ' 10�2 cm @ 0.7M�

� ' 10�4 cm @ 1.2M�

� ' 10�5 cm @ 1.3M�
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Transit of Primordial Black Hole

1024 gm ' MBH ' 1017 gm

10�4 cm ' RBH ' 10�11 cm

Tiny black hole
Tiny gravitational perturbation 

Goes through star

Gravitational pull significant on tiny 
region near black hole

Localized heating (dynamical friction)

Supernova if heating > trigger
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Heating by Black Hole

(Dynamical Friction)

C C

R
~vesc

vesc > cs

Black hole enters star at escape velocity ~ 10-2

Instant approximation holds

vC ⇡
✓
GMBH

R2

◆
⇥ R

vesc

vC vC

TC ⇡ mCv
2
C ' 1 MeV =) vC ' 10�2

R / 104RBH u 10�5 cm

✓
MBH

1019 gm

◆

Compare with trigger size
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Observational Constraints



Black Hole Capture Rate

Black hole transits white dwarf within 1/5th of the age of the universe

Printed by Wolfram Mathematica Student Edition



Supernova Rate
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Constraints on Primordial Black Holes

1017 gm

Hawking 
emission

1018 gm 1019 gm 1020 gm 1021 gm 1022 gm 1023 gm 1024 gm

Kepler 
MACHO search

Existence of certain heavy (> 1.28 M0) white dwarfs (e.g. RX J0648.0 - 4418)

Local population distribution of heavy (> 1.15 M0) fits falling gaussian

Supernova rate ~ 1/century

Blows up stars > 0.55 M0.  
Even light white dwarfs in the center of the galaxy wont exist.

Blows up stars > 1.0 M0.  
Inconsistent with NuStar observations of 1.2 M0 in galactic center



Conclusions
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WIMPs
Scalable 

Goodman & Witten (1985): � � 10�38 cm2

Z

h

W
Similar approach seems possible in searching for oscillating fields
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The Dark Matter Landscape

10-22 eV10-43 GeV 1048 GeV100 eV 102 GeV 

(SM)

bosonic WIMPs

10-6 eV10-15 eV
(GHz)(Hz)(yr-1)

Search for single, hard 
particle scattering

� �

N N

Time dependent moments 
of coherent classical field

Interactions restricted by 
symmetry

Frequencies can naturally be 
lab accessible (Hz - GHz)

How do we cover full range?

Lab-scale experiments

Low number 
density

Spectacular 
single events



Backup
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A Different Operator For Axion Detection

Strong CP problem: creates a nucleon EDM d ⇥ 3� 10�16 � e cmL � � G �G

witha(t) � a0 cos (mat) ma �
(200 MeV)2

fa
� MHz

�
1016 GeV

fa

⇥

axion gives all nucleons an oscillating EDM (kHz-GHz)  independent of fa, 
a non-derivative operator

axion dark matter �DM � m2
aa2 � (200MeV)4

�
a

fa

⇥2

� 0.3
GeV
cm3

so today:
�

a

fa

⇥
⇥ 3� 10�19 independent of fa

So how can we detect high fa axions?

48

the axion: creates a nucleon EDM d ⇥ 3� 10�16 a

fa
e cmL � a

fa
G eG
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Conclusions and Future Directions

White dwarfs are nuclear bombs waiting to explode

Localized heat injection sufficient to trigger explosion

Ideal for studying ultra-massive dark matter states

Constrain Q balls, annihilations of ultra-massive composite 
states

Accumulation of dark matter in star, leading to compact 
core. Localized heating possible.

Significant constraints on primordial black holes 
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axion emission affects SN1987A, White Dwarfs, other astrophysical objects 
collider & laser experiments, ALPS, CAST

� 1
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a

γ

B
laser experiments:

L � a

fa
F �F =

a

fa

�E · �Bin most models:

axion-photon conversion suppressed � 1
f2

a

size of cavity increases with fa

signal �
1
f3

a

a

γ

B
microwave cavity (ADMX)

Other ways to search for light (high fa) axions?

S. Thomas

50
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Axions and the CMB

if symmetry broken before inflation → inflation can induce isocurvature perturbations of axion, 
weak constraint on ALPs probed by CASPEr. 

Assuming BICEP detected gravitational waves in the CMB 
(some tension with Planck):

if symmetry broken after inflation → topological defects (strings + domain walls), constrained by 
observations

51

Requires knowing physics all the way up to GUT scale ⇠ 1016 GeV

for QCD axion, constrains one cosmological history.  

many others possible.

Hinf ⇠ 1014 GeV



QCD Axion and BICEP

52

Need a high temperature, transient mass, sometime before 
QCD phase transition.

Need not be on during inflation.

Axion oscillates earlier, 
damps to high temperature 

minimum.

Misalignment of minima gives axion dark matter.

Dark matter from choice of parameters instead of 
initial conditions.

a

V
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