RD53b S-Curve Fitting

September 19th ,2022 LBNL M2 Taisei Kumakura

Calculation method

- we usually use s-curve fitting to know threshold and noise
 - ideal s-curve: $P_{hit}(x) = \frac{1}{2} \left(2 E_r f_c \left(\frac{x threshold}{\sqrt{2} * noise} \right) \right) * 100$
 - Error function $E_r f_c = \frac{2}{\sqrt{\pi}} \int_x^{\infty} exp(-t^2) dt$

- What I did: Try to calculate threshold and noise by using s-cueve distribution without fitting
- Idea is
 - **ODifferential equation** of s-curve distribution must be gaussian
 - ①Get discrete derivative from occupancy distribution.
 - dn(i) = n(i+1) n(i)
 - ②Expectation of discrete derivative(=mean of gaussian) must be threshold
 - Threshold $E = \sum_{i=0}^{N} x \cdot p(x)$
 - Noise $\sigma = \sqrt{Varaiance} = \sqrt{\sum_{i=0}^{N} (x^2 \cdot p(x)) threshold^2}$
 - parameter
 - x: injection charge = $(i + 0.5) \times Vcalstep$
 - p(x):probability to get hits in derivative = dn(i)/n_injections

How calculation method work

tuning threshold=2000[e] step_size=10

- Get the average of 5times threshold scan of HPK quad module in both fitting and calculation method
 - Threshold and noise value are almost same as fitting results
 - Scan time and analysis time are almost same because fitting needs only few seconds
 - Number of failed fit was decreased!
 - Number of failed fit = vcalMax>**Thre**>vcalMin, vcalMax-vcalMin>**Noise**>0, fabs(par[2]-/injections-1)<0.1, Chi2>???

Fitting

V1.1 HPK	chip1	chip2	chip3	Chip4	
Threshold[e]	1833±0.9	1853±19.5	1846±2.3	1958±46.1	
Noise[e]	220.4±0.5	220±0.4	221.8±0.4	323.4±0.5	
Failed Fit	612±12	327±11	824±13	2148±21	
Scan Time[s]	97.699				
Analysis Time[s]	0.713				

Calculation

V1.1 HPK	chip1	chip2	chip3	Chip4	
Threshold[e]	1834±22.4	1844±1.5	1845±1.6	1962±1	
Noise[e]	226.6±0.5	225±0	229±0	341.2±0.5	
Failed Fit	254±5.1	151±10	280±5.3	1404±10	
Scan Time[s]	95.991				
Analysis Time[s]	0.797				

Rare cases

- These s-curve data must be classified into Failed Fit or data.
- So, I make these samples by simulation and think about criteria.
 - x: Injection charge[e]
 - y: Occumapcy

vcalMin: 1000 vcalMax:3000 vcalBins:40 vcalstep:50 n_injections:100

case 1 2 | Threshold & noise results

- Of cource, Results are strange.
 - Threshold = ~ 0
 - Threshold $E = \sum_{i=0}^{N} x \cdot p(x)$
 - $\bullet \quad \sum_{i=0}^N p(x) = 0$
 - $p(x) = (n(i+1) n(i))/n_injections$
 - Noise = unexpected
 - Noise $\sigma = \sqrt{\sum_{i=0}^{N} (x^2 \cdot p(x)) threshold^2}$

- [To solve it] classify these pixels as a failed fit
 - Criteria of Threshold
 - because threshold is likely around 0
 - for example: Threshold < vcalMin or Threshold < 500
 - Criteria of sum(p(x))
 - because sum(p(x)) is likely around 0
 - for example: p<0.5 && -0.5<first_p<0.5 && -0.5<last_p<0.5
 - first_p is a p of most left part bin
 - last_p is a p of most right part bin

case 34 Threshold & noise results

- Results depends on the distance from edge window
 - In edge part, threshold difference get large
 - Is this failed fit? or do we need to get threshold value?
 - I think it is difficult to derive precise threshold in this case

オレンジグラフはFailed Fitに分類する。 pのガウシアンを求めて、面積が対象じゃなければ Failed Fit Threshold-Noise <vcalMinとか?

Setting threshold[e]	1100	1300	1500
Threshold result[e]	998	1297	1502
Noise result[e]	358	96	101

Setting threshold[e]	2500	2700	2900
Threshold result[e]	2505	2709	2407
Noise result[e]	98	110	1053

Summary

- Calculation method works well in ideal threshold data.
 - The benefit is the number of failed fit pixels
- Next, we need to think about criteria for rare cases
 - we should discuss more
- This is my last day in LBNL. Thank you for teaching me for this 10 months!