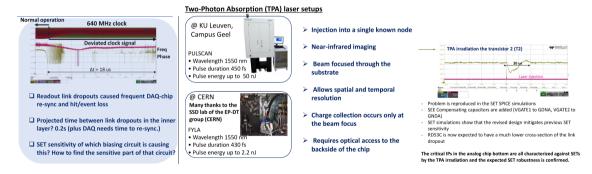
Highlights of TWEPP2022 Topical Workshop on Electronics for Particle Physics

Zhicai Zhang

LBNL

Oct 14, 2022


TWEPP2022

- One week workshop of electronics for particle and astro-particle physics experiments:
 - ASIC, FPGA, optoelectronics, power, trigger, system
 - Radiation tolerant systems
 - Status and experience of existing experiments's upgrade (production, testing, installation, commissioning and running)
 - R&D for future experiments
- Indico agenda: https://indico.cern.ch/event/1127562/
 - About 200 attendees
 - 72 oral + 100 poster presentations, 6 invited talks, 3 hours tutorial (on high speed PCB design)
- This talk: highlights of a few selected presentations, mostly about ASIC

Status of Existing Upgrades

RD53: pixel chips for ATLAS and CMS

- Final chips to be submitted soon (ATLAS: Q4 2022, CMS: Q1 2023)
- Currently focusing on verification: SEU/SET verification at RTL and gate level

Talk(s): R. Beccherle, J. Lalic

DC-DC converters for CMS MTD and ECAL

- Few interesting observations from them:
 - Low frequency (about 20 kHz) oscillation of output voltage (up to 20mV amplitude) at a small range of load current

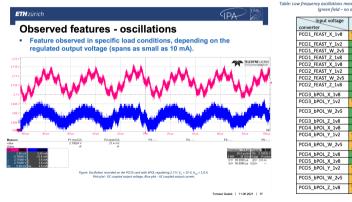


Table: Low frequency oscillations measured at the output of the DC-DC converters. Measurements performed with 10 mA step load scan.

[arean field – no oscillations observed]. Current values denote range in which oscillations are present.

input voltage	7 V	8 V	9 V	10 V	11 V	12 V
converter						
PCCi1_FEAST_X_1v8	530 - 600 mA	560 - 630 mA	580 - 650 mA	600 - 670 mA	620 – 680 mA	630 - 700 mA
	7.5 - 11.2 kHz	8.3 - 11.6 kHz	8.5 - 11.6 kHz	8.7 - 11.7 kHz	9.0 - 11.8 kHz	9.3 - 12.0 kHz
PCCi1_FEAST_Y_1v2						
PCCi1_FEAST_W_2v5						
PCCi1 FEAST Z 1v8						
PCCi2 FEAST X 1v8						
PCCi2 FEAST Y 1v2						_
PCCi2_FEAST_W_2v5						
PCCi2_FEAST_Z_1v8			620 - 630 mA 15.8-16.4 kHz	650 - 670 mA 16.4-16.7 kHz	660 - 690 mA 16.4-19.2 kHz	670 - 700 mA
			15.8-16.4 kHz	16.4-16.7 kHz	16.4-19.2 KHZ	16.2-18.8kHz
PCCi3_bPOL_X_1v8						
PCCi3_bPOL_Y_1v2	500 - 570 mA 19.7-26.5 kHz	510 - 590 mA 19.7-26.3 kHz	520 - 610 mA 19.5-26.5 kHz	530 - 610 mA 20.1-22.2 kHz	540 - 630 mA	550 - 640 mA
	19.7~26.5 kHz	19.7-26.3 kHz	19.5-26.5 kHz	20.1-22.2 kHz	20.9-27.5 kHz 800 - 810 mA	21.7-28.5 kH 820 - 850 mA
PCCi3_bPOL_W_2v5					31.9-41.9 kHz	39.9-42.7 kH
PCCi3 bPOL Z 1v8					SES 415 MILE	9919 4617 411
PCCi4 bPOL X 1v8						_
	410 - 520 mA	420 - 540 mA	420 - 560 mA	420 - 580 mA	430 - 580 mA	430 - 590 mA
PCCi4_bPOL_Y_1v2	15.9-19.9 kHz	16.1-22.9 kHz	16.1-23.5 kHz	16.3-24.6 kHz	16.5-25.6 kHz	16.5-27.4 kHz
PCCi4_bPOL_W_2v5	750 - 800 mA	800 - 870 mA	840 - 920 mA	870 - 950 mA	900-1010 mA	920-1040 mA
1 0014_01 00_44_245	20.1-27.6 kHz	20.5-28.6 kHz	21.3-30.6 kHz	22.3-28.7 kHz	23.3-33.6 kHz	23.5-35.3 kH
PCCi4_bPOL_Z_1v8						
PCCi5 bPOL X 1v8						
PCCi5 bPOL Y 1v2	420 - 560 mA	430 - 560 mA	440 - 580 mA	440 - 610 mA	450 - 610 mA	450 - 620 mA
rccis_brot_1_1V2	16.0-22.4kHz	16.0-22.6 kHz	16.2-23.6 kHz	15.4-26.9 kHz	16.2-27.2 kHz	15.4-29.3 kHz
PCCi5_bPOL_W_2v5	740 - 840 mA	800 - 900 mA	840 - 970 mA	870-1010 mA	900-1060 mA	920-1080 mA
	19.5-31.6kHz	21.3-33.0 kHz	21.9-34.5 kHz	22.6-36.3 kHz	23.8-38.2 kHz	24.2-39.1 kHz
PCCi5 bPOL Z 1v8	540 - 670 mA	560 – 700 mA	590 – 730 mA	610 – 750 mA	620 - 770 mA	630 - 780 mA
	13.8-22.2kHz	14.2-23.4 kHz	15.4-24.9 kHz	16.0-26.4 kHz	16.4-26.9 kHz	16.4-27.6 kHz

Talk(s): T. Gadek

DC-DC converters for CMS MTD and ECAL

- Few interesting observations from them:
 - Efficiency drop in a narrow input voltage span (around 8 V)

Observed features – efficiency drops

Feature observed in a very narrow input voltage span of 250-300 mV.

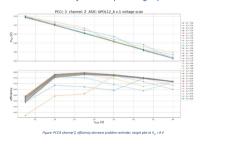


Table: Input voltage regions causing efficiency drops in DC-DC converters measured at 0.25 – 4 A load (green field - none observed)

input voltage converter	7 – 8.5 V	8.5 – 10 V	10 – 12 V
PCCi1 FEAST X 1v8			
PCCi1_FEAST_Y_1v2			
PCCi1_FEAST_W_2v5			
PCCi1_FEAST_Z_1v8			
PCCi2_FEAST_X_1v8			
PCCi2_FEAST_Y_1v2			
PCCi2_FEAST_W_2v5			
PCCi2_FEAST_Z_1v8			
PCCi3_bPOL_X_1v8	8.10 - 8.35 V		
PCCi3_bPOL_Y_1v2	7.95 - 8.20 V		
PCCi3_bPOL_W_2v5	7.95 - 8.25 V		
PCCi3_bPOL_Z_1v8	7.80 - 8.05 V		
PCCi4_bPOL_X_1v8	8.05 - 8.25 V		
PCCi4_bPOL_Y_1v2	8.20 - 8.40 V		
PCCi4_bPOL_W_2v5	8.20 - 8.45 V		
PCCi4_bPOL_Z_1v8	8.15 - 8.40 V		
PCCi5_bPOL_X_1v8	7.00 – 7.25 V		
PCCi5_bPOL_Y_1v2	7.85 – 8.10 V		
PCCi5_bPOL_W_2v5	7.85 - 8.15 V		
PCCi5_bPOL_Z_1v8	7.50 - 7.75 V		

Talk(s): T. Gadek

Tomasz Gartek | 11.06.2021 | 19

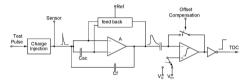
Selected R&D Progress

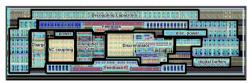
TimeSPOT: ASIC for 4D-Tracking with 28 nm CMOS

• TimeSPOT1: 32x32 channels with in pixel TDC; $\sigma_t \sim 50$ ps; $\sim 20 \, \mu \text{W/pixel}$

Timespot1: Analog Front End

Inverter core amplifier with double Krummenacher FB

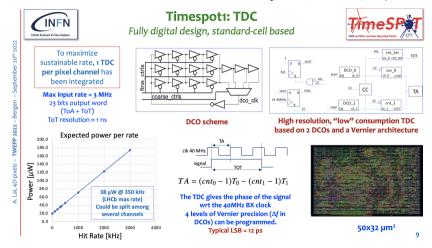

Inverter-based Charge Sensitive Amplifier (CSA) with DC current compensation.


Leading Edge Discriminator with Discretetime Offset-Compensation for threshold uniformity

OC procedure: 250 ns every ≤800 µs

Pwr regime	nominal	high
Pwr/channel [µW]	18.6	32.9
Slew rate [mV/ns]	250	360
$Z_{in}[\Omega]$ in BW	23k	23k
Gain [dB]	93	93
RMS noise [mV]	3.9	3.8
BW [MHz]	311	455
Jitter [ps]	15.6	10.5

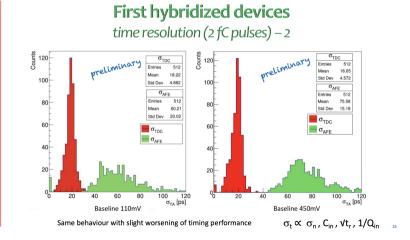
Expected performance @ 2 fC (post-layout simulation)



50x15 µm2

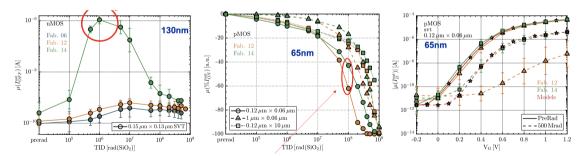
8

TimeSPOT: ASIC for 4D-Tracking with 28 nm CMOS


• TimeSPOT1: 32x32 channels with in pixel TDC; $\sigma_t \sim 50$ ps; $\sim 20 \ \mu\text{W/pixel}$

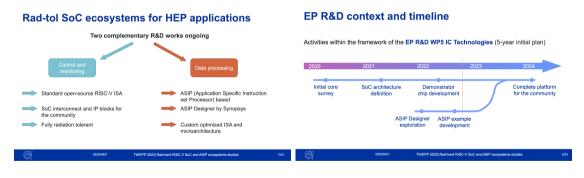
Talk(s): A. Lai

TimeSPOT: ASIC for 4D-Tracking with 28 nm CMOS


• TimeSPOT1: 32x32 channels with in pixel TDC; $\sigma_t \sim 50$ ps; $\sim 20 \ \mu\text{W/pixel}$

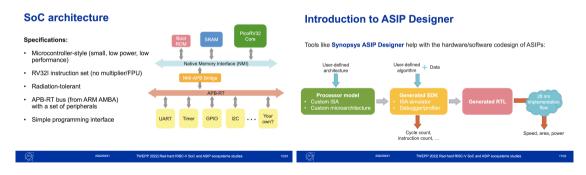
Talk(s): A. Lai

Fab-to-fab and run-to-run variation of TID


- Large variability observed in the radiation response of 130/65nm CMOS technologies: different fabrication plants, different runs within one fab.
- An effort in the past 8 years: 22 chips from 3 different fabs in 130nm and 10 chips from 2 different fabs in 65nm were measured.
- Conclusion: small device has larger variation and not well modeled.

Talk(s): G. Termo

Rad-hard SoC and ASIP


- SoC: useful for slow control and monitoring on detector chips. CERN is working towards a flexible, standardized and open platform to build your own custom SoC.
- ASIP: allow to add on-chip data processing capabilities to your chips.

Talk(s): M. Andorno

Rad-hard SoC and ASIP

- SoC: useful for slow control and monitoring on detector chips. CERN is working towards a flexible, standardized and open platform to build your own custom SoC.
- ASIP: allow to add on-chip data processing capabilities to your chips.

Talk(s): M. Andorno

Developments with 28 nm CMOS

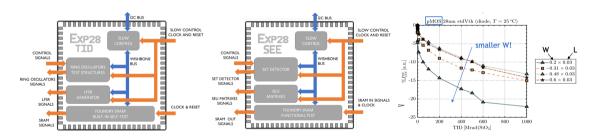
 CERN IP blocks: a few rad-hard analog IP blocks are being developed within the 3-way NDA

IP Block Library (Design Finished)

Circuits to share	Notes	
Bandgap voltage reference and temperature monitor	Block submitted in January 2022. Develop- ment lead by G. Traversi (Bergamo/Pavia) collaboration with the INFN Falaphel project with support from CERN engineers.	
Digital to Analog	Core block submitted in January 2022.	
Converter (8-bit)	Development lead by M. Piller	
Differential line drivers and receivers	Block submitted in January 2022. Develop- ment lead by F. Bandi.	
Rail to Rail Operational	Rail Operational Completed. To be submitted in 2022.	
Amplifier	Development lead by J. Kaplon.	

Design followed guidelines for radiation hardness from the initial technological characterization 1 .

IP Block Library (Work In Progress)


Circuits to share	Notes		
Analog to Digital Converter	In progress. Development lead by		
for monitoring (12b incremental	T. Hofmann. Collaboration with		
16b free running; Volt/curr mode)	University of Ulm.		
Rail to Rail Operational	In progress. To be submitted in 2022.		
Amplifier (slow/low power (e.g. monitoring in unity gain))	Development lead by M. Piller.		
Digital to Analog	Development lead by V. Sriskaran.		
Converter (10-bit)	,		
Digital PLL	Discussion on specifications ongoing, collaboration with WP6.		
DCDC converter	In progress. Development lead by S. Miche and G. Ripamonti		
LDO	In progress. Development lead by TU Graz supervised by S. Michelis		
Shunt LDO (SLDO) for serial powering solutions (mainly inner tracker pixels)	In progress. Development lead by M. Karagounis (FH Dortmund)		

Talk(s): F. Bandi, G. Bergamin

¹ GIULIO BORGHELLO, "Advantages of 28nm technology in ultra-high-TID environments", Forum on 28nm CMOS (CERN), Login and access required, 2020.

Developments with 28 nm CMOS

• EXP28: chips suite to evaluate radiation effects of 28 nm: TID, SEE, analog IP blocks

Talk(s): F. Bandi, G. Bergamin

TWEPP 2023...

Backup slides