ITkPixv1.1 – Threshold vs. BCID dependence study

Emily Thompson, Timon Heim, Maurice Garcia-Sciveres, Amanda Krieger

Pixel roundtable

October 25, 2022

Context

- We are investigating threshold vs. BCID dependence if ITkPix chips
- Shown last <u>week</u>: Results with different DiffComp values, incomplete temperature dependence studies
 - Fixed issue with scanning InjFineDelay above 50 ns
- We are currently focusing on:
 - 1. Understanding **DiffComp / DiffPreamp** dependence of threshold oscillation
 - 2. Understand **temperature** dependence of threshold oscillation
- We are using the following chips:

Freezer, -20 C

- 1. v1.0 without sensor, double isolation (101)
- 2. v1.0 without sensor, single isolation (122)

Climate chamber #2:

1. Quad with HPK planar sensor, biased @ 100V

Climate chamber #1:

- 1. v1.1 with 3D sensor, unbiased, single isolation (?)
- 2. v1.0 with questionable sensor, unbiased (?)
- 3. v1.0 without sensor, single isolation (122)
- 4. v1.0 without sensor, double isolation (10A)

Context

- We are investigating threshold vs. BCID dependence if ITkPix chips
- Shown last <u>week</u>: Results with different DiffComp values, incomplete temperature dependence studies
 - Fixed issue with scanning InjFineDelay above 50 ns
- We are currently focusing on:
 - 1. Understanding **DiffComp / DiffPreamp** dependence of threshold oscillation
 - 2. Understand **temperature** dependence of threshold oscillation
- We are using the following chips:

Freezer, -20 C

- 1. v1.0 without sensor, double isolation (101)
- 2. v1.0 without sensor, single isolation (122)

Climate chamber #2:

1. Quad with HPK planar sensor, biased @ 100V

Climate chamber #1:

- 1. v1.1 with 3D sensor, unbiased, single isolation (?)
- 2. v1.0 with questionable sensor, unbiased (?)
- 3. v1.0 without sensor, single isolation (122)
- 4. v1.0 without sensor, double isolation (10A)

v1.0, no sensor, single iso

- Chip is retuned to 2000e after changing DiffComp
- Scanning fine delay (0.78125 ns each, but in steps of 2) with calledge delay = 0

- We see 40 MHz oscillation
- Amplitude changes slightly, dispersion increases with higher DiffComp

(Note x-axis range difference)

v1.0, no sensor, double iso

- Chip is retuned to 2000e after changing DiffComp
- Scanning fine delay (0.78 ns each, but in steps of 2) with calledge delay = 0

DiffTH1L/M/R: 200/270/200

DiffTH1L/M/R: 200/302/200

We see 40 MHz oscillation

DiffTH1L/M/R: 200/238/200

Amplitude changes slightly, dispersion increases with higher DiffComp

(Note x-axis range difference)

What happens if we change the DiffPreComp and DiffPreamp settings?

Use v1.1 chip (with sensor) instead of v1.0 chips (without sensor) to speed up scans.

Freezer, -20 C

- 1. v1.0 without sensor, double isolation (101)
- 2. v1.0 without sensor, single isolation (122)

Climate chamber #1:

- 1. v1.1 with 3D sensor, unbiased, single isolation (?)
- 2. v1.0 with questionable sensor, unbiased (?)
- 3. v1.0 without sensor, single isolation (122)
- 4. v1.0 without sensor, double isolation (10A)

v1.1, with unbiased 3D sensor

DiffPreamp studies

Default:

DiffPreComp: 350,

DiffPreampL: 800,

DiffPreampM: 800,

DiffPreampR: 800,

DiffPreampT: 800,

DiffPreampTL: 800,

DiffPreampTR: 800,

We see 10 MHz oscillation

DiffPre: 900 (23 C)

v1.1, with unbiased 3D sensor

DiffPreamp studies

Default:

DiffPreComp: 350,

DiffPreampL: 800,

DiffPreampM: 800,

DiffPreampR: 800,

DiffPreampT: 800,

DiffPreampTL: 800,

DiffPreampTR: 800,

We see 10 MHz oscillation

DiffPre: 300 (room temp)

DiffPre: 700 (room temp)

DiffPre: 500 (room temp)

DiffPre: 900 (room temp)

Wait 5 ms after changing preamp

Wait 20 ms after changing preamp

Wait 100 ms after changing preamp

Going back to original 5 ms wait time, I couldn't reproduce these results! Even after using exactly the same chip configuration.

These have the exact same chip configuration file!!

Original scan (run Oct 19)

Repeat scan (run Oct 24)

Try different preamp values WITHOUT retuning chip in between. This ensure that the chip configuration stays the same. And don't run analog scan either.

EXACT procedure:

- Checkout latest changes of YARR from devel branch; recompile YARR.
- Set DiffPreamps = 900. Keep DiffPreComp at 350. Tune chip to 2000 e.
- Run series of threshold scans at different fine delay.
- Change DiffPreamps = 600. Do NOT retune chip.
- Run series of threshold scans at different fine delay.
- Repeat for different preamps.

v1.1, with unbiased 3D sensor

DiffPreamp studies

Default:

DiffPreComp: 350,

DiffPreampL: 800,

DiffPreampM: 800,

DiffPreampR: 800,

DiffPreampT: 800,

DiffPreampTL: 800,

DiffPreampTR: 800,

This slide is a sanity check that we are really scanning the full 200 ns of delay

DiffPre: 600 (10 C)

10⁵

10⁴

10 #, pixels

DiffPre: 500 (10 C)

DiffPre: 900 (23 C)

v1.1, with unbiased 3D sensor

• DiffPreamp studies

Default:

DiffPreComp: 350,

DiffPreampL: 800,

DiffPreampM: 800,

DiffPreampR: 800,

DiffPreampT: 800,

DiffPreampTL: 800,

DiffPreampTR: 800,

This slide is a sanity check that we are really scanning the full 200 ns of delay

v1.1, with unbiased 3D sensor

How stable are the threshold results? Do we see large variations when we run the exact same scan multiple times?

Results are very stable (w/in a few electrons)

Fluctuations seem to be random

Context

- We are investigating threshold vs. BCID dependence if ITkPix chips
- Shown last week: Results with different DiffComp values, incomplete temperature dependence studies
 - Fixed issue with scanning InjFineDelay above 50 ns
- We are currently focusing on:
 - 1. Understanding **DiffComp / DiffPreamp** dependence of threshold oscillation
 - 2. Understand **temperature** dependence of threshold oscillation
- We are using the following chips:

Freezer, -20 C

- 1. v1.0 without sensor, double isolation (101)
- 2. v1.0 without sensor, single isolation (122)

Climate chamber #2:

1. Quad with HPK planar sensor, biased @ 100V

Climate chamber #1:

- 1. v1.1 with 3D sensor, unbiased, single isolation (?)
- 2. v1.0 with questionable sensor, unbiased (?)
- 3. v1.0 without sensor, single isolation (122)
- 4. v1.0 without sensor, double isolation (10A)

Results @ room temperature:

We see mostly 10 MHz oscillation in A and mostly 40 MHz component in B-D

(Planning to run these with lower DiffPre values to get cleaner curves)

v1.0 without sensor, single isolation (122)

v1.0 with questionable sensor, unbiased

Results @ room temperature:

We see mostly 10 MHz oscillation in A and mostly 40 MHz component in B-D

These plots compare only two threshold scans from the previous slide*

v1.1 with 3D sensor, unbiased, single iso

v1.0 with questionable sensor, unbiased

v1.0 without sensor, single isolation (122)

^{*} Better analysis needed

Results @ room temperature:

We see mostly 10 MHz oscillation in A and mostly 40 MHz component in B-D

These plots compare only two threshold scans from the previous slide*

We see mostly column structure in A, mostly checkerboard pattern in C-D, and a mixture of both (?) in B

v1.1 with 3D sensor, unbiased, single iso

v1.0 without sensor, single isolation (122)

v1.0 with questionable sensor, unbiased

^{*} Better analysis needed

Summary so far

Freezer, -20 C

- 1. v1.0 without sensor, double isolation (101)
- 2. v1.0 without sensor, single isolation (122)
- 40 MHz frequency dominant
- No big difference between single / double isolation

Climate chamber #1:

- 1. v1.1 with 3D sensor, unbiased, single isolation (?)
- 2. v1.0 with questionable sensor, unbiased (?)
- 3. v1.0 without sensor, single isolation (122)
- 4. v1.0 without sensor, double isolation (10A)
- 10 MHz frequency dominant in #1
- 40 MHz frequency dominant in #3-4
- Difficult to tell in #2
- No big difference between single / double isolation

Hypothesis: 40 MHz is dominant in chips with a sensor.

Check this hypothesis with quad module:

Climate chamber #2:

1. Quad with HPK planar sensor, biased @ 100V

v1.1, with biased HPK planar sensor

Results @ 15 C:

For all chips:

DiffPreComp: 350

DiffPreamp: 500

DiffComp: 500

v1.0, no sensor, single iso

- Using v1.0 chip, single isolation, chip is retuned to 2000e after changing DiffComp
- Scanning the calledge delay (6.25 ns) with fine delay = 5

- We see 40 MHz oscillation
- Cal Edge Delay might be too coarse to determine if amplitude of oscillation is changing

v1.0, no sensor, single iso

- Using v1.0 chip, **double isolation**, chip is retuned to 2000e after changing DiffComp
- Scanning the cal edge delay (6.25 ns) with fine delay = 5

- We see 40 MHz oscillation
- Cal Edge Delay might be too coarse to determine if amplitude of oscillation is changing

v1.1, with unbiased 3D sensor

DiffPreamp studies

Results @ room temperature:

We see mostly 10 MHz oscillation in A and mostly 40 MHz component in B-D

v1.1 with 3D sensor, unbiased, single iso

v1.0 with questionable sensor, unbiased

v1.0 without sensor, single isolation (122)

Results @ room temperature:

We see mostly 10 MHz oscillation in A and mostly 40 MHz component in B-D

Fine Delay [0.78ns]

Results @ room temperature:

We see mostly 10 MHz oscillation in A and mostly 40 MHz component in B-D

Fine Delay [0.78ns]

v1.1, with biased HPK planar sensor

DiffPreComp: 350 DiffPreamp: 500 DiffComp: 500

v1.1, with biased HPK planar sensor

DiffPreComp: 350 DiffPreamp: 500 DiffComp: 500

Quad results

v1.1, with biased HPK planar sensor

DiffPreComp: 350

DiffPreamp: 500 DiffComp: 500

