Introduction to the Integrated Circuit Verification Process and RD53C Results

OUTLINE

 $\,\circ\,$ Introduction to the UVM

o RD53C Chip and its Verification Framework

 $\,\circ\,$ SEE Verification Flow and Environment

Universal Verification Methodology (UVM)

- Methodology for writing testbenches
- Open-source standard written in SystemVerilog
- Compatible and portable
- Development of well constructed and reusable verification environment

UVM codifies best practices for efficient verification.

- Constrained-random verification central to UVM
- Metric-driven verification

Verification Planning

Verification Plan:

- Features of the DUT are identified and prioritized for verification
- Define high-level verification goals: Coverage model

18/01/2023

ER

Metric-Driven Verification

- Implementation of Verification Environment
 - Generate and apply constrained-random stimuli
 - Coverage model and monitors
 - Checkers
- Simulation
- Collect and review coverage
- Annotate coverage results back onto verification plan or/and verification environment
- Run further tests to close coverage holes
- Coverage goal is 100%

18/01/2023

Coverage Metrics

Code Coverage

- how much the RTL code is exercised
- different metrics (statement, toggle, FSM, ...)
- automatically extracted by a simulator when enabled

Functional coverage

- how much design functionality has been exercised
- defined by verification engineers in the form of a functional coverage model

Effective verification planning is a combination of:

- Code coverage
- Functional coverage
- Automated checking

UVM Agent

Agent:

- Conventional way to structure the verification environment
- Agent provides protocol-specific stimuli creation, checking, and coverage
- Typically models either a master or slave component (in a bus-based environment)

Transaction Level Modeling (TLM)

AGENT				
ACTIVE	Config			
Sequence	PASSIVE			
Sequencer				
	Monitor			
Driver				
vif	U vif			

UVC

- Complete interface encapsulation level (multiple agents)
- Key building block in a verification environment
- Environment for a specific protocol
- Simplified integration
- Large-scale reuse

Virtual Interface

- Must be tied to their real counterparts
- Pointer to real interface

UVM Environment

Virtual Sequencer:

- Central control over multiple UVCs
- Not attached to a driver
- Does not process items itself
- Coordinating execution of other sequences via handles

Scoreboard:

- A central element of a self-checking environment
- Verifies operation of a design at a functional level
- Track transaction level activity

Test and Environment:

- Single environment can be used by multiple tests
- Tests are not reusable (specific environment structure)
- Separating a test from the rest of a reusable environment

UVM Phases

- Simulation goes through different stages that arise from DUT behavior
- Reusable verification components might define different testbench activities for each stage

UVM Phases are a synchronizing mechanism for the environment

Reset: reset related activities Config: device configurations Main: sequences execution Shutdown: graceful termination of the tests

Run Tests

- Run tests after every RTL update
- Regression managers
 - Run test, automate coverage viewing, merging and analysis
- Close coverage
 - Use code coverage as a safety net to balance the functional coverage
- Sign off
 - A clean regression
 - Reach the coverage goal

Quick Introduction to the RD53C

Chip periphery

- Analog Chip Bottom (ACB): analog and mixed/signals building block for Calibration, Bias, Monitoring and Clock/Data recovery
- Digital Chip Bottom (DCB): synthesized digital logic
- Padframe: I/O blocks with ESD protections, ShuntLDO for serial powering

Conceptual depiction:

Design requirements:

- High hit rate 3 GHz/cm²
- High trigger rate 1 MHz/750 kHz
- Hostile radiation environment: 1 Grad over 10 years, 10¹⁶ hadrons/cm²
- Low power, Serial powering
- High SEE tolerance capability to assure reliable chip operation in the HL-LHC

Jelena Lalic <jelena.lalic@cern.ch>

ERN

RD53 Verification Framework

Use of UVM concepts

Command Agent

- Translates the requests into one or multiple commands on a command decoder input interface
- Respects priorities

Hit Agent

- Generate random hits (pixel address and ToT) or from a CSV file
- Several hit distributions supported

RD53 Verification Framework

Aurora UVC

- Slave agent (receives data)
- Master agent (data merging)
- Protocol monitor
- Process service frames and data frames

Reference model

- Predict events
- Receive hits and triggers

Scoreboard

- Receive predictions from the Reference Model
- Receive data readouts from the DUT
- Tracks and reports readout events and hits

Jelena Lalic <jelena.lalic@cern.ch>

18/01/2023

RD53 Reference Model

- TL model
 - Receives the same hits as the DUT
 - Receives the same commands as the DUT
 - Trigger, Clear, ReadTrigger, GlobalPulse
 - Filters hits according to pixel configuration
 - Reacts to triggers accordint to GCR values
 - Uses the register model
- Scoreboard
 - Receives predictions from ref model
 - Receives events from DUT (through Aurora UVC)

RD53 Tests

Smoke and Sanity Test

- Used to validate the TB itself rather than the DUT
- Random Test
 - Constrained randomization of all sequences
- Calibration Test
 - Random Calibration commands
- StandardCase Test
 - Default Pixel and Global conf; 3.5GHz/cm2 hit rate and 1kHz trigger rate
 - Random hits and triggers
- RandomSEETest
 - Random Test with SEE UVC
- Directed Tests (e.g. BlackEventTest)

Tests are grouped to create a regression Collected metrics are refined

Vmanager Regression Framework Example

Tests Hierarchy				🗗 🗕 🧮 List Tabs 🛛 StandardTest		8 L +	
Name	Overall Average Grade	Overall Covered	Test Status	Errors		Tests Hier	archy
(no filter)	(no filter)	(no filter)	(no filter)	Name	Description		
🔺 🧝 Test-Case Model	97.87%	1101 / 1132 (97.26%)	97.26%	A (a = filter)	(ma film	* 🙆 Runs	
🔺 💮 default	97.87%	1101 / 1132 (97.26%)	97.26%		(no filte		
🔺 📄 regression	97.87%	1101 / 1132 (97.26%)	97.26%		LOST EVENT: TAG HOD with 0 hits (E)		
🔺 💼 elaborate	✓ 100%	1 / 1 (100%)	100%		LOST EVENT: TAG hoa with 0 hits (E)		
= elab	✓ 100%	1 / 1 (100%)	100%		LOST EVENT: TAG 100 with 0 hits (E)	/ REGULAR) BX 0/015228 T	
🔺 🕞 simulate	95.73%	1100 / 1131 (97.26%)	97.26%		LOST EVENT: TAG 100 with 0 hits (E)		
SmokeTest	✓ 100%	1 / 1 (100%)	100%		IIIII OST EVENTS (6)IIII	_REGOLAR) BX 90307990 1	
SanityTest	✓ 100%	10 / 10 (100%)	100%	A LOST_EVENTS	IIIIIEOST EVENTS (0)IIIII		
CalibrationTest	97%	97 / 100 (97%)	97%				
EfusesTest	90%	9 / 10 (90%)	90%				
StandardTest	90%	9 / 10 (90%)	90%				
				Metrics S	ource Attributes		
				Ex UNR Name		Overall Average Grade	Overall Covered
Showing 12 items				4 = 0	verall	94.44%	33/35/94.29
Runs StandardTest				8 _ C			07/00/07/2011
💀 - 📭 - 📰 📓 - 💷 - 🔤				4 8	Code	88.89%	27/29 (93.1%)
Index Name	Status	Duration Top Files	Start Time	T	Block	✓ 100%	20 / 20 (100%)
(no filter) (no filter)	(no filter)	(sec.) · (no filter)	(no filter)	×	Statement	n/a	n/a
132 O /regression/simulate/StandardTest	Ø passed	2160 n/a	11/25/22 8:51 F	PM A	Expression	77.78%	7/9(77.78%)
131 🔘 /regression/simulate/StandardTest	📀 passed	816 n/a	11/25/22 8:49	PM	Togolo	- /-	0 / 0 /=/=)
130 🔘 /regression/simulate/StandardTest	📀 passed	1921 n/a	11/25/22 8:47	PM	- loggie	n/a	070(n/a)
128 🔘 /regression/simulate/StandardTest	🕗 passed	1408 n/a	11/25/22 8:45	PM	FSM	n/a	0/0(n/a)

/regression/simulate/StandardTest 📀 passed 1136 n/a 11/25/22 8:45 PM /regression/simulate/StandardTest 😮 failed 1448 11/25/22 8:43 PM n/a 11/25/22 8:42 PM /regression/simulate/StandardTest 🕗 passed 896 n/a /regression/simulate/StandardTest 🙆 passed 590 n/a 11/25/22 8:41 PM /regression/simulate/StandardTest 🙆 passed 641 11/25/22 8:40 PM n/a /regression/simulate/StandardTest 1900 11/25/22 8:40 PM 🕗 passed n/a

129

127

126

125

124

123

Jelena Lalic <jelena.lalic@cern.ch>

🔺 🚼 Functional

FaultNode

Assertion

CoverGroup

CERN

6/6(100%)

6/6(100%)

0/0(n/a)

0/0(n/a)

100%

100%

n/a

n/a

RD53 Gate Level Verification

Complementary to RTL verification

- Find timing violations escaped to STA
- Verify asynchronous circuits with real delays

Run with minimal set of seeds extracted from RTL regressions

- Requires RTL regressions to be complete
- Defining a minimal set of random seeds that will fully exercise the DUT
- Requires lots of computational resources and time

SEE mitigation in the RD53

- Each pixel has a configuration register
- Critical configuration bits are protected
- SEU here has a limited effect
- Continuous reconfiguration by the DAQ is needed

- Global configuration critical for the optimal chip functionality
- SEU and SET protection (triplicated clock, time skew)

Very complex chip:

~500 millions transistors: ATLAS: 153 600 pixels SEU rate in the inner layer: ~100 Hz/chip Can we protect everything?

No

Many pixels, huge storage, complex data path –Protecting everything would cause huge power and area overhead.

What is done:

- Only critical information in the data path is protected (state machines, buffer pointes, critical event info.)
- Pixel configuration and global configuration registers have TMR protection
- Critical blocks in the ACB are optimized for SETs (PLL, LVDS receiver, CML driver, biasing blocks)

What is the target behaviour:

- Occasional hit/event is allowed to be lost
- Need to recover without power cycling

18/01/2023

RD53 SEE Verification Strategy

FAULT CAMPAIGN 1: Goal:

Verify that SEUs in untriplicated logic will not require a clear or PLL reset or power cycling. Hit losses and event losses are expected and tolerated

Fault injection scope: SEU in non-triplicated flops SEU @ RTL

FAULT CAMPAIGN 2:

Goal:

Verify that all logic which is intended to be triplicated is correctly triplicated

Fault injection scope: SEU in triplicated flops SEU @ Gate Level

FAULT CAMPAIGN 3: Goal:

Verify that the chip selfrecovers from the long SETs and that no critical behavior is observed

Fault injection scope: SET on the clock network SET @ Gate Level

Faultable Target Generation

18/01/2023

SEE UVC

SEE sequence

- Controls fault injections
- Randomly selects a node and the time for the SEE injection
- Modelling a SEU
 - value of the sequential logic flipped using the *uvm_hdl_deposit*
- Modelling a SET
 - Flips the value of the net using the *uvm_hdl_force*
 - Waits for a given (randomized) amount of time
 - Releases the net by using the *uvm_hdl_release*
- Can do multiple simultaneous injections if specified by the test

Timeout Monitors:

- Monitors service and data frames
- Gives an error if service or data frames are not received after a defined timeout

SEU verification @ RTL

SUE injection rate $\sim 3 \ 10^6$ times higher than the

FAULTSIM:

- **u** Full chip simulation with a high hit and trigger rate (specified by the design requirements) and with an extreme SEU injection rate (to increase the SEU coverage)
- SEU faults are injected in not triplicated faultable nodes

GOODSIM:

Faults are not injected. Same hit and trigger sequence as in the FAULTSIM for a given SEED

18/01/2023

Stuck hit readout in the simulations

Matched events: Readout events with the correct tag (trigger ID)

Ghost events: Readout events with the unexpected tag

Automated checking by the SEE UVC Monitor for Data and Service frames

No problem with the service frames in the RD53

• chip always responds to command

A few issues that can cause hit data redout are identified:

- Interaction between Pixel array and readout state machines
 - Only one logical AND could cause a stuck hit readout with a cross-section of 1 Hz in the HL-LHC innermost layer: *Illustrates the importance* of the SEU regressions over each design change since only a small code change can later cause disasters in the radiation environment
- Identified handshaking signal that was unprotected in the RD53B chip: Illustrates the importance of the good SEU coverage (> 100 injections per node)

18/01/2023

SEE @ GateLevel

For SEU and SET simulations on netlist

- UVM covers the fundamental methodology for building reusable verification environments.
- UVM enables verification IPs to be shared and reused between projects.
- We covered basics guidelines for developing a UVM environment.
- The UVM concepts are used in development of the Verification framework for the RD53C.
- The SEE verification component and the SEE verification strategies used in the verification of the RD53C are shown.