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Why particle dark 
matter?

We have essentially eliminated a SM 
explanation; need physics BSM
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Why particle dark 
matter?

Why not just ordinary (dark) baryons? 

A: BBN and CMB make independent measurements of the baryon 
fraction.  Observations only accounted for with non-interacting matter 
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of Big-Bang nucleosynthesis [11] − the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL). Color version at end
of book.
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Why particle dark 
matter?

Make baryons non-interacting by binding DM into 
MaCHOs?

A: looked for those and did not find them; 
eliminated MACHO range from 
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where the δ
PBH

,δp and δr are the relative overdensities
of PBHs, Poisson fluctuations and radiation, respectively.
Since δp in Eq.(1)is observable and constant, one would
conclude that the quantity

S ≡ δ
PBH

−
3

4
δr = δp (4)

is gauge-invariant and conserved. Indeed this is the en-
tropy per PBH, which should remain constant as long as
the universe expands adiabatically (e.g. see Mukhanov
et al. 1992). The associated perturbations, generated in
this way are isocurvature(or entropy) perturbations, as the
curvature at large scales is not (immediately) affected by
the formation of compact objects at small scale.

As we are assuming that PBHs are the present day Cold
Dark Matter (CDM), the overdensity of CDM is given by

δ
CDM

(k) = Tad(k)δi,ad(k) + Tiso(k)S(k), (5)

where Tad(k) and Tiso(k) are the transfer functions for
adiabatic and isocurvature perturbations respectively. For
the following analysis we will use the analytical fits quoted
in Bardeen et al. 1986 to the transfer functions. Eq. (5)
leads to the following power spectrum

P
CDM

(k) = T 2
ad(k)Pi,ad(k) + T 2

iso(k)Pp. (6)

In this expression,Pi,ad(k) = Akn with n ≃ 1 is the adia-
batic power spectrum which is produced through inflation
(or an alternative method of generating scale-invariant adi-
abatic perturbations), while Pp is given in Eq.(2).

One can easily see that the isocurvature term on the
RHS of Eq.(2) contributes a constant to the power spec-
trum as both Pp and

Tiso(k) =
3

2
(1 + zeq) for k ≫ aeqHeq (7)

are independent of k (e.g. Peacock 1998). Note that this
is the simple linear growth due to gravitational cluster-
ing which is the same for adiabatic fluctuation. Since the
power spectrum of adiabatic fluctuations decays as k−3 at
small scales, one expects to see the signature of this Pois-
son noise at large k’s. Combining Eqs. (2),(6) and (7)
gives the power offset

∆P
CDM

≃
9M

PBH
(1 + zeq)2

4ρ
CDM

= 4.63

(

M
PBH

103M⊙

)

(Ω
CDM

h5)(h−1Mpc)3 (8)

which is also a lower bound on the matter linear power
spectrum.
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Fig. 1.— Linear power spectrum for different masses of the PBHs.
σ∗

8
is σ8 for the model without the PBHs and the amplitude of the

(initially) adiabatic modes is the same for all models.

Fig.(1) shows the linear power spectrum for different

masses of the PBHs. We see the Poisson plateau (Eq.
8) at large k’s which drops with decreasing mass. The
impact of this plateau on the Ly-α forest power spectrum
is discussed in the next section.

Fig. 2.— Influence of PBHs on the Ly-α forest flux power spec-
trum, PF (k). The black, solid curve shows our prediction for PF (k)
in a standard ΛCDM model (i.e., no PBHs) in which the amplitude
of the linear power spectrum, σ∗

8
, was adjusted to match the data

points from Croft et al. (2002). The other curves show the predicted
PF (k) when white noise power due to PBHs with various masses is
added. The Ly-α forest model parameters and σ∗

8
were not adjusted

to find a best fit for each mass so the disagreement between the PBH
models and the data points does not indicate that the models are
ruled out.

3. simulations of Ly-α forest

Afshordi, McDonald, Spergel
& 10�8M�
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Why particle dark 
matter?

Why not 
modify 
gravity?

A: Modified 
gravity 
theories tend 
to be sick

A: Must get the entire range 
of observations right, not just 
galactic rotation curves

X-ray: NASA/CXC/CfA/ M.Markevitch et al.; 
Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et al. 

Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al

http://arxiv.org/abs/astro-ph/0511345
http://arxiv.org/abs/astro-ph/0511345
http://arxiv.org/abs/astro-ph/0608407
http://arxiv.org/abs/astro-ph/0608407


Why particle dark 
matter?

By contrast, it is easy to explain everything 
with particle dark matter

From theoretical point of view, theories are 
compelling, testable. 

As the proverb says:



Particle dark matter

No shortage of 
theories

Note however: most 
based on a couple of 
very popular theories

Axions and WIMPs 
(usually, 
supersymmetric)



Dark Matter: 
Standard Paradigm

Usual picture of dark matter is that it is:

single

stable 

(sub-?) weakly interacting

neutral



Hidden Dark Worlds

Standard Model
Mp � 1 GeV

Our thinking has shifted

From a single, stable weakly 
interacting particle .....

(WIMP, axion)

...to a hidden world 
with multiple states, 

new interactions

Models: Supersymmetric light DM sectors,
Secluded WIMPs, WIMPless DM, Asymmetric DM .....

Production: freeze-in, freeze-out and decay, 
asymmetric abundance, non-thermal mechanicsms .....



Models of Dark Matter

The classic

SUSY

has all the ingredients

and they are present for other reasons

DM (sort of) free



DM Paradigm:
recap

Usual picture of dark matter is that it is:

single

stable 

(sub-?) weakly interacting

neutral



Stability

To make candidate absolutely stable, need a 
symmetry in the theory

In SM:

p: stable by baryon number (global symm)

e-: electric charge (gauge symm)

nu’s: lepton number (global symm)



Stability
SUSY has built in symmetry to stabilize one 
of the SUSY particles

Each SM particle has a superpartner that 
differs in spin by 1/2 from SM particle

(actually, require two 
Higgses in SUSY)

gauginos

scalar superpartners 
to SM fermions

fermionic superpartners to 
SM scalar and gauge bosons



Stability

Why is one of these states stable? R-parity

Symmetry which appears in UV completions

For proton stability; DM stability by-product

Because, scalars in SUSY allow to write down 
additional interactions

t̃L t̃∗R

H0∗
d

(a)

b̃L b̃∗R

H0∗
u

(b)

τ̃L τ̃∗R

H0∗
u

(c)

Figure 6.4: Some of the supersymmetric (scalar)3 couplings proportional to µ∗yt, µ∗yb, and µ∗yτ . When
H0

u and H0
d get VEVs, these contribute to (a) t̃L, t̃R mixing, (b) b̃L, b̃R mixing, and (c) τ̃L, τ̃R mixing.

namely the supersymmetry-respecting mass µ and the supersymmetry-breaking soft mass terms. Yet
the observed value for the electroweak breaking scale suggests that without miraculous cancellations,
both of these apparently unrelated mass scales should be within an order of magnitude or so of 100
GeV. This puzzle is called “the µ problem”. Several different solutions to the µ problem have been
proposed, involving extensions of the MSSM of varying intricacy. They all work in roughly the same
way; the µ term is required or assumed to be absent at tree-level before symmetry breaking, and then
it arises from the VEV(s) of some new field(s). These VEVs are in turn determined by minimizing a
potential that depends on soft supersymmetry-breaking terms. In this way, the value of the effective
parameter µ is no longer conceptually distinct from the mechanism of supersymmetry breaking; if we
can explain why msoft ≪ MP, we will also be able to understand why µ is of the same order. In sections
11.2 and 11.3 we will study three such mechanisms: the Next-to-Minimal Supersymmetric Standard
Model, the Kim-Nilles mechanism [64], and the Giudice-Masiero mechanism [65]. Another solution
appropriate for GMSB models and based on loop effects was proposed in ref. [66]. From the point of
view of the MSSM, however, we can just treat µ as an independent parameter, without committing to
a specific mechanism.

The µ-term and the Yukawa couplings in the superpotential eq. (6.1.1) combine to yield (scalar)3

couplings [see the second and third terms on the right-hand side of eq. (3.2.18)] of the form

Lsupersymmetric (scalar)3 = µ∗(ũyuũH
0∗
d + d̃ydd̃H

0∗
u + ẽyeẽH

0∗
u

+ũyud̃H
−∗
d + d̃ydũH

+∗
u + ẽyeν̃H

+∗
u ) + c.c. (6.1.6)

Figure 6.4 shows some of these couplings, proportional to µ∗yt, µ∗yb, and µ∗yτ respectively. These play
an important role in determining the mixing of top squarks, bottom squarks, and tau sleptons, as we
will see in section 8.4.

6.2 R-parity (also known as matter parity) and its consequences

The superpotential eq. (6.1.1) is minimal in the sense that it is sufficient to produce a phenomenolog-
ically viable model. However, there are other terms that one can write that are gauge-invariant and
holomorphic in the chiral superfields, but are not included in the MSSM because they violate either
baryon number (B) or total lepton number (L). The most general gauge-invariant and renormalizable
superpotential would include not only eq. (6.1.1), but also the terms

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (6.2.1)

W∆B=1 =
1

2
λ′′ijkuidjdk (6.2.2)

where family indices i = 1, 2, 3 have been restored. The chiral supermultiplets carry baryon number
assignments B = +1/3 for Qi; B = −1/3 for ui, di; and B = 0 for all others. The total lepton number
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Stability

Preserve gauge symmetries of Standard 
Model

Violate baryon and lepton number; induce 
proton decay
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d get VEVs, these contribute to (a) t̃L, t̃R mixing, (b) b̃L, b̃R mixing, and (c) τ̃L, τ̃R mixing.
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Figure 6.5: Squarks would mediate disas-
trously rapid proton decay ifR-parity were
violated by both ∆B = 1 and ∆L = 1 in-
teractions. This example shows p → e+π0

mediated by a strange (or bottom) squark. u

u

d s̃∗R

p+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
}
π0u

u∗

e+

λ′′∗112 λ′112

assignments are L = +1 for Li, L = −1 for ei, and L = 0 for all others. Therefore, the terms in
eq. (6.2.1) violate total lepton number by 1 unit (as well as the individual lepton flavors) and those in
eq. (6.2.2) violate baryon number by 1 unit.

The possible existence of such terms might seem rather disturbing, since corresponding B- and
L-violating processes have not been seen experimentally. The most obvious experimental constraint
comes from the non-observation of proton decay, which would violate both B and L by 1 unit. If both
λ′ and λ′′ couplings were present and unsuppressed, then the lifetime of the proton would be extremely
short. For example, Feynman diagrams like the one in Figure 6.5† would lead to p+ → e+π0 (shown) or
e+K0 or µ+π0 or µ+K0 or νπ+ or νK+ etc. depending on which components of λ′ and λ′′ are largest.‡

As a rough estimate based on dimensional analysis, for example,

Γp→e+π0 ∼ m5
proton

∑

i=2,3

|λ′11iλ′′11i|2/m4
d̃i
, (6.2.3)

which would be a tiny fraction of a second if the couplings were of order unity and the squarks have
masses of order 1 TeV. In contrast, the decay time of the proton into lepton+meson final states is
known experimentally to be in excess of 1032 years. Therefore, at least one of λ′ijk or λ′′11k for each of
i = 1, 2; j = 1, 2; k = 2, 3 must be extremely small. Many other processes also give strong constraints
on the violation of lepton and baryon numbers [67, 68].

One could simply try to take B and L conservation as a postulate in the MSSM. However, this
is clearly a step backward from the situation in the Standard Model, where the conservation of these
quantum numbers is not assumed, but is rather a pleasantly “accidental” consequence of the fact
that there are no possible renormalizable Lagrangian terms that violate B or L. Furthermore, there
is a quite general obstacle to treating B and L as fundamental symmetries of Nature, since they are
known to be necessarily violated by non-perturbative electroweak effects [69] (even though those effects
are calculably negligible for experiments at ordinary energies). Therefore, in the MSSM one adds a
new symmetry, which has the effect of eliminating the possibility of B and L violating terms in the
renormalizable superpotential, while allowing the good terms in eq. (6.1.1). This new symmetry is
called “R-parity” [8] or equivalently “matter parity” [70].

Matter parity is a multiplicatively conserved quantum number defined as

PM = (−1)3(B−L) (6.2.4)

for each particle in the theory. It is easy to check that the quark and lepton supermultiplets all
have PM = −1, while the Higgs supermultiplets Hu and Hd have PM = +1. The gauge bosons and
gauginos of course do not carry baryon number or lepton number, so they are assigned matter parity
PM = +1. The symmetry principle to be enforced is that a candidate term in the Lagrangian (or in
the superpotential) is allowed only if the product of PM for all of the fields in it is +1. It is easy to see
that each of the terms in eqs. (6.2.1) and (6.2.2) is thus forbidden, while the good and necessary terms

†In this diagram and others below, the arrows on propagators are often omitted for simplicity, and external fermion
label refer to physical particle states rather than 2-component fermion fields.

‡The coupling λ′′ must be antisymmetric in its last two flavor indices, since the color indices are combined antisym-
metrically. That is why the squark in Figure 6.5 can be s̃ or b̃, but not d̃, for u, d quarks in the proton.
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Stability
Introduce new symmetry (= R-parity) to 
forbid those interactions

All SM particles carry R-parity +1

All super-partners carry R-parity -1

in eq. (6.1.1) are allowed. This discrete symmetry commutes with supersymmetry, as all members of
a given supermultiplet have the same matter parity. The advantage of matter parity is that it can
in principle be an exact and fundamental symmetry, which B and L themselves cannot, since they
are known to be violated by non-perturbative electroweak effects. So even with exact matter parity
conservation in the MSSM, one expects that baryon number and total lepton number violation can
occur in tiny amounts, due to non-renormalizable terms in the Lagrangian. However, the MSSM does
not have renormalizable interactions that violate B or L, with the standard assumption of matter parity
conservation.

It is often useful to recast matter parity in terms of R-parity, defined for each particle as

PR = (−1)3(B−L)+2s (6.2.5)

where s is the spin of the particle. Now, matter parity conservation and R-parity conservation are
precisely equivalent, since the product of (−1)2s for the particles involved in any interaction vertex in
a theory that conserves angular momentum is always equal to +1. However, particles within the same
supermultiplet do not have the same R-parity. In general, symmetries with the property that fields
within the same supermultiplet have different transformations are called R symmetries; they do not
commute with supersymmetry. Continuous U(1) R symmetries were described in section 4.11, and are
often encountered in the model-building literature; they should not be confused with R-parity, which is
a discrete Z2 symmetry. In fact, the matter parity version of R-parity makes clear that there is really
nothing intrinsically “R” about it; in other words it secretly does commute with supersymmetry, so its
name is somewhat suboptimal. Nevertheless, the R-parity assignment is very useful for phenomenology
because all of the Standard Model particles and the Higgs bosons have even R-parity (PR = +1), while
all of the squarks, sleptons, gauginos, and higgsinos have odd R-parity (PR = −1).

The R-parity odd particles are known as “supersymmetric particles” or “sparticles” for short, and
they are distinguished by a tilde (see Tables 1.1 and 1.2). If R-parity is exactly conserved, then there can
be no mixing between the sparticles and the PR = +1 particles. Furthermore, every interaction vertex
in the theory contains an even number of PR = −1 sparticles. This has three extremely important
phenomenological consequences:

• The lightest sparticle with PR = −1, called the “lightest supersymmetric particle” or LSP, must
be absolutely stable. If the LSP is electrically neutral, it interacts only weakly with ordinary
matter, and so can make an attractive candidate [71] for the non-baryonic dark matter that
seems to be required by cosmology.

• Each sparticle other than the LSP must eventually decay into a state that contains an odd number
of LSPs (usually just one).

• In collider experiments, sparticles can only be produced in even numbers (usually two-at-a-time).

We define the MSSM to conserve R-parity or equivalently matter parity. While this decision seems
to be well-motivated phenomenologically by proton decay constraints and the hope that the LSP will
provide a good dark matter candidate, it might appear somewhat artificial from a theoretical point of
view. After all, the MSSM would not suffer any internal inconsistency if we did not impose matter
parity conservation. Furthermore, it is fair to ask why matter parity should be exactly conserved,
given that the discrete symmetries in the Standard Model (ordinary parity P , charge conjugation C,
time reversal T , etc.) are all known to be inexact symmetries. Fortunately, it is sensible to formulate
matter parity as a discrete symmetry that is exactly conserved. In general, exactly conserved, or
“gauged” discrete symmetries [72] can exist provided that they satisfy certain anomaly cancellation
conditions [73] (much like continuous gauged symmetries). One particularly attractive way this could
occur is if B−L is a continuous gauge symmetry that is spontaneously broken at some very high energy
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Lightest super-partner is stable

lepton:    s=1/2,  L=1
quark: s=1/2, B=1/3

gauge boson, s=1, B=L=0

slepton:    s=0,  L=1
squark: s=0, B=1/3

gaugino, s=1,/2 B=L=0



Neutral

Gauge bosons mix

Their superpartners the gauginos also mix

neutral and charged states -- neutralinos 
and charginos

diagonalize mass matrix to obtain mass 
eigenstates

✓
�
Z

◆
=

✓
cos ✓W sin ✓W
� sin ✓W cos ✓W

◆✓
B
W 0

◆



Mass matrix:

Soft parameters,     and    .   Free in SUSY.

In SM, one Higgs works b/c can write field 
and conjugate

Not so in SUSY:

NeutralA Neutralino Mass Eigenstates

In the Minimal Supersymmetric Standard Model (MSSM), the neutral elec-

troweak gauginos (B̃, W̃ 3) and higgsinos (H̃0
1 , H̃0

2 ) have the same quantum num-
bers and, therefore, mix into four mass eigenstates called neutralinos. The neu-
tralino mass matrix in the B̃-W̃ 3-H̃0

1 -H̃0
2 basis is given by

MN =

⎛
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MZ sinβ sin θW −MZ sinβ cos θW −µ 0

⎞

⎟⎟⎠ ,

(146)
where M1, M2 and µ are the bino, wino and higgsino mass parameters, respec-
tively, θW is the Weinberg angle and tanβ is the ratio of the vacuum expectation
values of the Higgs bosons. This matrix can be diagonalized by the matrix, N .

Mdiag
χ0 = N †Mχ0N. (147)

The masses of the four mass eigenstates are then given by [207, 62]
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where ϵi is the sign of the ith eigenvalue of the neutralino mass matrix, and
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2 , (152)
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Weakly-interacting

Sneutrino, also being neutral, is a good DM 
candidate.... except for direct detection(!)

Its couplings are fixed by gauge interactions

Scatters off nucleons through Z boson

Let’s compute the ratef~
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Figure 37: Tree level diagrams for neutralino annihilation into fermion pairs. From
Ref. [319].

B Neutralino Annihilation Cross Sections in the

Low Velocity Limit

In this appendix, we give the amplitudes and cross sections for the most impor-
tant neutralino annihilation channels in the low velocity limit (the first term in
the expansion σv = a + bv2 + ...). This is sufficient for indirect detection but
generally insufficient for relic density calculations in which velocity dependent
contributions are important. For a more complete list, with all S and P-wave
tree level annihilation amplitudes, see Refs. [195, 319, 397, 396, 106].

B.1 Annihilation Into Fermions

Neutralinos can annihilate to fermion pairs by three tree level diagrams [195,
213, 275, 276]. These processes consist of s-channel exchange of pseudoscalar
Higgs and Z0-bosons and t-channel exchange of sfermions (see Fig. 37).

The amplitude for pseudoscalar Higgs exchange is given by

AA = 4
√

2 g TA 11 hAff
1

4 − (mA/mχ)2 + i ΓAmA/m2
χ

. (164)

Here, mA is the pseudoscalar Higgs mass and ΓA is the pseudoscalar Higgs
width. TA 11 is the A0-neutralino-neutralino coupling and is given by

TA 11 = − sinβQ′′
1,1 + cosβS′′

1,1, (165)

where Q′′
1,1 = N3,1(N2,1 − tan θW N1,1) and S′′

1,1 = N4,1(N2,1 − tan θW N1,1).

N is the matrix which diagonalizes the neutralino mass matrix in the B̃-W̃ 3-
H̃0

1 -H̃0
2 basis, Mdiag

χ0 = N †Mχ0N (see Appendix A). θW is the Weinberg angle
and tanβ is the ratio of the Higgs vacuum expectation values. hAff is the
A0-fermion-fermion Yukawa coupling. For up-type fermions, this is given by

hAff = −
gmf cotβ

2mW±

. (166)

For down-type fermions, it is

hAff = −
gmf tanβ

2mW±

. (167)

106

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3.3: Supersymmetric gauge interaction vertices.

eq. (3.3.3). In the MSSM these are exactly the same as the well-known QCD gluon and electroweak
gauge boson vertices of the Standard Model. (We do not show the interactions of ghost fields, which
are necessary only for consistent loop amplitudes.) Figures 3.3c,d,e,f are just the standard interactions
between gauge bosons and fermion and scalar fields that must occur in any gauge theory because of the
form of the covariant derivative; they come from eqs. (3.3.5) and (3.4.2)-(3.4.4) inserted in the kinetic
part of the Lagrangian. Figure 3.3c shows the coupling of a gaugino to a gauge boson; the gaugino line
in a Feynman diagram is traditionally drawn as a solid fermion line superimposed on a wavy line. In
Figure 3.3g we have the coupling of a gaugino to a chiral fermion and a complex scalar [the first term
in the second line of eq. (3.4.9)]. One can think of this as the “supersymmetrization” of Figure 3.3e or
3.3f; any of these three vertices may be obtained from any other (up to a factor of

√
2) by replacing two

of the particles by their supersymmetric partners. There is also an interaction in Figure 3.3h which
is just like Figure 3.3g but with all arrows reversed, corresponding to the complex conjugate term in
the Lagrangian [the second term in the second line in eq. (3.4.9)]. Finally in Figure 3.3i we have a
scalar quartic interaction vertex [the last term in eq. (3.4.12)], which is also determined by the gauge
coupling.

The results of this section can be used as a recipe for constructing the supersymmetric interactions
for any model. In the case of the MSSM, we already know the gauge group, particle content and the
gauge transformation properties, so it only remains to decide on the superpotential. This we will do
in section 6.1. However, first we will revisit the structure of supersymmetric Lagrangians in section 4
using the manifestly supersymmetric formalism of superspace and superfields, and then describe the
general form of soft supersymmetry breaking terms in section 5.

4 Superspace and superfields

4.1 Supercoordinates, general superfields, and superspace differentiation and in-
tegration

Supersymmetry can be given a geometric interpretation using superspace, a manifold obtained by
adding four fermionic coordinates to the usual bosonic spacetime coordinates t, x, y, z. Points in su-
perspace are labeled by coordinates:

xµ, θα, θ†α̇. (4.1.1)

Here θα and θ†α̇ are constant complex anticommuting two-component spinors with dimension [mass]−1/2.
In the superspace formulation, the component fields of a supermultiplet are united into a single su-
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Figure 3.3: Supersymmetric gauge interaction vertices.
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Direct detection basics

Two types of interactions: spin-dependent, 
spin-independent

Spin-independent couples to charge of 
nucleus --> coherent interactions

Examples of spin-independent interaction: 
Higgs

q q

H, h

χ χ

q~

q q

χ χ

Figure 44: Tree level Feynman diagrams for neutralino-quark scalar (spin-independent)
elastic scattering. From Ref. [319].

C Elastic Scattering Processes

C.1 Scalar Interactions

Consider a WIMP with scalar interactions with quarks given by

Lscalar = aqχ̄χq̄q, (197)

where aq is the WIMP-quark coupling. Then the scattering cross section for
the WIMP off of a proton or neutron is given by

σscalar =

∫ 4m2
rv2

0

dσ(v = 0)

d|v⃗|2
=

4m2
r

π
f2

p,n, (198)

where v is the relative velocity of the WIMP, mr is the reduced mass of the
nucleon (mr ≃ mp,n for WIMPs heavier than ∼ 10 GeV) and fp,n is the WIMP
coupling to protons or neutrons, given by

fp,n =
∑

q=u,d,s

f (p,n)
Tq aq

mp,n

mq
+

2

27
f (p,n)

TG

∑

q=c,b,t

aq
mp,n

mq
, (199)

where f (p)
Tu = 0.020 ± 0.004, f (p)

Td = 0.026 ± 0.005, f (p)
Ts = 0.118 ± 0.062, f (n)

Tu =

0.014 ± 0.003, f (n)
Td = 0.036 ± 0.008 and f (n)

Ts = 0.118 ± 0.062 [209]. f (p,n)
TG is

related to these values by

f (p,n)
TG = 1 −

∑

q=u,d,s

f (p,n)
Tq . (200)

The term in Eq. 199 which includes f (p,n)
TG results from the coupling of the WIMP

to gluons in the target nuclei through a heavy quark loop. The couplings of
squarks and Higgs bosons to heavy quarks leads to a loop level coupling of the
WIMP to gluons [276, 61, 323]. Such diagrams are shown in Fig. 45.

To attain the scalar cross section for a WIMP scattering off of a target
nucleus, one should sum over the protons and neutrons in the target:

σ =
4m2

r

π

(
Zfp + (A − Z)fn

)2

, (201)
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search

Community Planning Study: Snowmass 2013

CF1 Snowmass report, 1310.8327
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Apply to scattering 
through Z boson
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The maximum momentum transfer depositable in the detector is 2µ
N

v, where µ
N

is the DM-
nucleus reduced mass. Since the typical momentum transfers observed by CoGeNT are lower
than those observed by DAMA, and the reduced mass of germanium is higher than that of
sodium, the typical velocities of particles observed by CoGeNT are significantly lower than
those of DAMA, further suppressing the overall scattering rate in CoGeNT, and further
shifting the CoGeNT region up relative to DAMA. The relative importance of these e↵ects
and the amount that it improves the agreement between DAMA and CoGeNT is a question
we address in detail in this paper.

The types of models in which the anapole and magnetic moment operators dominate
the scattering are not hard to construct. For a Majorana particle scattering through a
vector mediator, for example, O = �̄�

µ

�N̄�

µ

N vanishes, and one expects the anapole to
be the dominant contribution. For Dirac particles, one can explicitly construct models
where the coupling of the DM particles is purely axial. Likewise, the DM can have a
large magnetic moment when constituents charged under a dark force are bound into a
neutral state. Because the rates are velocity and momentum suppressed, the corresponding
scattering cross-section must be large. This can be accommodated with a light mediator
which is weakly coupled to Standard Model particles. We discuss a model where the large
cross-section generates both the observed rate and is consistent with the results of null
experiments.

The outline of this paper is as follows. In the next section we lay out the rates for standard
spin-independent scattering and for the anapole and magnetic dipole operators. We then
turn to discussing the e↵ect of the experimental uncertainties on standard spin-independent,
anapole and magnetic dipole scattering cases, and show how, properly accounting for these
uncertainties, we can bring the two results into better agreement. We focus in particular on
the sodium quenching factor, xenon prompt photon (S1) to nuclear recoil conversion factor
Le↵ , the stochasticity of photo-electrons in XENON10, and the systematic uncertainty in
the CDMS-Si energy threshold. Lastly, we discuss models that generate the observed event
rates, and conclude.

II. SCATTERING RATES

We begin by reviewing the standard scattering rates and then turn to a discussion of the
anapole and dipole rates. The rate for scattering is

dR

dE

R

= N

T

⇢

�

m

�

Z

|~v|>vmin

d

3
vvf(~v,~v

e

)
d�

dE

R

, (5)

where

v

min

=

p
2m

N

E

R

2µ
N

, (6)

4

f ⇠ 1

(⇡v0)3/2
e�v2/v2

0Maxwell-Boltzmann 
distribution:

d�

dER
=

mN�N

2µ2
Nv2



Apply to scattering 
through Z boson

�N =
m2

DMm2
N

4⇡(mDM +mN )2
(Zfp + (A� Z)fn)2

m4
Z

�N = �p
µ2
N

µ2
n

(Zfp + (A� Z)fn)2

f2
p

F 2(ER)

The maximum momentum transfer depositable in the detector is 2µ
N

v, where µ
N

is the DM-
nucleus reduced mass. Since the typical momentum transfers observed by CoGeNT are lower
than those observed by DAMA, and the reduced mass of germanium is higher than that of
sodium, the typical velocities of particles observed by CoGeNT are significantly lower than
those of DAMA, further suppressing the overall scattering rate in CoGeNT, and further
shifting the CoGeNT region up relative to DAMA. The relative importance of these e↵ects
and the amount that it improves the agreement between DAMA and CoGeNT is a question
we address in detail in this paper.

The types of models in which the anapole and magnetic moment operators dominate
the scattering are not hard to construct. For a Majorana particle scattering through a
vector mediator, for example, O = �̄�

µ

�N̄�

µ

N vanishes, and one expects the anapole to
be the dominant contribution. For Dirac particles, one can explicitly construct models
where the coupling of the DM particles is purely axial. Likewise, the DM can have a
large magnetic moment when constituents charged under a dark force are bound into a
neutral state. Because the rates are velocity and momentum suppressed, the corresponding
scattering cross-section must be large. This can be accommodated with a light mediator
which is weakly coupled to Standard Model particles. We discuss a model where the large
cross-section generates both the observed rate and is consistent with the results of null
experiments.

The outline of this paper is as follows. In the next section we lay out the rates for standard
spin-independent scattering and for the anapole and magnetic dipole operators. We then
turn to discussing the e↵ect of the experimental uncertainties on standard spin-independent,
anapole and magnetic dipole scattering cases, and show how, properly accounting for these
uncertainties, we can bring the two results into better agreement. We focus in particular on
the sodium quenching factor, xenon prompt photon (S1) to nuclear recoil conversion factor
Le↵ , the stochasticity of photo-electrons in XENON10, and the systematic uncertainty in
the CDMS-Si energy threshold. Lastly, we discuss models that generate the observed event
rates, and conclude.

II. SCATTERING RATES

We begin by reviewing the standard scattering rates and then turn to a discussion of the
anapole and dipole rates. The rate for scattering is

dR

dE

R

= N

T

⇢

�

m

�

Z

|~v|>vmin

d

3
vvf(~v,~v

e

)
d�

dE

R

, (5)

where

v

min

=

p
2m

N

E

R

2µ
N

, (6)

4

2 3 4 5 6 7 8

0.

0.01

0.02

0.03

E HkeVeeL

S m
Hcpd
êkgê

ke
V
L

0.5 1.0 1.5 2.0
0
5
10
15
20
25

E HkeVeeL

N

FIG. 7: The spectra observed at DAMA (left) and CoGeNT (right) for a benchmark magnetic

dipole scattering with m
�

= 6.4 GeV, �̃ = 1.9 ⇥ 10�33 cm2. The rate is corrected for CoGeNT

e�ciencies, and these e�ciencies are the reason for the drop in the rate in the lowest bin; the

uncorrected rate continues to rise there. In the right panel, the black solid line is the total predicted

event rate including signal and background, whereas the red dashed line shows just the signal rate.

constraints of XENON10, even taking the stochasticity into account.

V. SUMMARY

We have studied the implications of experimental uncertainties and non-standard velocity
dependence on the agreement of CoGeNT and DAMA both with each other and with the
results of the null experiments. While some marginal agreement can be obtained between
the two experiments when the sodium quenching factor is pushed to Q

Na

= 0.45 and the
CDMS-Si energy threshold is assumed to have a systematic error of 20% (assumed to be too
low), optimal achievement between the two regions is not obtained for the standard spin-
independent case. Agreement can be improved by choosing a di↵erent velocity dependence,
and in particular the magnetic dipole operator gives optimal agreement with all experiments.
Simple models were constructed where velocity and momentum dependent cross-sections are
expected to dominate, and it was shown that acceptably large cross-sections can be obtained.

While the DAMA and CoGeNT signals can be consistent with each other and the
results of null experiments, large theoretical and experimental uncertainties limit our current
understanding of the signals and their consistency with models. As we are learning, in an
age of DM discovery, we must systematically quantify errors on theoretical and experimental
parameters to determine whether a given DM model is consistent with the signals and with

15
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search
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What about neutralino?

2 component fermion       Majorana fermion

Possible operators, four Fermi, V-A structure:

SI vanishes identically; others are SD or 
velocity suppressed

OSI = (�̄�µ�)(q̄�
µq) = 0

Ovel dep. = (�̄�µ�5�)(q̄�
µq)

OSD = (�̄�µ�5�)(q̄�
µ�5q)

�



Higgs Scattering

So neutralino is safe from 
Z-pole scattering

It scatters predominantly 
through Higgs boson

Higgs boson coupling to 
nucleon comes 
predominantly through a 
loop

q q

H, h

χ χ

q~

q q

χ χ

Figure 44: Tree level Feynman diagrams for neutralino-quark scalar (spin-independent)
elastic scattering. From Ref. [319].

C Elastic Scattering Processes

C.1 Scalar Interactions

Consider a WIMP with scalar interactions with quarks given by

Lscalar = aqχ̄χq̄q, (197)

where aq is the WIMP-quark coupling. Then the scattering cross section for
the WIMP off of a proton or neutron is given by

σscalar =

∫ 4m2
rv2

0

dσ(v = 0)

d|v⃗|2
=

4m2
r

π
f2

p,n, (198)

where v is the relative velocity of the WIMP, mr is the reduced mass of the
nucleon (mr ≃ mp,n for WIMPs heavier than ∼ 10 GeV) and fp,n is the WIMP
coupling to protons or neutrons, given by

fp,n =
∑

q=u,d,s

f (p,n)
Tq aq

mp,n

mq
+

2

27
f (p,n)

TG

∑

q=c,b,t

aq
mp,n

mq
, (199)

where f (p)
Tu = 0.020 ± 0.004, f (p)

Td = 0.026 ± 0.005, f (p)
Ts = 0.118 ± 0.062, f (n)

Tu =

0.014 ± 0.003, f (n)
Td = 0.036 ± 0.008 and f (n)

Ts = 0.118 ± 0.062 [209]. f (p,n)
TG is

related to these values by

f (p,n)
TG = 1 −

∑

q=u,d,s

f (p,n)
Tq . (200)

The term in Eq. 199 which includes f (p,n)
TG results from the coupling of the WIMP

to gluons in the target nuclei through a heavy quark loop. The couplings of
squarks and Higgs bosons to heavy quarks leads to a loop level coupling of the
WIMP to gluons [276, 61, 323]. Such diagrams are shown in Fig. 45.

To attain the scalar cross section for a WIMP scattering off of a target
nucleus, one should sum over the protons and neutrons in the target:

σ =
4m2

r

π

(
Zfp + (A − Z)fn

)2

, (201)
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Figure 45: Feynman diagrams for neutralino-gluon scalar (spin-independent) elastic
scattering. Notice that no tree level processes exist. From Ref. [319].

where Z and A − Z are the numbers of protons and neutrons in the nucleus,
respectively.

The above expression is valid only at zero momentum transfer between the
WIMP and the nucleon. For finite momentum transfer, the differential cross
section must be multiplied by a nuclear form factor. The appropriate factor,
called the Woods-Saxon form factor, is given by [221]

F (Q) =

(
3j1(qR1)

qR1

)2

exp[−(qs)2], (202)

where j1 is the first spherical bessel function and the momentum transferred
is q =

√
smNQ. R1 is given by

√
R2 − 5s2, where R and s are approximately

equal to 1.2 fmA1/3 and 1 fm, respectively.
Although less accurate than the Woods-Saxon form factor, the following

simple form factor is sometimes used in its place [17, 240]:

F (Q) = exp[−Q/2Q0]. (203)

Here, Q is the energy tranferred from the WIMP to the target and Q0 =
1.5/(mNR2

0) where R0 = 10−13 cm [0.3 + 0.91(mN/GeV)1/3].
In the context of neutralino scattering, the value of aq can be calculated

from the parameters of the MSSM [248, 459, 197, 196]. Following Ref. [209], aq
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fp,n
mp,n

=
X

q=u,d,s

fp,n
Tq

yq
mq

+
2

27
fp,n
TG

X

q=c,b,t

yq
mqShifman, Vainshtein, Zakharov, 
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Higgs Scattering

Scattering cross-section depends on DM 
coupling to Higgs; structure of Higgs boson 
sector.

MSSM has two Higgses,     and

Ratio of vevs

Cross-section:

tan� =
vu
vd

mu,c,t = yu,c,tvu md,s,b = yd,s,bvd

Hu Hd

2

fp
u = 0.020, fp

d = 0.026, fp
s = 0.118, fn

u = 0.014, fn
d =

0.036, fn
s = 0.118 [17]. Note the value of the strange quark

content of the nucleon has a large effect on the cross section.
For example, taking the value of the strange quark content
as in [18], as motivated by recent lattice determinations, the
scattering cross sections become smaller by a factor of 2.

The neutralino masses and mixings depend on tan� =

vu/vd, µ, and the soft gaugino masses M1 and M2. The
scattering cross section is a function of the bino, wino and
Higgsino fractions of the neutralino, decomposed as �0

=

ZB
˜B + ZW

˜W + Zd
˜Hd + Zu

˜Hu. The masses of the lightest
CP even Higgs bosons, mh and mH , and the coupling of the
Higgs to the quarks, as determined by tan� and ↵, the Higgs
mixing angle, are also important. Higgsino fractions are found
by diagonalizing the neutralino mass matrix. For reference,
the (tree level) CP even Higgs masses are given through the
relations to the CP odd Higgs mass mA:

m2
h,H =

1

2

�
m2

A +m2
Z

⌥
q
(m2

A �m2
Z)

2
+ 4m2

Zm
2
A sin

2
2�

◆

m2
H± = m2

A +m2
W . (3)

At tree level, relevant parameters for the LSP and Higgs
sector phenomenology are tan�, M1, µ, MA, M2. Tak-
ing loop corrections into account, At and sfermion masses
also enter. We use Pythia 6.4 [19] to calculate spectra and
branching ratios where necessary. For large tan� and light
Higgs region, we find the scattering cross section

�n ⇡ 8.3⇥ 10

�42 cm2

✓
Zd

0.4

◆2 ✓
tan�

30

◆2 ✓
100 GeV

mH

◆4

⇥ 1

(1 +�mb)
2
, (4)

where we have taken the expression from [17] and added im-
portant corrections from the shifts in the b mass from super-
partner loops, which can be O(1) at large tan�[20]. These
modify the Yukawa coupling as yb ! yb(1 + �mb)

�1. We
quantify the exact size of these corrections below. At large
tan�, the cross section Eq. (4) agrees numerically with Mi-
crOMEGAs [21, 22] within a few percent. At somewhat
smaller tan� (as will be preferred by B decays, see below),
this formula is good to 10%. We see that CoGeNT is push-
ing the limits of the MSSM. To obtain a large enough scatter-
ing cross section we require a light Higgs, a substantial Hig-
gsino fraction of the lightest neutralino, and large tan� to en-
hance the couplings of the Higgs to the nucleon. The lighter
Higgs H is mostly a down type, and is nearly degenerate with
the pseudoscalar Higgs A, as can be seen from Eq. (3). The
charged Higgs also is light. While the near exact degeneracy
of the A and the lighter H is modified at the loop level, the
correction is typically small – in a numerical scan, covering
the region 350 GeV < Mf̃ < 2 TeV, |A| <2 TeV, M3 < 2
TeV, |µ| <300 GeV, but specializing to 20 < tan� < 30,

we find a maximum correction to the degeneracy no larger
than 5%. Similarly, the tree level relation between the pseu-
doscalar and charged Higgs mass is a good approximation,
with a maximum correction of 5%. It is often much smaller.

Since the Higgsino fraction of the neutralino should be
large to maximize the cross section, constraints from the in-
visible Z width are important. We impose the 2� constraint,
�(Z ! �0�0

) . 3 MeV [23]:

�(Z ! �0�0
) =

g2

4⇡

(Z2
u � Z2

d)
2

24c2w
MZ

"
1�

✓
2m�0

mZ

◆2
#3/2

.

(5)
where cw is the cosine of the weak mixing angle. This im-
plies a constraint, |Z2

u � Z2
d | . 0.13. While the scattering

cross section is not directly proportional to this combination,
when combined with the structure of the neutralino mass ma-
trix, it effectively implies a limit on Z2

d of 0.13. Cancellation
between Zu and Zd, which could allow Zd to be larger and
consistent with this constraint, occurs for small tan�. For
M1 ⌧ MZ ,M2, the Zd bound implies |µ| >⇠ 108 GeV.

Because the Higgs parameters are well-specified (low
mA0 , mH0 , mH+ and large tan�), it is possible to identify
several constraints. See [24] for a recent summary of similar
issues. Both direct production of the Higgs bosons and rare
decays are relevant.

First, the lightness of the charged Higgs opens the channel
t ! H+b. At tree level, and for moderate ( >⇠ 15) tan�, to
good approximation, the width is

�

tree
(t ! bH+

) =

g2mt

64⇡M2
W

✓
1� m2

H+

m2
t

◆2

m2
b tan

2 �,

(6)
where mb should be evaluated at the top mass, mb(mt) ⇡ 2.9
GeV. The corrections to the b-quark mass, �mb, change the
effective coupling of the charged Higgs (see e.g. [25]):

�

eff
(t ! bH+

) =

1

(1 +�mb)
2
�

tree
(t ! bH+

), (7)

We now quantify the size of the shift [20]:

�mb = (✏0 + y2t ✏Y ) tan�, (8)

with

✏0 =

2↵s

3⇡
M3µC0(m

2
b̃1
,m2

b̃2
,M2

3 ) (9)

✏Y =

1

16⇡2
AtµC0(m

2
t̃1
,m2

t̃2
, µ2

), (10)

where

C0(x, y, z) =
y log(y/x)

(x� y)(z � y)
+

z log(z/x)

(x� z)(y � z)
. (11)

It is possible to get good estimates for the experimentally
allowed ranges of ✏Y and ✏0. The limits from CDF, BR(Bs !

v2u + v2d = v2 = (246 GeV)2
q q

H, h

χ χ

q~

q q

χ χ

Figure 44: Tree level Feynman diagrams for neutralino-quark scalar (spin-independent)
elastic scattering. From Ref. [319].

C Elastic Scattering Processes

C.1 Scalar Interactions

Consider a WIMP with scalar interactions with quarks given by

Lscalar = aqχ̄χq̄q, (197)

where aq is the WIMP-quark coupling. Then the scattering cross section for
the WIMP off of a proton or neutron is given by

σscalar =

∫ 4m2
rv2

0

dσ(v = 0)

d|v⃗|2
=

4m2
r

π
f2

p,n, (198)

where v is the relative velocity of the WIMP, mr is the reduced mass of the
nucleon (mr ≃ mp,n for WIMPs heavier than ∼ 10 GeV) and fp,n is the WIMP
coupling to protons or neutrons, given by

fp,n =
∑

q=u,d,s

f (p,n)
Tq aq

mp,n

mq
+

2

27
f (p,n)

TG

∑

q=c,b,t

aq
mp,n

mq
, (199)

where f (p)
Tu = 0.020 ± 0.004, f (p)

Td = 0.026 ± 0.005, f (p)
Ts = 0.118 ± 0.062, f (n)

Tu =

0.014 ± 0.003, f (n)
Td = 0.036 ± 0.008 and f (n)

Ts = 0.118 ± 0.062 [209]. f (p,n)
TG is

related to these values by

f (p,n)
TG = 1 −

∑

q=u,d,s

f (p,n)
Tq . (200)

The term in Eq. 199 which includes f (p,n)
TG results from the coupling of the WIMP

to gluons in the target nuclei through a heavy quark loop. The couplings of
squarks and Higgs bosons to heavy quarks leads to a loop level coupling of the
WIMP to gluons [276, 61, 323]. Such diagrams are shown in Fig. 45.

To attain the scalar cross section for a WIMP scattering off of a target
nucleus, one should sum over the protons and neutrons in the target:

σ =
4m2

r

π

(
Zfp + (A − Z)fn

)2

, (201)

116



Higgs scattering cross-
section

Are there ways around?
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Figure 26. A compilation of WIMP-nucleon spin-independent cross section limits (solid curves), hints
for WIMP signals (shaded closed contours) and projections (dot and dot-dashed curves) for US-led direct
detection experiments that are expected to operate over the next decade. Also shown is an approximate
band where coherent scattering of 8B solar neutrinos, atmospheric neutrinos and di↵use supernova neutrinos
with nuclei will begin to limit the sensitivity of direct detection experiments to WIMPs. Finally, a suite of
theoretical model predictions is indicated by the shaded regions, with model references included.

We believe that any proposed new direct detection experiment must demonstrate that it meets at least one
of the following two criteria:

• Provide at least an order of magnitude improvement in cross section sensitivity for some range of
WIMP masses and interaction types.

• Demonstrate the capability to confirm or deny an indication of a WIMP signal from another experiment.

The US has a clear leadership role in the field of direct dark matter detection experiments, with most
major collaborations having major involvement of US groups. In order to maintain this leadership role, and
to reduce the risk inherent in pushing novel technologies to their limits, a variety of US-led direct search
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fp
u = 0.020, fp

d = 0.026, fp
s = 0.118, fn

u = 0.014, fn
d =

0.036, fn
s = 0.118 [17]. Note the value of the strange quark

content of the nucleon has a large effect on the cross section.
For example, taking the value of the strange quark content
as in [18], as motivated by recent lattice determinations, the
scattering cross sections become smaller by a factor of 2.

The neutralino masses and mixings depend on tan� =

vu/vd, µ, and the soft gaugino masses M1 and M2. The
scattering cross section is a function of the bino, wino and
Higgsino fractions of the neutralino, decomposed as �0

=

ZB
˜B + ZW

˜W + Zd
˜Hd + Zu

˜Hu. The masses of the lightest
CP even Higgs bosons, mh and mH , and the coupling of the
Higgs to the quarks, as determined by tan� and ↵, the Higgs
mixing angle, are also important. Higgsino fractions are found
by diagonalizing the neutralino mass matrix. For reference,
the (tree level) CP even Higgs masses are given through the
relations to the CP odd Higgs mass mA:

m2
h,H =

1

2

�
m2

A +m2
Z

⌥
q
(m2

A �m2
Z)

2
+ 4m2

Zm
2
A sin

2
2�

◆

m2
H± = m2

A +m2
W . (3)

At tree level, relevant parameters for the LSP and Higgs
sector phenomenology are tan�, M1, µ, MA, M2. Tak-
ing loop corrections into account, At and sfermion masses
also enter. We use Pythia 6.4 [19] to calculate spectra and
branching ratios where necessary. For large tan� and light
Higgs region, we find the scattering cross section

�n ⇡ 8.3⇥ 10

�42 cm2

✓
Zd

0.4

◆2 ✓
tan�

30

◆2 ✓
100 GeV

mH

◆4

⇥ 1

(1 +�mb)
2
, (4)

where we have taken the expression from [17] and added im-
portant corrections from the shifts in the b mass from super-
partner loops, which can be O(1) at large tan�[20]. These
modify the Yukawa coupling as yb ! yb(1 + �mb)

�1. We
quantify the exact size of these corrections below. At large
tan�, the cross section Eq. (4) agrees numerically with Mi-
crOMEGAs [21, 22] within a few percent. At somewhat
smaller tan� (as will be preferred by B decays, see below),
this formula is good to 10%. We see that CoGeNT is push-
ing the limits of the MSSM. To obtain a large enough scatter-
ing cross section we require a light Higgs, a substantial Hig-
gsino fraction of the lightest neutralino, and large tan� to en-
hance the couplings of the Higgs to the nucleon. The lighter
Higgs H is mostly a down type, and is nearly degenerate with
the pseudoscalar Higgs A, as can be seen from Eq. (3). The
charged Higgs also is light. While the near exact degeneracy
of the A and the lighter H is modified at the loop level, the
correction is typically small – in a numerical scan, covering
the region 350 GeV < Mf̃ < 2 TeV, |A| <2 TeV, M3 < 2
TeV, |µ| <300 GeV, but specializing to 20 < tan� < 30,

we find a maximum correction to the degeneracy no larger
than 5%. Similarly, the tree level relation between the pseu-
doscalar and charged Higgs mass is a good approximation,
with a maximum correction of 5%. It is often much smaller.

Since the Higgsino fraction of the neutralino should be
large to maximize the cross section, constraints from the in-
visible Z width are important. We impose the 2� constraint,
�(Z ! �0�0

) . 3 MeV [23]:

�(Z ! �0�0
) =

g2

4⇡

(Z2
u � Z2

d)
2

24c2w
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"
1�

✓
2m�0

mZ

◆2
#3/2

.

(5)
where cw is the cosine of the weak mixing angle. This im-
plies a constraint, |Z2

u � Z2
d | . 0.13. While the scattering

cross section is not directly proportional to this combination,
when combined with the structure of the neutralino mass ma-
trix, it effectively implies a limit on Z2

d of 0.13. Cancellation
between Zu and Zd, which could allow Zd to be larger and
consistent with this constraint, occurs for small tan�. For
M1 ⌧ MZ ,M2, the Zd bound implies |µ| >⇠ 108 GeV.

Because the Higgs parameters are well-specified (low
mA0 , mH0 , mH+ and large tan�), it is possible to identify
several constraints. See [24] for a recent summary of similar
issues. Both direct production of the Higgs bosons and rare
decays are relevant.

First, the lightness of the charged Higgs opens the channel
t ! H+b. At tree level, and for moderate ( >⇠ 15) tan�, to
good approximation, the width is

�

tree
(t ! bH+

) =

g2mt

64⇡M2
W

✓
1� m2

H+

m2
t

◆2

m2
b tan

2 �,

(6)
where mb should be evaluated at the top mass, mb(mt) ⇡ 2.9
GeV. The corrections to the b-quark mass, �mb, change the
effective coupling of the charged Higgs (see e.g. [25]):

�

eff
(t ! bH+

) =

1

(1 +�mb)
2
�

tree
(t ! bH+

), (7)

We now quantify the size of the shift [20]:

�mb = (✏0 + y2t ✏Y ) tan�, (8)

with

✏0 =

2↵s
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M3µC0(m

2
b̃1
,m2

b̃2
,M2

3 ) (9)

✏Y =
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16⇡2
AtµC0(m

2
t̃1
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t̃2
, µ2

), (10)

where

C0(x, y, z) =
y log(y/x)

(x� y)(z � y)
+

z log(z/x)

(x� z)(y � z)
. (11)

It is possible to get good estimates for the experimentally
allowed ranges of ✏Y and ✏0. The limits from CDF, BR(Bs !



Supersymmetry relates SM couplings to 
SUSY particle couplings

This fixes the interactions that can occur ....

A bit more about 
neutralino couplings

tL t†R

H0
u

(a)

t̃L t†R

H̃0
u

(b)

tL t̃∗R

H̃0
u

(c)

Figure 6.1: The top-quark Yukawa coupling (a) and its “supersymmetrizations” (b), (c), all of
strength yt.

t̃∗R t̃R

t̃L t̃∗L

(a)

t̃L t̃∗L

H0
u H0∗

u

(b)

t̃∗R t̃R

H0
u H0∗

u

(c)

Figure 6.2: Some of the (scalar)4 interactions with strength proportional to y2t .

Since the Yukawa interactions yijk in a general supersymmetric theory must be completely sym-
metric under interchange of i, j, k, we know that yu, yd and ye imply not only Higgs-quark-quark and
Higgs-lepton-lepton couplings as in the Standard Model, but also squark-Higgsino-quark and slepton-
Higgsino-lepton interactions. To illustrate this, Figures 6.1a,b,c show some of the interactions involving
the top-quark Yukawa coupling yt. Figure 6.1a is the Standard Model-like coupling of the top quark
to the neutral complex scalar Higgs boson, which follows from the first term in eq. (6.1.3). For variety,

we have used tL and t†R in place of their synonyms t and t (see the discussion near the end of section
2). In Figure 6.1b, we have the coupling of the left-handed top squark t̃L to the neutral higgsino field
H̃0

u and right-handed top quark, while in Figure 6.1c the right-handed top anti-squark field (known

either as t̃ or t̃∗R depending on taste) couples to H̃0
u and tL. For each of the three interactions, there is

another with H0
u → H+

u and tL → −bL (with tildes where appropriate), corresponding to the second
part of the first term in eq. (6.1.3). All of these interactions are required by supersymmetry to have
the same strength yt. These couplings are dimensionless and can be modified by the introduction of
soft supersymmetry breaking only through finite (and small) radiative corrections, so this equality of
interaction strengths is also a prediction of softly broken supersymmetry. A useful mnemonic is that
each of Figures 6.1a,b,c can be obtained from any of the others by changing two of the particles into
their superpartners.

There are also scalar quartic interactions with strength proportional to y2t , as can be seen from
Figure 3.1c or the last term in eq. (3.2.18). Three of them are shown in Figure 6.2. Using eq. (3.2.18)
and eq. (6.1.3), one can see that there are five more, which can be obtained by replacing t̃L → b̃L
and/or H0

u → H+
u in each vertex. This illustrates the remarkable economy of supersymmetry; there

are many interactions determined by only a single parameter. In a similar way, the existence of all
the other quark and lepton Yukawa couplings in the superpotential eq. (6.1.1) leads not only to Higgs-
quark-quark and Higgs-lepton-lepton Lagrangian terms as in the ordinary Standard Model, but also
to squark-higgsino-quark and slepton-higgsino-lepton terms, and scalar quartic couplings [(squark)4,
(slepton)4, (squark)2(slepton)2, (squark)2(Higgs)2, and (slepton)2(Higgs)2]. If needed, these can all be
obtained in terms of the Yukawa matrices yu, yd, and ye as outlined above.

However, the dimensionless interactions determined by the superpotential are usually not the most
important ones of direct interest for phenomenology. This is because the Yukawa couplings are already
known to be very small, except for those of the third family (top, bottom, tau). Instead, production
and decay processes for superpartners in the MSSM are typically dominated by the supersymmetric
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Figure 6.3: Couplings of the gluino, wino, and bino to MSSM (scalar, fermion) pairs.

interactions of gauge-coupling strength, as we will explore in more detail in sections 9 and 10. The
couplings of the Standard Model gauge bosons (photon, W±, Z0 and gluons) to the MSSM particles are
determined completely by the gauge invariance of the kinetic terms in the Lagrangian. The gauginos
also couple to (squark, quark) and (slepton, lepton) and (Higgs, higgsino) pairs as illustrated in the
general case in Figure 3.3g,h and the first two terms in the second line in eq. (3.4.9). For instance, each
of the squark-quark-gluino couplings is given by

√
2g3(q̃ T aqg̃+ c.c.) where T a = λa/2 (a = 1 . . . 8) are

the matrix generators for SU(3)C . The Feynman diagram for this interaction is shown in Figure 6.3a.
In Figures 6.3b,c we show in a similar way the couplings of (squark, quark), (lepton, slepton) and
(Higgs, higgsino) pairs to the winos and bino, with strengths proportional to the electroweak gauge
couplings g and g′ respectively. For each of these diagrams, there is another with all arrows reversed.
Note that the winos only couple to the left-handed squarks and sleptons, and the (lepton, slepton)
and (Higgs, higgsino) pairs of course do not couple to the gluino. The bino coupling to each (scalar,
fermion) pair is also proportional to the weak hypercharge Y as given in Table 1.1. The interactions
shown in Figure 6.3 provide, for example, for decays q̃ → qg̃ and q̃ → W̃ q′ and q̃ → B̃q when the final
states are kinematically allowed to be on-shell. However, a complication is that the W̃ and B̃ states
are not mass eigenstates, because of splitting and mixing due to electroweak symmetry breaking, as
we will see in section 8.2.

There are also various scalar quartic interactions in the MSSM that are uniquely determined by
gauge invariance and supersymmetry, according to the last term in eq. (3.4.12), as illustrated in Fig-
ure 3.3i. Among them are (Higgs)4 terms proportional to g2 and g′2 in the scalar potential. These are
the direct generalization of the last term in the Standard Model Higgs potential, eq. (1.1), to the case
of the MSSM. We will have occasion to identify them explicitly when we discuss the minimization of
the MSSM Higgs potential in section 8.1.

The dimensionful couplings in the supersymmetric part of the MSSM Lagrangian are all dependent
on µ. Using the general result of eq. (3.2.19), µ provides for higgsino fermion mass terms

− Lhiggsino mass = µ(H̃+
u H̃−

d − H̃0
uH̃

0
d ) + c.c., (6.1.4)

as well as Higgs squared-mass terms in the scalar potential

− Lsupersymmetric Higgs mass = |µ|2(|H0
u|2 + |H+

u |2 + |H0
d |2 + |H−

d |2). (6.1.5)

Since eq. (6.1.5) is non-negative with a minimum at H0
u = H0

d = 0, we cannot understand electroweak
symmetry breaking without including a negative supersymmetry-breaking squared-mass soft term for
the Higgs scalars. An explicit treatment of the Higgs scalar potential will therefore have to wait
until we have introduced the soft terms for the MSSM. However, we can already see a puzzle: we
expect that µ should be roughly of order 102 or 103 GeV, in order to allow a Higgs VEV of order
174 GeV without too much miraculous cancellation between |µ|2 and the negative soft squared-mass
terms that we have not written down yet. But why should |µ|2 be so small compared to, say, M2

P,
and in particular why should it be roughly of the same order as m2

soft? The scalar potential of the
MSSM seems to depend on two types of dimensionful parameters that are conceptually quite distinct,
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Figure 37: Tree level diagrams for neutralino annihilation into fermion pairs. From
Ref. [319].

B Neutralino Annihilation Cross Sections in the

Low Velocity Limit

In this appendix, we give the amplitudes and cross sections for the most impor-
tant neutralino annihilation channels in the low velocity limit (the first term in
the expansion σv = a + bv2 + ...). This is sufficient for indirect detection but
generally insufficient for relic density calculations in which velocity dependent
contributions are important. For a more complete list, with all S and P-wave
tree level annihilation amplitudes, see Refs. [195, 319, 397, 396, 106].

B.1 Annihilation Into Fermions

Neutralinos can annihilate to fermion pairs by three tree level diagrams [195,
213, 275, 276]. These processes consist of s-channel exchange of pseudoscalar
Higgs and Z0-bosons and t-channel exchange of sfermions (see Fig. 37).

The amplitude for pseudoscalar Higgs exchange is given by

AA = 4
√

2 g TA 11 hAff
1

4 − (mA/mχ)2 + i ΓAmA/m2
χ

. (164)

Here, mA is the pseudoscalar Higgs mass and ΓA is the pseudoscalar Higgs
width. TA 11 is the A0-neutralino-neutralino coupling and is given by

TA 11 = − sinβQ′′
1,1 + cosβS′′

1,1, (165)

where Q′′
1,1 = N3,1(N2,1 − tan θW N1,1) and S′′

1,1 = N4,1(N2,1 − tan θW N1,1).

N is the matrix which diagonalizes the neutralino mass matrix in the B̃-W̃ 3-
H̃0

1 -H̃0
2 basis, Mdiag

χ0 = N †Mχ0N (see Appendix A). θW is the Weinberg angle
and tanβ is the ratio of the Higgs vacuum expectation values. hAff is the
A0-fermion-fermion Yukawa coupling. For up-type fermions, this is given by

hAff = −
gmf cotβ

2mW±

. (166)

For down-type fermions, it is

hAff = −
gmf tanβ

2mW±

. (167)
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Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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FIG. 2. Upper limits on γ-ray flux from monochromatic line
signatures, derived from the CGH region (red arrows with
full data points) and from extragalactic observations (black
arrows with open data points). For both data sets, the solid
black lines show the mean expected limits derived from a large
number of statistically randomized simulations of fake back-
ground spectra, and the gray bands denote the corresponding
68% CL regions for these limits. Black crosses denote the flux
levels needed for a statistically significant line detection in the
CGH dataset.
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FIG. 3. Flux upper limits on spectral features arising from
the emission of a hard photon in the DM annihilation pro-
cess. Limits are exemplary shown for features of comparable
shape to those arising in the models BM2 and BM4 given in
[14]. The monochromatic line limits, assuming mχ = Eγ , are
shown for comparison.

20%, depending on the energy and the statistics in the
individual spectrum bins. The maximum shift is ob-
served in the extragalactic limit curve and amounts to
40%. In total, the systematic error on the flux upper
limits is estimated to be about 50%. All flux upper
limits were cross-checked using an alternative analysis
framework [24], with an independent calibration of cam-
era pixel amplitudes, and a different event reconstruction
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FIG. 4. Limits on the velocity-weighted cross section for DM
annihilation into two photons calculated from the CGH flux
limits (red arrows with full data points). The Einasto density
profile with parameters described in [20] was used. Limits ob-
tained by Fermi-LAT, assuming the Einasto profile as well, are
shown for comparison (black arrows with open data points)
[15].

and event selection method, leading to results well con-
sistent within the quoted systematic error.
For the Einasto parametrization of the DM density

distribution in the Galactic halo [20], limits on the
velocity-weighted DM annihilation cross section into γ
rays, ⟨σv⟩χχ→γγ , are calculated from the CGH flux limits
using the astrophysical factors given in [8]. The result is
shown in Fig. 4 and compared to recent results obtained
at GeV energies with the Fermi-LAT instrument.

SUMMARY AND CONCLUSIONS

For the first time, a search for spectral γ-ray signatures
at very-high energies was performed based on H.E.S.S.
observations of the central Milky Way halo region and ex-
tragalactic sky. Both regions of interest exhibit a reduced
dependency of the putative DM annihilation flux on the
actual DM density profile. Upper limits on monochro-
matic γ-ray line signatures were determined for the first
time for energies between ∼ 500GeV and ∼ 25TeV, cov-
ering an important region of the mass range of particle
DM. Additionally, limits were obtained on spectral sig-
natures arising from internal bremsstrahlung processes,
as predicted by the models BM2 and BM4 of [14]. It
should be stressed that the latter results are valid for
all spectral signatures of comparable shape. Besides, all
limits also apply for potential signatures in the spectrum
of cosmic-ray electrons and positrons.
Flux limits on monochromatic line emission from the

central Milky Way halo were used to calculate upper lim-
its on ⟨σv⟩χχ→γγ . Limits are obtained in a neutralino
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Treating Sommerfeld e↵ects at tree-level the ratio of cross
sections is given by the Sudakov form factors

�NLL+⇢⇢SE
�+��!X

�tree
�+��!X

= |⌃1|2,
�NLL+⇢⇢SE

�0�0!X

�tree
�+��!X

= |⌃1 � ⌃2|2 . (16)

This nonzero result for �0�0 ! ZZ, Z�, �� at short
distances starts at NLL in |⌃1 � ⌃2|2, and occurs be-
cause there is a Sudakov mixing between the W+W� and
W 3W 3 from soft gauge boson exchange. This is similar
in spirit to the Sommerfeld mixing of the initial states.

In Fig. 1 we plot |⌃1|2 and |⌃1 �⌃2|2 as a function of
m�. To obtain theoretical uncertainty bands we use the
residual scale dependence at LL and NLL obtained by
varying µm� = [m�, 4m�] and µZ = [mZ/2, 2mZ ]. The
one-loop fixed order results of [5] are within our LL un-
certainty band. Our NLL result yields precise theoretical
results for these electroweak corrections. To test our un-
certainties we added non-logarithmic O(↵2) corrections
to C1,2(µm�), of the size found in [5], and noted that the
shift is within our NLL uncertainty bands.

Indirect Detection Phenomenology Combining
Eqs. 8 and 14 with the standard Sommerfeld enhance-
ment (SE) factors s00 and s0±, we can now compute
the total cross section for annihilation to line photons
at NLL+SE and compare to existing limits from indirect
detection. We sum the rates of photon production from
�0�0 ! ��, �Z, as the energy resolution of current in-
struments is typically comparable to or larger than the
spacing between the lines (see e.g. [6] for a discussion).

In Fig. 2 we display our results for the line cross sec-
tions calculated at LL+SE and NLL+SE. Our theoretical
uncertainties are from µm� variation. (The µZ variations
are very similar. Since both cases are dominated by the
variation of the ratio of the high and low scales we do

not add them together.) In the left panel we compare to
earlier cross section calculations, including “Tree-level +
SE” where Sudakov corrections are neglected, the “One-
loop fixed-order” cross section where neither Sommer-
feld or Sudakov e↵ects are resummed (taken from [7]),
and the calculation in [5] where Sommerfeld e↵ects are
resummed but other corrections are at one-loop. At low
masses, our results converge to the known ones (except [5]
which focused on high masses and omits a term that be-
comes leading-order at low masses). At high masses, our
NLL+SE result provides a sharp prediction for the anni-
hilation cross section with ' 5% theoretical uncertainty.

In the right panel of Fig. 2 we compare the NLL cross
section to existing limits from H.E.S.S [23] and projected
ones from CTA. In the latter case we follow the prescrip-
tion of [6], based on [24], and in both cases we assume an
NFW profile with local DM density 0.4 GeV/cm3. We
assume here that the �0 constitutes all the DM due to a
non-thermal history (the limits can be straightforwardly
rescaled if it constitutes a subdominant fraction of the
total DM). For this profile, we see that H.E.S.S already
constrains models of this type for masses below ⇠ 4 TeV,
consistent with the results of [6] (which employed the
tree-level+SE approximation), and that five hours of ob-
servation with CTA could extend this bound to ⇠ 10
TeV. Any constraint on the line cross section should be
viewed as a joint constraint on the fundamental physics
of DM and the distribution of DM in the Milky Way [25].

The method we developed here allows systematically
improvable e↵ective field theory techniques to be applied
to DM, and enabled us to obtain NLL+SE predictions for
the DM annihilation cross section to photon lines. This
enables precision constraints to be placed on DM.

Note added: As our paper was being finalized two pa-
pers appeared [26, 27] which also investigate DM with
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Figure 38: Tree level diagrams for neutralino annihilation into gauge boson pairs.
From Ref. [319].

U =

(
cosφ− − sinφ−
sinφ− cosφ+

)
(181)

and

V =

(
cosφ+ − sinφ+

sinφ+ cosφ−

)
, (182)

where

tan 2φ− = 2
√

2mW
(µ sinβ + M2 cosβ)

(M2
2 − µ2 + 2m2

W cos 2β)
(183)

and

tan 2φ+ = 2
√

2mW
(µ cosβ + M2 sinβ)

(M2
2 − µ2 − 2m2

W cosβ)
. (184)

The amplitude for annihilations to Z0-pairs is similar:

A(χχ→ Z0Z0)v→0 = 4
√

2 βZ
g2

cos2 θW

4∑

n=1

(
O′′L

1,n

)2 1

Pn
. (185)

Here, βZ =
√

1 − m2
Z/m2

χ, and Pn = 1 + (mχn/mχ)2 − (mZ/mχ)2. The sum is

over neutralino states. The coupling O′′L
1,n is given by 1

2 (−N3,1N∗
3,n +N4,1N∗

4,n).
The low velocity annihilation cross section for this mode is then given by

σv(χχ → GG)v→0 =
1

SG

βG

128πm2
χ

|A(χχ → GG)|2, (186)

where G indicates which gauge boson is being considered. SG is a statistical
factor equal to one for W+W− and two for Z0Z0.

It is useful to note that pure-gaugino neutralinos have a no S-wave annihi-
lation amplitude to gauge bosons. Pure-higgsinos or mixed higgsino-gauginos,
however, can annihilate efficiently via these channels, even at low velocities.
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While wino and Higgsino may be constrained 
by indirect detection, bino escapes

But, even bino has Higgsino component set by 

Require                        to get rid of 
Higgsino component

Same parameter enters into Z boson mass

Pure bino DM escapes

determine the phase of µ. Taking |µ|2, b, m2
Hu

and m2
Hd

as input parameters, and m2
Z and tan β as

output parameters obtained by solving these two equations, one obtains:

sin(2β) =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
, (8.1.10)

m2
Z =

|m2
Hd

−m2
Hu

|
√
1− sin2(2β)

−m2
Hu

−m2
Hd

− 2|µ|2. (8.1.11)

(Note that sin(2β) is always positive. If m2
Hu

< m2
Hd

, as is usually assumed, then cos(2β) is negative;
otherwise it is positive.)

As an aside, eqs. (8.1.10) and (8.1.11) highlight the “µ problem” already mentioned in section 6.1.
Without miraculous cancellations, all of the input parameters ought to be within an order of magnitude
or two of m2

Z . However, in the MSSM, µ is a supersymmetry-respecting parameter appearing in
the superpotential, while b, m2

Hu
, m2

Hd
are supersymmetry-breaking parameters. This has lead to a

widespread belief that the MSSM must be extended at very high energies to include a mechanism that
relates the effective value of µ to the supersymmetry-breaking mechanism in some way; see sections
11.2 and 11.3 and ref. [66] for examples.

Even if the value of µ is set by soft supersymmetry breaking, the cancellation needed by eq. (8.1.11)
is often remarkable when evaluated in specific model frameworks, after constraints from direct searches
for the Higgs bosons and superpartners are taken into account. For example, expanding for large tan β,
eq. (8.1.11) becomes

m2
Z = −2(m2

Hu
+ |µ|2) + 2

tan2 β
(m2

Hd
−m2

Hu
) +O(1/ tan4 β). (8.1.12)

Typical viable solutions for the MSSM have −m2
Hu

and |µ|2 each much larger than m2
Z , so that signifi-

cant cancellation is needed. In particular, large top squark squared masses, needed to avoid having the
Higgs boson mass turn out too small [see eq. (8.1.25) below] compared to the direct search limits from
LEP, will feed into m2

Hu
. The cancellation needed in the minimal model may therefore be at the several

per cent level, or worse. It is impossible to objectively characterize whether this should be considered
worrisome, but it certainly causes subjective worry as the LHC bounds on superpartners increase.

Equations (8.1.8)-(8.1.11) are based on the tree-level potential, and involve running renormalized
Lagrangian parameters, which depend on the choice of renormalization scale. In practice, one must
include radiative corrections at one-loop order, at least, in order to get numerically stable results. To
do this, one can compute the loop corrections ∆V to the effective potential Veff(vu, vd) = V +∆V as a
function of the VEVs. The impact of this is that the equations governing the VEVs of the full effective
potential are obtained by simply replacing

m2
Hu

→ m2
Hu

+
1

2vu

∂(∆V )

∂vu
, m2

Hd
→ m2

Hd
+

1

2vd

∂(∆V )

∂vd
(8.1.13)

in eqs. (8.1.8)-(8.1.11), treating vu and vd as real variables in the differentiation. The result for ∆V has
now been obtained through two-loop order in the MSSM [135, 188]. The most important corrections
come from the one-loop diagrams involving the top squarks and top quark, and experience shows that
the validity of the tree-level approximation and the convergence of perturbation theory are therefore
improved by choosing a renormalization scale roughly of order the average of the top squark masses.

The Higgs scalar fields in the MSSM consist of two complex SU(2)L-doublet, or eight real, scalar
degrees of freedom. When the electroweak symmetry is broken, three of them are the would-be Nambu-
Goldstone bosons G0, G±, which become the longitudinal modes of the Z0 and W± massive vector
bosons. The remaining five Higgs scalar mass eigenstates consist of two CP-even neutral scalars h0
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When Should We Start 
Looking Elsewhere?

Cannot kill neutralino DM via direct 
detection, but paradigm does become 
increasingly tuned

Somewhat below Higgs pole -- Neutrino 
background?

Well-motivated candidates that are much 
less costly to probe

We will talk about alternative models later



Summary

We have some good ideas about the DM 
sector.  A couple of directions have become 
very well developed: SUSY and axions

New ideas and corresponding search 
strategies have developed.  

Important to keep searches and ideas as 
broad and inclusive as possible


