

Development of High-Efficiency, High-Gradient Superconducting RF Cavities with MgB² Thin Films

LANL (USA): Torben P. Grumstrup, Joe Thompson, Tsuyoshi Tajima (PI)

<u>KEK (Japan)</u>: Hiroshi Sakai (PI), Eiji Kako, Kensei Umemori, Hayato Ito, Takafumi Okada, Tomohiro Yamada, Takeshi Dohmae

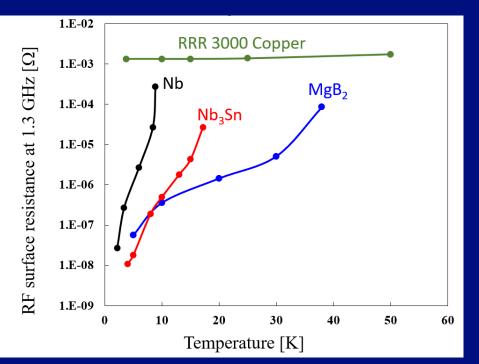
23 May 2023

LA-UR-23-25395

Purpose of this ongoing project

Demonstrate* a SRF cavity with a superconducting magnesium diboride (MgB₂) thin film on the interior surface

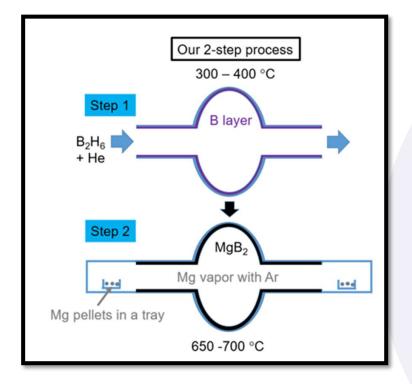
*Test to $E_{acc} \ge 10$ MV/m and reasonable Q_0



Purpose of this presentation

- Provide an update on construction and testing of the MgB₂ thin-film deposition facility for full-size cavities at Los Alamos National Lab, USA
- Provide an update on temperature sensor development and vertical test stand construction at KEK, Japan

Why Magnesium Diboride?



Tajima, Tsuyoshi. "Application of MgB₂ to Superconducting Radio-Frequency Cavities." 低温工学 (J. Cryo. Super. Soc. Jpn.) 57.1 (2022): 23-30.

- Operating temperature
 - Nb: 2 K
 - $Nb_3Sn: 4 K$
 - MgB₂: 20 K
- Cooling method
 - Nb: LHe at 2-4 K
 - Nb₃Sn: 4 K LHe, cryocooler
 - MgB₂: Cryocoolers
- Other benefits
 - Simple film deposition process
 - Copper substrate cavities
 - RF transparent grain boundaries

Simple, two-step film deposition process

Tajima, Tsuyoshi. "Application of MgB₂ to Superconducting Radio-Frequency Cavities." 低温工学 (J. Cryo. Super. Soc. Jpn.) 57.1 (2022): 23-30.

LOS Alamos

Ongoing efforts: B₂H₆ systems design

- Diborane is toxic, flammable
- Destroys some sealing materials
 - We have designed plumbing, controls, and safety systems with care
 - B₂H₆ tank, plumbing contained under negative pressure hood

• Exhaust streams scrubbed of B₂H₆

- Controls: cRIO chassis with LabView, EPICS user interface
- Interlocks: key temperatures, coolant flows rates, and haz gas sensors

Ongoing efforts: MgB₂ on boron-coated coupons

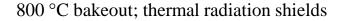
1.3 GHz niobium testbed cavity Thermocouple monitors coupon temp 26 Jul 2022 9:37:51 AM 8 Sep 2022 8:45:10 AM **Boron-coated coupons** 6 mm sapphire niobium los Alamos

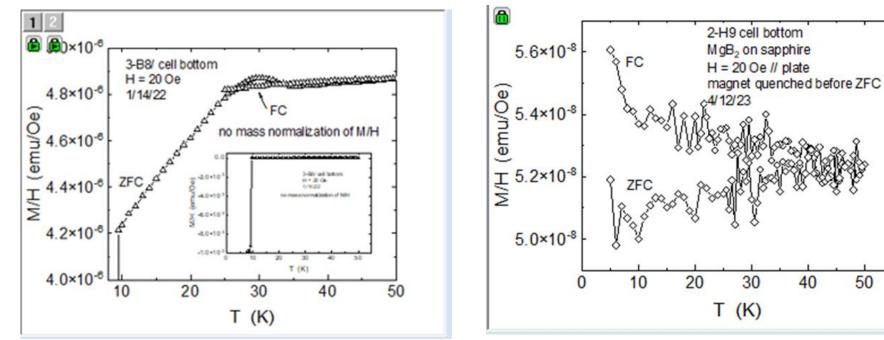
Magnetometer results, discussion (1)

Furnace Run 3

3)

Furnace Run 4

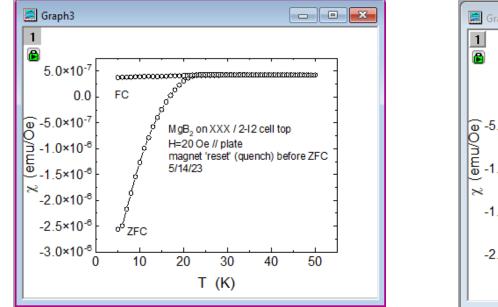

Magnetometer results, discussion (2)

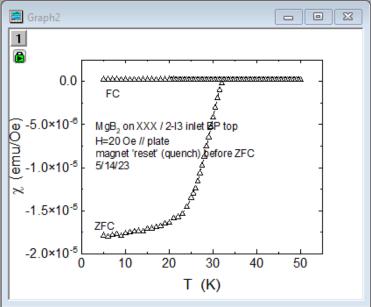


Furnace Run 6

Balance temp of north/south furnace zones

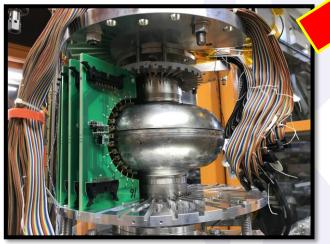
Furnace Run 5

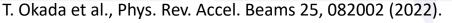


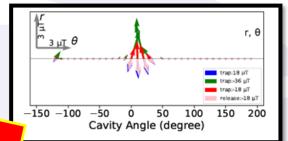


Magnetometer results, discussion (3)

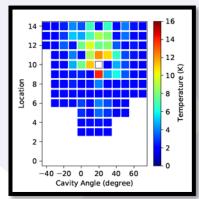
Furnace Run 7




KEK: Vertical test stand for cavity testing



- To be used to test MgB₂ cavities with diagnostics
- 3D mapping of cavity temperature and magnetic field



T. Okada et al., Review of Scientific Instruments 92, no. 3 (2021): 035003.

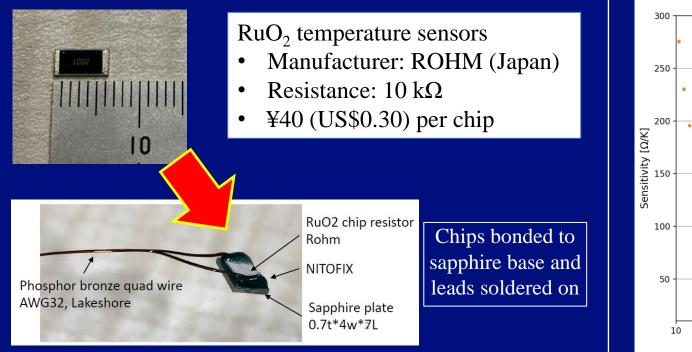
Change in magnetic field before/after quench

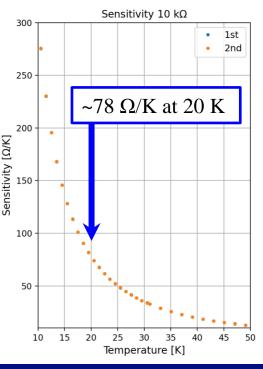
Temperature field at quench

The tested Nb cavity sent to LANL (2021) Marked at quenching point

[T. Dohmae]

Assembled and packed in class 10 clean room in KEK




Shipped to LANL measured Nb cavity to be MgB₂ coated by new furnace

KEK: new temperature sensor for 20 K

[T. Yamada]

Exhibits good sensitivity at around 20 K

Conclusion

- Working toward demonstration of the very first 1.3-GHz MgB₂-coated cavity
- Goal: Minimum accelerating gradient (E_{acc}) of 10 MV/m, with sufficiently high Q_0

