### Building Low-Radioactive-Background Electronics Components

### Alan Poon

Institute for Nuclear and Particle Astrophysics / Nuclear Science Division Lawrence Berkeley National Laboratory

### Outline

- What do you mean by "low radioactive background"?
- How to measure low level of radioactivity?
- Examples:
  - Detector system design
  - Front-end electronics for Ge detectors
  - Cables and interconnects

### **Types of Experiments and Backgrounds**

• Signals:



- Backgrounds:
  - Cosmic-ray primaries and secondaries produced in the atmosphere
  - Cosmic muons
  - Neutrons ("Cosmic" and "Environmental")
  - $\alpha$ ,  $\beta$  and  $\gamma$  ("Detector intrinsic" and "Environmental")

## **Cosmic-ray Primaries & Secondaries**

• Minimal overhead burden goes a long way in reducing backgrounds induced by nucleonics:



Figure 4 Background spectra of similar Ge spectrometers (0.9 kg active volume) with passive and active shielding at sea level (top) and at 15 m.w.e. (bottom).

 But next-generation DM and 0νββ experiments need to go below 4000' or more.

### The deeper the better

### Inconvenient truths (for low-background experiments)

| <ul> <li>Time scales:</li> </ul> | Age of the universe | 13.8 x 10 <sup>9</sup> years |
|----------------------------------|---------------------|------------------------------|
|                                  | Age of the Earth    | 4.5 x 10 <sup>9</sup> years  |

- Long-lived radioactive isotopes from supernova explosions in the past have been in our Earth since its formation.
- Radiogenic heat from the decays of <sup>238</sup>U, <sup>232</sup>Th and <sup>40</sup>K is a main component of our Earth's internal heat.

| • Half-lives: | 238               | 4.468 x 10 <sup>9</sup> years |
|---------------|-------------------|-------------------------------|
|               | <sup>232</sup> Th | 14.05 x 10 <sup>9</sup> years |
|               | 40K               | 1.251 x 10 <sup>9</sup> vears |

These primordial radioisotopes do not decay away quickly

**Decay Chains** 



Thorium

234

 $\alpha$ : quenched signal, ( $\alpha$ ,n)  $\beta$ ,  $\gamma$ : "tail" in the ROI



## How low is low?

• Signal expected in real-time experiments

| Type of experiment                                   | Signal                                                  | Detection (Background) rate                   |
|------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|
| SNO<br>Solar neutrino experiment<br>(1998-2006)      | Cherenkov light from e-                                 | ~15 events t <sup>-1</sup> d <sup>-1</sup>    |
| LUX<br>WIMP search                                   | Scintillation light and ionization from nuclear recoils | (~15 events t <sup>-1</sup> d <sup>-1</sup> ) |
| Majorana<br>neutrinoless double beta<br>decay search | e- in Ge diode detectors                                | (< 1 event t <sup>-1</sup> y <sup>-1</sup> )  |

The SNO heavy water D<sub>2</sub>O was purified to have ~10<sup>-15</sup> (g <sup>232</sup>Th)/(g D<sub>2</sub>O). The KamLAND liquid scintillator was purified to even higher purity.

# Radiopurity of typical electronics components

500  $\ensuremath{\mathsf{M}\Omega}$  SMD resistor used by GERDA

| Size                                           | Th-234<br>[uBq/pc] | Ra-226<br>[uBq/pc] | Th-228<br>[uBq/pc] | K-40<br>[uBq/pc] | Pb-210<br>[uBq/pc]              |
|------------------------------------------------|--------------------|--------------------|--------------------|------------------|---------------------------------|
| 0603<br>0.48 mm <sup>3</sup> /pc<br>1.33 mg    | 4 ± 2              | 1.9 ± 0.3          | 0.6 ± 0.2          | 10 ± 4           | 46 ±5                           |
| 0402<br>0.153 mm <sup>3</sup> /pc<br>0.6 mg/pc | 2 ± 1              | 0.7 ± 0.1          | 0.2 ± 0.1          | < 2.6<br>Cattac  | <b>32 ± 3</b><br>dori, LRT 2015 |

 $1 \ \mu Bq \approx 0.1$  / day

# Radiopurity of typical electronics components





Community Material Assay Database

| Search   | Submit | Edit | Settings | About | Login |
|----------|--------|------|----------|-------|-------|
| e.g. all |        |      |          |       | × ۵   |
|          |        |      |          |       |       |
|          |        |      |          |       |       |

Persephone · Display disclaimers Supported by AARM, KIT, LBNL, SMU & SJTU Generously hosted by Cloudant

- A project started at LBNL, adopted by the community
- Experiments are adding their radioassay results to this database

# Radiopurity of typical electronics components

| Grouping     | Name                                          | Isotope | Amount    | Isotope | Amount    |     |   |
|--------------|-----------------------------------------------|---------|-----------|---------|-----------|-----|---|
| ▶ EXO (2008) | Resistor paste, DuPont 1108                   | Th      | 4200 ppt  | U       | 11500 ppt |     | × |
| ▶ ILIAS UKDM | Resistor components, blue ceramic             | Th-232  | 1600 ppb  | U-238   | 480 ppb   |     | × |
| ▶ ILIAS UKDM | Resistor, Philips, metal on ceramic           | Th-232  | 10300 ppb | U-238   | 2340 ppb  |     | × |
| ▶ ILIAS UKDM | Resistor, Allen-Bradley                       | Th-232  | 500 ppb   | U-238   | 275 ppb   |     | × |
| ILIAS UKDM   | Resistor components, NiCu                     | Th-232  | 3 ppb     | U-238   | 0.5 ppb   |     | × |
| ► ILIAS UKDM | Resistor components: black ceramic + white su |         |           |         |           |     | × |
| ILIAS UKDM   | Resistor components, Cu                       | Th-232  | 1 ppb     | U-238   | 0.5 ppb   |     | × |
| ILIAS UKDM   | Resistor components, blue ceramic             |         |           |         |           |     | × |
| ▶ ILIAS UKDM | Resistor, Welwyn, met. film                   | Th-232  | 3970 ppb  | U-238   | 410 ppb   |     | × |
| ▶ ILIAS UKDM | Resistor, Kamaya, C core                      | Th-232  | 1140 ppb  | U-238   | 480 ppb   |     | × |
| ▶ ILIAS UKDM | Resistor, Dale, metal film                    | Th-232  | 130 ppb   | U-238   | 350 ppb   |     | × |
| ▶ ILIAS UKDM | Resistor components, SnPb                     | Th-232  | 1.5 ppb   | U-238   | 1 ppb     |     | × |
| ILIAS UKDM   | Resistor components, black ceramic + white su | Th-232  | 28 ppb    | U-238   | 200 ppb   | *** | × |
| ILIAS UKDM   | Resistor, Croster, C film                     | Th-232  | 3130 ppb  | U-238   | 350 ppb   |     | × |
| ► ILIAS UKDM | Resistor components, AI2O3                    | Th-232  | 190 ppb   | U-238   | 190 ppb   |     | × |
| ► ILIAS UKDM | Resistor, Allen-Bradley                       | Th-232  | 160 ppb   | U-238   | 50 ppb    |     | × |

- Choose radiopure materials
- Keep hot stuff away from active detector volume

Self shielding, fiducial volume cut



### Ex: KamLAND-ZEN

- Choose radiopure materials
- Keep hot stuff away from active detector volume





Ex: GERDA - Phase I

- Choose radiopure materials
- Keep hot stuff away from active detector volume





### Ex: MAJORANA DEMONSTRATOR

### GERDA Phase-I background results:

#### Eur. Phys. J. C (2014) 74:2764

close

4

Ŷ

fa

Page 5 of 25 2764

Table 2 Gamma ray screening and <sup>222</sup>Rn emanation measurement results for hardware components and BIs derived from MC simulations. The activity of the mini shroud was derived from ICP-MS measurement assuming secular equilibrium of the <sup>238</sup>U decay chain. Estimates of the BI at  $Q_{\beta\beta}$  are based on efficiencies obtained by MC simulations [13, 14] of the GERDA setup

| Component                       | Units          | <sup>40</sup> K <sup>214</sup> Bi and <sup>226</sup> Ra <sup>228</sup> Th <sup>60</sup> Co |          | Jnits <sup>40</sup> K <sup>214</sup> Bi and <sup>226</sup> Ra <sup>228</sup> Th <sup>60</sup> Co <sup>22</sup> |          | Bi and <sup>226</sup> Ra <sup>228</sup> Th |                     | K <sup>214</sup> Bi and <sup>226</sup> Ra <sup>228</sup> Th <sup>60</sup> Co <sup>222</sup> I |  | <sup>222</sup> Rn | BI [10 <sup>-3</sup> cts/(keV kg yr)] |
|---------------------------------|----------------|--------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------|--|-------------------|---------------------------------------|
| Close sources: up to 2 cm       | n from detecto | rs                                                                                         |          |                                                                                                                |          |                                            |                     |                                                                                               |  |                   |                                       |
| Copper det. support             | µBq/det.       | <7                                                                                         | <1.3     | <1.5                                                                                                           |          |                                            | <0.2                |                                                                                               |  |                   |                                       |
| PTFE det. support               | µBq/det.       | 6.0 (11)                                                                                   | 0.25 (9) | 0.31 (14)                                                                                                      |          |                                            | 0.1                 |                                                                                               |  |                   |                                       |
| PTFE in array                   | µBq/det        | 6.5 (16)                                                                                   | 0.9 (2)  |                                                                                                                |          |                                            | 0.1                 |                                                                                               |  |                   |                                       |
| Mini shroud                     | µBq/det.       |                                                                                            | 22 (7)   |                                                                                                                |          |                                            | 2.8                 |                                                                                               |  |                   |                                       |
| Li salt                         | mBq/kg         |                                                                                            | 17 (5)   |                                                                                                                |          |                                            | $\approx 0.003^{a}$ |                                                                                               |  |                   |                                       |
| Medium distance sources         | : 2-30 cm fro. | m detectors                                                                                |          |                                                                                                                |          |                                            |                     |                                                                                               |  |                   |                                       |
| CC2 preamps                     | µBq/det.       | 600 (100)                                                                                  | 95 (9)   | 50 (8)                                                                                                         |          |                                            | 0.8                 |                                                                                               |  |                   |                                       |
| Cables and suspension           | mBq/m          | 1.40 (25)                                                                                  | 0.4 (2)  | 0.9 (2)                                                                                                        | 76 (16)  |                                            | 0.2                 |                                                                                               |  |                   |                                       |
| Distant sources: further        | han 30 cm fro  | m detectors                                                                                |          |                                                                                                                |          |                                            |                     |                                                                                               |  |                   |                                       |
| Cryostat                        | mBq            |                                                                                            |          |                                                                                                                |          | 54.7 (35)                                  | <0.7                |                                                                                               |  |                   |                                       |
| Copper of cryostat              | mBq            | <784                                                                                       | 264 (80) | 216 (80)                                                                                                       | 288 (72) |                                            | 2-0.05              |                                                                                               |  |                   |                                       |
| Steel of cryostat               | kBq            | <72                                                                                        | <30      | <30                                                                                                            | 475      |                                            |                     |                                                                                               |  |                   |                                       |
| Lock system                     | mBq            |                                                                                            |          |                                                                                                                |          | 2.4 (3)                                    | < 0.03              |                                                                                               |  |                   |                                       |
| <sup>228</sup> Th calib. source | kBq            |                                                                                            |          | 20                                                                                                             |          |                                            | <1.0                |                                                                                               |  |                   |                                       |

<sup>a</sup> Value derived for 1 mg of Li salt absorbed into the surface of each detector

Hard to shield components close to the detectors (e.g. front-end electronics and cables)

### • MAJORANA DEMONSTRATOR background budget:

Based on achieved assays of materials When UL, use UL as the contribution MJD goal: 3 cts / 4 keV / t-y (scale to 1 cts / 4 keV / t-y in large-scaleGe)



Background Rate (c/ROI-t-y)

### Making front-end electronics - MJD



### Making front-end electronics - MJD



Reduced the component count by using stray capacitance as feedback capacitance

# **Production: wafers**

Ti/Au sputtering

patterning aGe



patterning traces



### electrical tests



### aGe sputtering



dicing boards



### **Production: on-board electronics**

### cable threading

silver epoxying

wire bonding



transport tray

### **Production: loading on electroformed Cu clips**



Paul Barton







# **Production: QA**

mechanical QA



➡ pressure corresponding to 650g applied on board electrical QA



Sophia Elia

- → full signal path + preamp test
- $\mapsto$  check baseline
- → pulser check of 1st and 2nd stages

# Making front-end electronics - MJD

• Component assays prior to production:

| Component    | Material     | Purit                   | Purity (g / g)                     |                   |                  | Ref.      |
|--------------|--------------|-------------------------|------------------------------------|-------------------|------------------|-----------|
|              |              | <sup>232</sup> Th       | <sup>238</sup> U                   | <sup>232</sup> Th | <sup>238</sup> U | -         |
| Substrate    | Fused silica | $101 \times 10^{-12}$   | 284×10 <sup>-12</sup>              | 0.0259            | 0.0616           | MJ ICP-MS |
| Resistor     | a-Ge         | 5×10 <sup>-9</sup>      | 5×10 <sup>-9</sup>                 | 0.0001            | 0.0001           | MJ ICP-MS |
| Traces       | Au           | 47(1)×10 <sup>-9</sup>  | 2.0(0.3)×10 <sup>-9</sup>          | 0.0421            | 0.0015           | MJ ICP-MS |
| Traces       | Ti           | < 400×10 <sup>-12</sup> | $<$ 100 $\times$ 10 <sup>-12</sup> | $\sim$ 0          | $\sim 0$         | MJ ICP-MS |
| FET          | FET die      | $< 2 \times 10^{-9}$    | $<$ 141 $\times$ 10 <sup>-12</sup> | < 0.0107          | < 0.0006         | MJ ICP-MS |
| Bonding wire | Al           | $91(2) \times 10^{-9}$  | 9.0(0.4)×10 <sup>-12</sup>         | 0.0004            | $\sim 0$         | MJ ICP-MS |
| Epoxy        | Silver epoxy | < 70×10 <sup>-9</sup>   | $< 10 \times 10^{-9}$              | < 0.0685          | < 0.0082         | MJ gamma  |
| Total        |              |                         |                                    | <0.1476           | <0.0720          |           |

- Largest backgrounds: fused silica substrate, gold traces
- Full board assays: ~2-3x higher in background

### Less handling is always better

# Less is (usually) better

• N-type segmented Ge detectors vs P-type detectors



Counts per Region of interest per Ton-Year

 N-type high-segmentation detectors have higher backgrounds from small parts (due to more readout components) and surface backgrounds (due to dead layer)

# Aside: Understanding radioactivity of Au

### Mass spectroscopy

- small sample size; sampling issue
- higher sensitivity



### γ-ray spectroscopy

- large sample size needed
- lower sensitivity

# Aside: Understanding radioactivity of Au

- High <sup>232</sup>Th observed in gold ICPMS measurements but not in a gamma cross-check
- Found to be complexing of <sup>197</sup>Au with <sup>35</sup>Cl in the aqua regia
  - Presence of unphysical mass <sup>197</sup>Au + 2 x <sup>35</sup>Cl
  - Reduction with less <sup>35</sup>Cl

| Material                           | Method        | <sup>232</sup> Th              |
|------------------------------------|---------------|--------------------------------|
|                                    |               | $(\times 10^{-9} \text{ g/g})$ |
| Shot 3N5 Au (Lee)                  | ICP-MS        | 1274(36)                       |
| Shot 4N4 Au (Lee) I                | ICP-MS        | 205(18)                        |
| Shot 4N4 Au (Lee) II               | <b>ICP-MS</b> | 271(46)                        |
| Sputtered 4N8 Au (Lee) A           | ICP-MS        | 420(20)                        |
| Shot 5N Au (ACI alloys) I          | <b>ICP-MS</b> | 210(18)                        |
| Shot 5N Au (ACI alloys) II         | ICP-MS        | 168(16)                        |
| Shot 4N4 Au shot (Lee)             | Gamma         | < 3                            |
| Sputtered 4N8 Au (Lee) B (prelim.) | ICP-MS        | 47                             |

### Do both types of assays if possible



### Cables



## **Coaxial Cables - GERDA**

#### **GERDA** Phase-1

| 228Th· 1 1+0.5 mBa/ka                                                                                                     | cable                                                                                                                             | ref.                                                                    | type                             | 1-string    | 3-string  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|-------------|-----------|
| 23811 < 50  mBg/kg                                                                                                        | Habia SM50                                                                                                                        | [66]                                                                    | 50 $\Omega$ , coaxial            | 15          | 24        |
|                                                                                                                           | SAMI RG178                                                                                                                        | [67]                                                                    | HV $(4 \text{ kV})$ , coaxial    | 4           | -         |
| Cu/PIFE 1 mm OD                                                                                                           | Teledyne Reynolds 167-2896                                                                                                        | 68                                                                      | HV (18 kV), coaxial              | -           | 10        |
| linear density = $2.7 \text{ g/m}$                                                                                        | Teledyne Reynolds 167-2896                                                                                                        | [68]                                                                    | HV $(5 \text{ kV})$ , unshielded | 1           | 2         |
|                                                                                                                           | total number                                                                                                                      |                                                                         |                                  | 20          | 38        |
| <b>Construction:</b><br>Conductor<br>Dielectric<br>Braid<br>Jacket<br>Weight<br>Temperature rating (°C<br>Order reference | Silver plated high strength copper alloy (<br>Solid<br>Silver plated coppe<br>FEP, Brown-trans<br>2,7<br>-55 / -<br><b>30000-</b> | 1x0,16)<br>1 PTFE<br>r (0,06)<br>sparent<br>7 kg/km<br>-200°C<br>050-00 | 0,16<br>0,52<br>0,85<br>1,00     | [arXiv:1212 | 2.4067v1] |
| Over an order of m                                                                                                        | agnitude too radioac                                                                                                              | tive                                                                    | for MJD                          | -           |           |
|                                                                                                                           |                                                                                                                                   |                                                                         |                                  |             |           |

Table 3 Cables deployed in the 1-string and 3-string locks.

# **Coaxial Cables - GERDA**

#### **GERDA** Phase-1

•

| <sup>228</sup> Th <sup>.</sup> 1 1+0.5 mBa/ka                                                                      | _cable                                                                                                        | ref.                                                                          | type                                      | 1-string    | 3-string  |
|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|-------------|-----------|
| $^{238}\text{U} < 59 \text{ mBa/ka}$                                                                               | Habia SM50                                                                                                    | [66]                                                                          | 50 $\Omega$ , coaxial                     | 15          | 24        |
| Cu/PTFE 1 mm OD                                                                                                    | Teledyne Reynolds 167-2896                                                                                    | [67]<br>[68]                                                                  | HV (4 kV), coaxial $HV (18 kV)$ , coaxial | 4           | 10        |
| linear density = $2.7 \text{ g/m}$                                                                                 | Teledyne Reynolds 167-2896                                                                                    | [68]                                                                          | HV $(5 \text{ kV})$ , unshielded          | 1           | 2         |
|                                                                                                                    | total number                                                                                                  |                                                                               |                                           | 20          | 38        |
| Construction:<br>Conductor<br>Dielectric<br>Braid<br>Jacket<br>Weight<br>Temperature rating (°C<br>Order reference | Silver plated high strength copper alloy<br>So<br>Silver plated copp<br>FEP, Brown-tra<br>2<br>C) -55<br>3000 | (1x0,16)<br>id PTFE<br>er (0,06)<br>nsparent<br>7 kg/km<br>+200°C<br>0-050-00 | 0,16<br>0,52<br>0,85<br>1,00              | [arXiv:1212 | 2.4067v1] |
| <ul><li>Over an order of m</li><li>Silver-plated Cu is</li><li>Scaling to a HV can higher activity</li></ul>       |                                                                                                               |                                                                               |                                           |             |           |
|                                                                                                                    |                                                                                                               |                                                                               |                                           | 9           |           |

Table 3 Cables deployed in the 1-string and 3-string locks.

### **Other commercial options?**

#### **Coaxial, Ribbon and Multi-Conductor Cables**



#### TEMP-FLEX COAXIAL CABLES

a molex company es greater than listed, call for quot MOUSER Temp-Flex Nominal Signal Braid Price Per Ft. Fig. Colo STOCK NO. Part No. OD (in.) Conductors Shield 10 Differential Impedance: 100+/-5 Ohms Twinax Cable · Capacitance: 14.5pF/ft. 44AWG 0.049+/-0.005 8-100TX-08 100TX-08 Α 32AWG -Blue, 1-Gree Flexible Microwave Coaxial Cables · Capacitance: 29.0pF/ft. (95pF/ft.) · Impedance: 50+/-1 Ohms 141SC-1901 19AWG 40AWG Blue 11.56 10.87 9 96 8.37 538-141SC-1901 0.157+/-0.00 047SC-2901 0.056+/-0.003 29AWG 46AWG 4.49 538-047SC-2901 Blue 4.22 3.87 -2 Ohms Microminiature Coaxial Cable · Capacitance: 30pF ominal · Impeda SC-240 086SC-2401 0.101+/-0.005 24AWG 40AWG Blue 7.40 6.96 6.38 5.36 538-50MCX-37 50MCX-37 C 0.125+/-0.005 42AWG 48AWG Blue 2.55 2.39 2.20 1.85 High Speed Data Cables · Capacitance: 30pF/ft. No Impedance: 50+/-2 Ohms 50CX-4 D 0.071 30AWG, 7/38 40AWG Black 2.81 2.64 2.42 2.04 50CX-43 n 0.100 26AWG. 7/34 38AWG Black 3.64 3.42 3.14 2.63



TEMP-FLEX FLAT FEP RIBBON CABLES

Mouser Part #:

Manufacturer:

Description:

Manufacturer Part #:

a molex company



Q Enlarge

#### Moucor catalogua

538-50MCX-37 50MCX-37

Temp-Flex

Coaxial Cables 42AWG PFA, 50 OHM MICRO COAX, PER FT

#### Learn more about Temp-Flex 50MCX-37

Page 1,389, Mouser Online Catalog
 Page 1,389, PDF Catalog Page
 Data Sheet

### Radiopurity concerns:

- dye in the jacket
- silver-plated copper alloy in braid and central conductor

It became clear that we needed to do a special production run

### • FEP and PFA

- have high dielectric strength (Dupont: 260 kV/mm)
- are radiopure

|            | Commite                                            | Lab  | R     | eporte      | d in pg/ | g           | Reported in µBq/kg |     |       |     |
|------------|----------------------------------------------------|------|-------|-------------|----------|-------------|--------------------|-----|-------|-----|
|            | Sample                                             | Lab  | 232Th | <b>±</b> 1σ | 238U     | <b>±</b> 1σ | 232Th              | ±1σ | 238U  | ±1σ |
| 4          | Cu conductor wire<br>(signal, CFW)                 | LBNL | <30   | -           | <50      | -           | <120               | -   | <620  | -   |
| Cu         | Cu conductor wire<br>(high voltage,<br>CFW)        | LBNL | <30   | -           | 180      | 50          | <120               | 2   | 2200  | 620 |
|            | Cu wire 50AWG<br>(uncleaned,<br>MWS <sup>1</sup> ) | LBNL | 120   | 20          | 73       | 28          | 490                | 80  | 910   | 350 |
| *          | Cu wire 50AWG<br>(cleaned, MWS)                    | LBNL | 30    | 30          | 42       | 10          | 120                | 120 | 520   | 120 |
| À          | PFA416 <sup>2</sup>                                | PNNL | 2.60  | **          | 0.89     | **          | 10.66              | **  | 11.09 | **  |
|            | PFA340A <sup>3</sup>                               | PNNL | 3.28  | **          | 1.90     | **          | 13.45              | **  | 23.57 | **  |
| dialactric | FEP 106                                            | PNNL | 0.11  | **          | 1.96     | **          | 0.43               | **  | 24.36 | **  |
|            | FEP NP20                                           | PNNL | 0.99  | **          | 0.61     | **          | 4.05               | **  | 7.60  | **  |
| *          | FEPTE 9494                                         | PNNL | 4.03  | **          | 0.71     | **          | 16.52              | **  | 8.75  | **  |

### • The radiopurity of the Cu drives the background budget:

- reduce OD of central conductor
- reduce OD of inner dielectric
- helical shield (instead of braid)

• Contracted Axon' in France to make the "picocoax" cable



|   |                      | Material  | Signal             | HV                |
|---|----------------------|-----------|--------------------|-------------------|
| 1 | central<br>conductor | Bare Cu   | 0.0762 mm <i>φ</i> | 0.152 mm <i>ø</i> |
| 2 | inner<br>dielectric  | FEP / PFA | 0.254 mm <i>φ</i>  | 0.77 mm <i>φ</i>  |
| 3 | helical shield       | Bare Cu   | AWG50              | AWG50             |
| 4 | jacket               | FEP / PFA | 0.4 mm $\phi$      | 1.2 mm <i>φ</i>   |
| L | inear mass c         | 0.4 g/m   | 3 g/m              |                   |

- Contracted Axon' in France to make the "picocoax" cable
- Additional testing, cleaning in ultrasonic bath and drying between production steps (conductor prep, inner dielectric extrusion, shielding, jacket extrusion).

| HV Cable                                                      | Technique          | Th<br>(c/ROI/t/y) | U<br>(c/ROI/t/y) |
|---------------------------------------------------------------|--------------------|-------------------|------------------|
| Projection                                                    | Simulation & assay | <0.02             | <0.06            |
| Axon' - Run 1<br>(QA issue at factory -<br>no cleaning steps) | ICPMS              | 1.1               | 16.5             |
| Axon' - Run 2                                                 | ICPMS & Gamma      | <0.004            | <0.081           |

Goal: << 1 c/ROI/t/y

- Contracted Axon' in France to make the "picocoax" cable
- The cables were stored in dry N<sub>2</sub> environment until they were being used.
- Room <sup>222</sup>Rn can stick to the outer jacket if not stored properly



Proper clean storage of components is essential

### Making connectors



## **Technical Issue: Plug Design**



- Cable connection: solder to tiny pins
- Pins are held in vespel housing that also provides strain relief
- Press-fit, keyed shell interface for ease of assembly in the glove box
- Vacuum tests indicate no significant virtual leaks.
- BeCu contact is too radioactive for MJD (~10 cts/t/y). Iterative prototyping to establish reliable connection during thermal cycling.
- Full body ICPMS indicates the connectors are sufficiently clean for MJD

### Solder

### • "Typical clean solder":

|   | Grouping   | Name                        | Isotope | Amount      | Isotope | Amount       |       |
|---|------------|-----------------------------|---------|-------------|---------|--------------|-------|
| ÷ | SuperCDMS  | Solder paster, Alpha WS-820 | Th-232  | 5.28 mBq/kg | U-238   | 5.615 mBq/kg | <br>× |
| ÷ | ILIAS UKDM | Solder, SnCu                | Th-232  | 1 ppb       | U-238   | 5 ppb        | <br>ж |
| ÷ | ILIAS UKDM | Silfos (Ag, Cu, Sn solder)  | Th-232  | 0.05 ppb    | U-238   | 0.05 ppb     | <br>ж |
| ķ | ILIAS UKDM | Silver solder               | Th-232  | 0.072 ppb   | U-238   | 0.1 ppb      | <br>× |

- Low background ideas:
  - Roman Pb
  - Source clean solder (e.g. SnAg), use abietic acid as flux.

### **PCB in low-background experiment**

#### S. Nisi\*, A. Di Vacri, M.L. Di Vacri, A. Stramenga, M. Laubenstein

Laboratori Nazionali del Gran Sasso, INFN, S. S. 17/bis km 18+910, I-67010 Assergi (AQ), Italy

Applied Radiation and Isotopes 67 (2009) 828-832

| Sample                        | <sup>40</sup> K<br>(mBq kg <sup>-1</sup> ) | <sup>232</sup> Th<br>(mBq kg <sup>-1</sup> ) | <sup>238</sup> U<br>(mBq kg <sup>-1</sup> )                        |
|-------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------------------------------|
| PEN                           |                                            |                                              |                                                                    |
| γ-spectroscopy                | $510\pm20$                                 | $136\pm3$                                    | $242 \pm 3$ ( <sup>226</sup> Ra)<br>236 + 68 ( <sup>234m</sup> Pa) |
| ICP-MS                        | $370\pm50$                                 | $110\pm10$                                   | $200 \pm 30$                                                       |
| KAPTON <sup>®</sup> HN DuPont |                                            |                                              |                                                                    |
| γ-spectroscopy                | <5.4                                       | $1.4 \pm 0.7$                                | $14 \pm 1$ ( <sup>226</sup> Ra)<br><27 ( <sup>234m</sup> Pa)       |
| ICP-MS                        | 7±3                                        | $0.65 \pm 0.08$                              | 17±2                                                               |
| CuFlon <sup>®</sup>           |                                            |                                              |                                                                    |
| γ-spectroscopy                | $48 \pm 15$                                | <1.9                                         | <0.84 ( <sup>226</sup> Ra)<br><132 ( <sup>234m</sup> Pa)           |
| ICP-MS                        | 6-2/+9                                     | 0.28-0.03/+0.04                              | 0.36-0.04/+0.07                                                    |

• CuFlon is cleaner than Kapton in U and Th, but it's much worse in <sup>40</sup>K

### **Processing PCBs**

- Once selected the proper raw material →Important not to spoil its radiopurity by PCB process.
- Avoid finishing protective layers (soldermasks etc.)
- Minimize Cu deposition
- Gold finishing required for bonding (typically <1 um ) introduces significant U contaminations. Minimize golded surfaces (in GERDA few mm<sup>2</sup>/detector)

|     |    |     |   |        |        |   | Cleanin |          | Micro  |          |   |        |
|-----|----|-----|---|--------|--------|---|---------|----------|--------|----------|---|--------|
|     |    |     |   | Solfor | Fosfor |   | g       | PreAu    | Etchin | Gold     |   | Nickel |
| 39  | κ  | ppb |   | 2000   | 4900   |   | 6100    | Saturate | 96000  | 32000000 |   | 38000  |
| 208 | Pb | ppb | ۷ | 0,3    | 0,7    |   | 11      | 28       | 17     | 2        | < | 10     |
| 232 | Th | ppb | ۷ | 0,03   | 0,05   | ^ | 0,03    | 1        | 0,04   | 1,7      | < | 0,3    |
| 238 | U  | ppb |   | 0,13   | 22     |   | 0,8     | 5,8      | 0,81   | 7,7      | < | 0,3    |

# A cryogenic temperature sensor

Microelectronics with **parylene** substrate:

- Low background
- "flexible circuitry"
- applications in medical fields





### A cryogenic temperature sensor



Details in arXiv:1508.05757

#### a-Ge sensor





Optically-flat fused silica, coated with soap solution.

#### a-Ge sensor





First parylene layer (0.25 mil)

#### a-Ge sensor





Sputtered titanium (150 nm) and gold (1 um)

#### a-Ge sensor





Photolithography (0.2 mil precision)

#### a-Ge sensor





Sputtered germanium

#### a-Ge sensor





Photolithography

#### a-Ge sensor





Wire-bond leads

#### a-Ge sensor





Second layer of parylene (0.25 mil)

#### a-Ge sensor





Peel off the substrate

### **Thermal testing**







# Radiopurity

Total sensor mass was  $\sim 4$  mg.

| Item                | em Mass % Conc. (ppb) |           | Activit  | y (nBq)    |            |  |
|---------------------|-----------------------|-----------|----------|------------|------------|--|
|                     |                       | Th-232    | U-238    | Th-232     | U-238      |  |
|                     |                       | Au senso  | ors      |            |            |  |
| Copper wire         | 32.0                  | < 0.087   | < 0.040  | < 0.431    | < 0.608    |  |
| Silver epoxy        | 12.2                  | < 0.079   | < 0.011  | < 0.150    | < 0.064    |  |
| Parylene C (sensor) | 51.9                  | 0.53(3)   | 0.25(6)  | 4.3(0.2)   | 6.2(1.5)   |  |
| Parylene C (wires)  | 1.6                   | 0.53(3)   | 0.25(6)  | 0.13(0.01) | 0.19(0.05) |  |
| Micro-90            | $\sim 0$              | < 1.5     | < 0.6    | $\sim 0$   | $\sim$ (   |  |
| Au traces           | 2.3                   | 47.4(1.1) | 2.0(0.4) | 17.0(0.4)  | 2.2(0.4)   |  |
| Ti traces           | $\sim 0$              | < 0.4     | < 0.1    | $\sim 0$   | $\sim$ (   |  |
| Total               | 100.0                 |           |          | < 21.9     | < 9.2      |  |
|                     |                       | a-Ge sens | ors      |            |            |  |
| Copper wire         | 32.3                  | < 0.087   | < 0.040  | < 0.431    | < 0.608    |  |
| Silver epoxy        | 12.4                  | < 0.079   | < 0.011  | < 0.150    | < 0.064    |  |
| Parylene C (sensor) | 52.4                  | 0.53(3)   | 0.25(6)  | 4.3(0.2)   | 6.2(1.5    |  |
| Parylene C (wires)  | 1.6                   | 0.53(3)   | 0.25(6)  | 0.13(0.01) | 0.19(0.05  |  |
| Micro-90            | $\sim 0$              | < 1.5     | < 0.6    | $\sim 0$   | $\sim$ (   |  |
| Au traces           | 1.1                   | 47.4(1.1) | 2.0(0.4) | 8.0(0.2)   | 1.0(0.2    |  |
| Ti traces           | $\sim 0$              | < 0.4     | < 0.1    | $\sim 0$   | $\sim$ (   |  |
| Ge traces           | 0.2                   | 2.4(0.7)  | 1.7(0.4) | 0.08(0.02) | 0.17(0.04  |  |
| Total               | 100.0                 |           |          | < 13.1     | < 8.2      |  |

# Other circuit components (concepts)



Figure 9: Designs for capacitors and an RC filter. For clarity these illustrations omit the outer, protective layer of parylene that could be applied to each circuit.

### Can we make coaxial cables with parylene?

- MJD tried. Issues:
  - When the thickness of the parylene becomes thick (> ~5 mil), the "film" becomes more rigid. Whiskers begins to form.
  - Hard to do a good ground shield for surface that becomes non-uniform (from cutting the whiskers)



## Summary

- The next-generation underground rare-event search experiments demand ultrapure targets, and electronics and associated components.
- Painstaking sourcing and assaying of materials are necessary to meet the stringent radiopurity goals.
- Assays and special handling can add substantial cost and time to project.

The End

### **Conversion factors**

|          | 238၂              | 8.1 x 10 <sup>-14</sup> g/g                   |
|----------|-------------------|-----------------------------------------------|
| 1 µBq/kg | <sup>232</sup> Th | 2.46 x 10 <sup>-13</sup> g/g                  |
|          | 40K               | 3.23 x 10 <sup>-11</sup> g/g <sup>nat</sup> K |

### **Detector choice**

Both GERDA and MJD use p-type point-contact detectors



- Low capacitance: low noise possible
- p-type: easier handling in assembly
- "minimal" number of contacts: reduced component count
- Two commercial manufacturers can deliver P-PC detectors
- No timing / event position info

IEEE Trans. Nucl. Sci, 36, 926 (1989) JCAP , 9, 9 (2007)