ITkPixv1.1 – Threshold vs. BCID dependence study

Emily Thompson, Timon Heim, Maurice Garcia-Sciveres
Weekly instrumentation meeting
September 30, 2022

Context

- Testing ITkPixv1.1 preproduction chip
- A dependence of the threshold on the BCID has been observed:

- First noticed periodic behavior in noise scan
- Also observed in RD53A

Mark Standke

Context

- Testing ITkPixv1.1 preproduction chip
- A dependence of the threshold on the BCID has been observed:

Figure 34: Timing diagram illustrating standard calibration injection.

160 MHz clock → 1 BCID = 4 Cal Edge Delays

Reproducing this behavior

We confirm that we see a similar behavior, and it has also been observed on CMS chip (CROC)

Mark Standke

More interesting features

Pixel-by-pixel threshold shift depends on location and core column

Pixels closest to GNDA pads have lowest threshold shift

Difference between chips with single and double isolation

- We want to compare threshold vs. BCID with single and double isolation chips
- This comparison was already performed with ITkPixv1.1 chips:

Double isolation: both analog and digital circuits embedded in deep N-wells

Single isolation: only digital circuit in deep N-well

We will make this comparison with ITkPixv1.0 chips, where both single and double isolation chips are available without sensor

Difference between chips with single and double isolation

Results comparing single and double isolation of ITkPixv1.0 chips (without sensors, -20 C)

- Only 40 MHz component is visible → connection between sensor and 10 MHz component?
- Oscillation amplitude is smaller than previous plots → temperature dependent?
- Oscillation is slightly higher for double isolation → effect could be due to unstable GND?

Difference between chips with single and double isolation

In these plots we have changed DiffComp: $500 \rightarrow 1000$ (comparator total current bias) + chips retuned

- No decrease in amplitude
- Phase is shifted

Summary & next steps

- We are actively investigating the threshold dependence on BCID of ITkPixv1.1 chips still many open questions
- Next steps:
 - Understand dependence of this effect on temperature
 - Better analysis:
 - Analyze at pixel-by-pixel threshold changes instead of average threshold shift
 - Look at how collected charge distribution changes using ptot
 - Compare tag distribution between peaks and valleys
 - Impact on tracking?

Backup: std vs. ptot threshold scans

- To use ITkPixv1.0 chips in this study, we first need to confirm if the threshold vs. BCID dependence is observed
 using ptot-threshold scans instead of std-threshold scans
- The following comparison was made with ITkPixv1.1 chip (with unbiased 3D sensor)

✓ Threshold vs. BCID behavior is also present when using ptot threshold scans

Backup: location dependence

- Amplitude of oscillation depends on pixel location and column
- These plots compare pixel-by-pixel threshold shift between peak and valley

Plot from Mark

Threshold shift vs. CAL delay Min: 0 Max: 24 vs. Core position

50 - - - 50

50 100 o 6 7 Threshold shift [DVCAL] 150 8 200 200 250 300 - 10 350 50 150 200 250 300 350 100

Our results eshold shift vs. CAL delay M

Pixels closest to GNDA pads have lowest threshold shift

Columns

Backup: location dependence

- Amplitude of oscillation depends on pixel location and column
- These plots compare pixel-by-pixel threshold shift between peak and valley

6

5

Plot from Mark

Threshold shift vs. CAL delay Min: 0 Max: 24 vs. Chip position

0 - 1 - 34 - 33 - 32 [-31] - 31 - 31 - 31 - 31 - 30 | Final Points | 1 - 29 | 1 - 28 | 1 - 27 | - 26

Columns

Our results

