

Development of a Radiation Hard, Fully Depleted CMOS Monolithic Active Pixel Sensor (MAPS) on 50micron thick High Resistivity Silicon Using SBIR Funding

Stefan Lauxtermann

LBNL Project Presentation, October 1 2015

- About SCI
- SCI' deep depletion process
- Overview of SBIR Project
- SCI camera

About Sensor Creations, Inc. (SCI)

- Founded by Stefan Lauxtermann in 2010
- Located in Southern California
- Affordable, ROIC and image sensor design
 - Design (in house)

Sensor 🗲

Creations

- Fabrication (through CMOS fab partner)
- Test (in house)
- Prototype and low volume packaging (in house)
- Extensive suite of silicon proven IP blocks available today
 - Low noise snapshot shutter pixels with multi frame storage
 - Low noise readout chain programmable
 - Serial interface (SPI)
 - 14bit high speed, low power column parallel ADC (measured)
 - High speed I/O port with 1Gbit/sec (measured)
- Fully depleted backside illuminated CMOS imagers
 - Custom designs
 - Products
- Prototype Cameras

Washington	Montana	North Dakota M	innesota		Ottaw	a Montreal B
Oregon	laho wumming	South Dakota	Wis	consin Michigar	Toronto	Maine
and the	in your and	Nebraska	lowa Illi	Chicago nois c	Pennsylvania	M
Nevada	Utah	United States Kansas	Missouri	Indiana	West Virginia	Iphia New Ier
	Arizona o New Mexico Phoenix	Oklahon	na Arkansas	Tennessee	North Carolina	
		ico Dalta	s Missi	asippi	South Carolina	Maryland
San Diego		Texas		Geo	rgia	
	A CARE	San Antonio Ho	o Louisiani uston	and and		
	Gulf of California	Monterrey		1	Florida	

Sensor Sensor Pixel IP for Monolithic and Hybrid Imagers

15 µm ROIC Pixel

2.7 μm 4T pixel with CFA and micro lens (FSI, 2x2)

5.8 μm 5T pixel (BSI, 2x2) Test array

15 µm Mutiframe BSI Pixel

SCI's Custom Pixels Typically Provide Functionality Beyond Classical Intensity Measurement

Examples of added functionality:

- Binning
- Multi Frame Sampling
- Signal discrimination
- <100nsec exposure time control

Conventional 5T pixel

SCI uses Tanner EDA Design System

- 1. Schematic entry 🔄
- 2. Simulation
- 3. Layout
- 4. Block level verification
- 5. 2D/3D parasitic extraction
- 6. Top level verification

8" wafer with large format ROIC designed by SCI, (MacDougal et al, DSS 2012)

Designs with > 45M Transistors and Layout Area >22 x 32 mm² have been realized successfully

Sensor Sensor

- High NIR response
 - Up to 40% at λ = 1069 nm (with 500µm thick silicon)
- High UV response
 - > 30% at λ = 300nm
- High broad band response
 - peak QE > 90%
- Direct detection of high energy radiation
 - X-ray < 20k eV</p>
 - MIP (Minimum Ionizing Particle) for tracking
- Suited for very large format arrays
 - High yield compared to Hybrid FPAs
 - High data rate compared to CCD
 - Small pixel pitch (Nyquist MTF: 200µm thick silicon, 100V bias: 4.5µm)
- High Snapshot Shutter Efficiency
- Manufactural in standard CMOS foundry

Deep depletion CMOS Imagers Provide Scientific Sensor Performance with a Fabrication Price of a Mobile Phone Camera

Sensor Sensor Application for Deep Depletion CMOS Imagers

Hyperspectral Imaging in Remote Sensing Applications

NIR Night Vision

Time / ps

Nsec Fluorescence Lifetime imaging

Direct X-Ray Detection

Benefits of DD-CMOS

- High NIR sensitivity
- nsec response time
- High X-ray sensitivity
- Low noise at high speed

Cross Section of Fully Depleted CMOS Technology

Charge Collection Region Defined by Lateral and Vertical Depletion

Sensor Sensor

Comparison of Deep Depletion MAPS Technology

Comparison of Deep Depletion MAPS Technology

SCI's Approach Combines Excellent Performance with Highest Manufacturability

Sensor Creations Comparison Summary of MAPS Technologies

	Hybrid FPA (a)	3D-IC (b)	EPI on SOI (c)	SCI technology (d)
Detector material	high ρ _{si} wafer	high ρ_{Si} wafer	high ρ _{Si} EPI	high ρ_{Si} wafer
Detector thickness	<500 μm	<500 μm	~ 25µm	<500 μm
Backside Electrode	Yes	Yes	No	Yes
Photodiode speed	high	high	medium	high
Volume fabrication	poor	good	good	good
CMOS fab compatibility	poor	medium	good	good
Achievable noise	medium	low	low	low
Volume fabrication cost	high	high	medium	low

Monolithic MAPS on High Resistivity Bulk Silicon Promise Best Overall Performance but is the Least Developed Technology

Sensor Creations Deep Depletion Sensor Development

2

1E+18 1E+17

Concentration [cm] 1E+17 1E+16 1E+15 1E+15 1E+14 1E+14 1E+13

1E+12

1E+11

- 1. Selection of silicon material
- 2. Development of Process Recipe
- 3. Verification of Device Functionality
- 4. IC Design
- 5. CMOS Fabrication and wafer thinning

4

6. Definition of AR coating layers on backside

layout

chip micrograph

Wavelength, nm

400 500 600 700 800 900 1000 1100

schematic

Deep Depletion CMOS Development is a Very Interdisciplinary Effort

- Develop active Minimum Ionizing Particle (MIP) detector using one of SCI's Existing Monolithic Deep Depletion Sensors
 - This is the equivalent of a MAPS
- Develop passive MIP detector array in SCI's deep depletion CMOS technology
 - Will be connected to FE-I4 readout for independent verification
- Characterize Detection Efficiency of active and passive detector arrays
 - To be done with 10GeV e⁻ from SLAC test beam facility (LBNL)
- Propose full size MAPS detector arrays to be developed in phase 2 of the SBIR project

Functionality of Monolithic MAPS

- Charge amplification
- Signal discrimination

MAPS Demonstrator will Provide Functionality of Classical MIP Detector

MAPS Detection System

 SCI technology demonstration camera with deep depletion sensor (left) will be converted into particle detection system

All Hard- and Software Required for Technology Characterization will be Developed during phase 1 of the SBIR project

Sensor Sensor Passive Detector Array for FE-I4 Readout

 Independent verification of SCI's deep depletion technology for MIP particle tracking applications using the well characterized FE-I4 readout system.

Sensor Performance Aspects of Deep Depletion CMOS Technology can be Characterized Independent of Readout Circuitry

- Thick bulk detector layer must be completed depleted without punch through to backside
- Photodiodes must not short out laterally
 - Note: Electrons are collected in N type material

Sensor SCI's Deep Depletion CMOS Technology Well Structure

A single deep pwell is used to isolate circuitry from the high resistivity silicon sensing membrane. Electrons are collected very fast by lateral and vertical drift fields.

> Deep Depletion Sensor is 3D structure with vertical and lateral Parasitic Bipolar Transistors

Sensor Se

Published by Tomasz Hemperek CPIX 2014

Detection Efficiency for a collection time of 10nsec as a function of accumulated neutron irradiation for a $20\mu m$ thick detector. Charge Collection decreases with increasing radiation damage but can be compensated in high rho silicon by increasing detector backside bias

MIP Detectors Require High Resistivity Silicon and Backside Bias

Back to Front Side Detector I-V Characteristic

Reverse bias IV characteristic measured on one of our 50 µm thick, 1mm² large test structures fabricated in SCI's high rho silicon CMOS process.

Monolithic Detectors Can Be Reverse Biased with < -25V

Sensor Sensor

Sensor Creations How to Collect electrons in N⁻⁻ Substrate?

 Neighboring N⁺ regions with different potential can easily short in high rho silicon

N⁺ regions must be Sufficiently Isolated Through Implants or/and Bias to Avoid Lateral Breakdown

Negative Backside Bias Suppressed Lateral Shorts

- Current on IPD decreases when VB is decreased
 - Stronger reverse bias decrease of VB is also required to compensate for radiation damage

Negative Backside Bias Suppressed Lateral Shorts

Sensor 🌫

Creations

SCI Deep Depletion BSI Camera

- GigE or WiFi Interface
- C- or F- mount
- CameraLink available upon request
- Internet browser for display and camera control
 - No driver installation required

Camera provides easy access to this new image sensor technology for early adopters

Sample image taken with this camera (raw data)

Sensor Sensor First Images, 50um thick sensor – Example 1

- Correction
- Integration time:
- F/#:

2 point NUC

15.11 msec (66Hz frame rate)

5.6

Sensor Sensor Sensor Sensors Creations Phenomenon in Deep Depletion Silicon Sensors

- Curved line pattern under flat field illumination
 - Reported before in deep depletion CCDs \rightarrow tree rings
 - Steve Holland et al., LBNL
- Caused by inhomogeneity in silicon resistivity during crystal growth
 - Phenomenon in all deep depletion sensors

Tree Rings Disappear when Reverse Bias is Increased

Sensor Sensor Creations Deep Depletion Sensor Camera Performance Targets

Parameter	Value
Array Format	640 X 512
Pixel Size	15 μm
Die Size	11.2 X 12.2 mm ²
Die Thickness	50 μm, 100 μm, 200 μm
Exposure time control	snapshot shutter: ITR, IWR, NDR
Charge Capacity	programmable
minimum	10k e ⁻ (high gain)
medium	60k e ⁻ (high gain)
maximum	500Ke (low gain)
Input Referred Noise	
high gain	10e
medium gain	30 e ⁻
low gain	130e
Windowing	horizontal center to outsides, bottom to top
minimum	1 rows x 24 columns minium
increments	1 rows, 24 columns
Integration Time range	100nsec to 30 msec
Output	analog (through 1,2, 4 or 8 output ports)
Frame Rate	1000 Hz (when using all 8 output ports)
Output data rate	5MPixel/sec - 41MPixel/sec
Number of output channels	1, 2, 4 or 8 (programmable)
Master Clock	2.5 - 20.5 MHz
Binning	2x2, 2x1, 1x2
Power (120Hz, 60Hz, 30Hz)	60mW @ 60Hz frame rate
Supply voltage	3.3/1.8
Logic I/O levels	0.0V/3.3V
Serial Interface	3 wire (multiple long word of different length)
Operating Temperature	300К

Thank You for your attention!

Sensor Screations

Sensor Sensor Potential Underneath 50 micron thick Photodiode Array

Full Depletion and Pixel isolation on front side achieved

#	Parameter	Value	Comment
1	Type of Detector	high rho MAPS	Monolithic Active Pixel Sensor (MAPS on high resistivity silicon
2	CMOS process	180nm	this is the technology node but a modified process flow applies
3	Silicon material	FZ	FZ - Float Zone silicon
4	Pixel resolution	50 x 60	equidistant in x and y direction
5	Pixel pitch [μm]	50	this is the pixel to pixel spacing
6	Detector thickness [µm]	50	no support substrate
7	Frame rate [Hz]	100,000	all pixel will be read out, no token based readout
8	Chip size [µm]	3000 x 6600	size is defined by our existing test chip dimensions
9	Output data rate [MPix/sec]	300	data from all pixels will be transferred off-chip, data stream not sparse
10	Clock rate [MHz]	150	output is double data rate (DDR)
11	Supply voltages [V]	1.8, 3.3	CMOS logic at 1.8V; analog circuits and CCD at 3.3V
12	Backside bias voltage [V]	-20	only ~-10 V is required to achieve full depletion
13	Output format	single bit data stream	data from all pixels will be transferred off-chip, data stream not sparse
14	Number of digital output pins	1	CMOS
15	I/O frame	single sided	all pads are arranged along bottom edge of chip over distance of 3000 μm

 Summary of specifications for the proposed SBIR phase 1 MAPS demonstrator

 Screen shot of top level schematic (left) and layout (middle) of SCI's 640x512 deep depletion CMOS imager. A photograph of the chip cell comprising this imager, a test chip for evaluation of novel pixel designs (top in blue boundary box) and 12 1mm² large test

Thank You for your attention!

Sensor Screations

SCI Packaging Approach

Package 1: Cold finger directly attached against CMOS circuits

- Wire bonding
- Chip on board
- Cold finger attached
 - Also guarantees planarity
- Backfill or vacuum seal
 - With ceramic board

Package 2: Sensor freely suspended with support on sides only $(\Rightarrow \text{ only 50}\mu\text{m} \text{ thick silicon membrane in beam path})$

Low cost Package for High End Applications with Low Volume

Sensor Se

For best performance a backside bias must be applied

Our 6.5 kOhm x cm material can be depleted to a thickness of 50um with a backside bias of less than 5V

High Resistivity Silicon Must be Used to Achieve Deep Depletion

Predicted FD PIN Diode Response Time

Transit time of photo generated charge carriers in 100um FD CMOS imager with 100V backside bias < 1nsec, corresponding to a 3dB bandwidth > 1GHz

Fully Depleted Imager is Suited to Support Nanosecond Integration Time Windows

Sensor Sensor Predicted Charge Spread Versus Detector Thickness

For a 200um thick FD CMOS imager with 100V backside bias, photo generated charge carriers can spread up to 4.5 um before reaching the front side collection junction

MTF Performance Limited Pixel Pitch of FD imager: < 4.5um

Sensor Sensor

Quantum Efficiency

- High Broadband response
- High and stable UV response
- Peak QE > 90% can be customized with AR coating

Quantum Efficiency Comparable to that of Fully Depleted BSI CCDs

Dark Current on 50um Thick Silicon

- Measured on 1mm² large test pixel arrays, on wafer level, at room temperature
- 1V back bias was applied

Measured Dark Current is Close to Predicted Depletion Current

Predicted and Measured Snapshot Shutter Performance

Extinction Ratio as a function of detector thickness (simulated)

Extinction Ratio as a function of wavelength (simulated + measured)

>120dB Extinction Ratio in Visible Domain for $\lambda \leq$ 640nm

Sensor Sensor Backside Processing of 640x 512 Imager

High rho silicon wafer with completed CMOS process

Wafer thinned to 50um

Backside Process defines Optoelectronic Device Characteristics and can be Optimized for Different Applications

in-house backside processing

Thin film simulation of AR coating

50um thick wafer with AR coating