Development of Detectors for High-Granularity Dual-Readout Calorimetry

<u>US</u> J. Freeman (Fermilab, PI), C. Gatto (NIU) <u>Japan</u> W. Ootani (Tokyo, PI), T. Takeshita (Shinshu), T. Suehara (Kyushu), D. Jeans (KEK), K. Matsuoka (KEK)

The 45th meeting of the US-Japan Science and Technology Cooperation Program in High Energy Physics

May 23, 2023

ysics 2023

Next Generation Calorimeters

• Key features for future calorimetry discussed in DOE Basic Research Needs Study (BRN2020)

- High precision 5D calorimetry (E, \vec{x}, t)
- psec timing

Calorimeter technologies under intensive studies

- High-granularity PFA calorimetry
- Dual-readout calorimetry
- psec timing sensor

Priority Research Directions for Calorimetry at BRN2020

	PRD: Priority Research Direction	Grand
		Challenge
	PRD 1: Enhance calorimetry energy resolution for precision electroweak mass and	1
Jry	missing-energy measurements	
net	PRD 2: Advance calorimetry with spatial and timing resolution and radiation hard-	1,4
orir	ness to master high-rate environments	
Calo	PRD 3 : Develop ultrafast media to improve background rejection in calorimeters and particle identification detectors	1,3,4

Concept of Proposed Calorimetry

Overview of Research Plan How to Combine High-granularity and Dual-readout with Excellent Timing

Possible Applications

Generic R&D, but many applications at future experiments foreseeable

Calorimeters for Higgs factories

Wataru OOTANI "Development of Detectors for High-Granularity Dual-Readout Calorimetry", 45th meeting of the US-Japan Science and Technology Cooperation Program in High Energy Physics, May 23rd, 2023

s foreseeable

EIC Electron-Ion Collider

Hadron Calorimeter Endcap Electromagnetic Calorimeter DIRC Solenoidal Magnet RICH Detector Barrel Hadron Calorimeter Transition Radiation Detector Preshower Calorimeter Electromagnetic Calorimeter Hadron Calorimeter Electromagnetic Calorimeter Hadron Calorimeter Endcap

REDTOP Rare Eta Decays To Observe new Physics

Cherenkov Detector

+HV

Proposed concept

- Cherenkov radiator + UV-GasPM
- •UV-GasPM
 - Photocathode: Csl
 - Electron multiplier: DLC-RPC

Expected Advantages

- Uniform and efficient Cherenkov readout
- **Excellent timing** (thin gap with no drift region, higher QE with higher electric field)
- High-rate capable
- Low- and uniform- mass distribution
- Large area at low-cost
- **High-granularity** with segmented readout pad for RPC

Target timing resolution

• $\mathcal{O}(10\,\mathrm{ps})$ with multiple photoelectrons from Cherenkov light

Cherenkov Detector

• Ultra-low-mass high-rate-capable RPC for MEG II experiment

- Diamond-Like-Carbon (DLC) -based electrode
- Ultra-low mass: $0.1 \% X_0$ with 4 layers
- High efficiency: > 90% with 4 layers
- Good time resolution: $160 170 \, \text{ps}$ with single layer (no optimisation for timing)
- High rate capability: $> 1 \text{ MHz/cm}^2$

• Fast timing RPC-based photo-detector, GasPM (KEK, K. Matsuoka)

• Single photon resolution of $25 \, \mathrm{ps}$ with prototype

Prototype of GasPM

https://doi.org/10.1016/j.nima.2023.168378

Japan (

Ref) https://pcs-instruments.com/articles/thescience-behind-diamond-like-coatings-dlcs/

DLC on Kapton

Cherenkov Detector Progress in Japan

• Timing performance of DLC-RPC prototype

- Gap: 192 µm
- Anode: $4 M\Omega/sq$, Cathode: $40-55 M\Omega/sq$
- Gas: R134a/SF6/isobutane (94/1/5)
- NOT optimised for timing yet

Timing resolution

- Best resolution of $80 \, \mathrm{ps}$ obtained for large signal
 - Large signal = avalanche over full gap length in GasPM
 - Average # primary electrons ~2 (<u>https://doi.org/10.1016/S0168-9002(03)00337-1</u>)

 \Rightarrow Single photoelectron time resolution: 80 ps $\times \sqrt{2} \sim 110$ ps

- Timing resolution expected for Cherenkov detector
 - Expected # photoelectrons with (3mm-thick MgF2 and CsI photocathode) ~10

 \Rightarrow Expected timing resolution: 35 ps

• Promising. Still to be improved.

• Further optimisation of RPC design for timing

- Thinner gap
- Higher voltage
- Optimise gas mixture
 - Larger fraction of SF6 for better timing performance
 - Eco-friendly gas

Cherenkov Detector Progress in US

Investigation of best Cherenkov radiator material

- Setting up numerical computation for photoelectron yield
- Acquired radiator material candidates (sapphire, MgF₂, VUV glasses)

Preparation for photocathode coating

- Design of coating (conductive under-layer, electrode for bias voltage)
- Purchased optical profilometer and VUV sectrophotometer to check coating quality

Optical profilometer

VUV spectrophotometer

0*0*0*0*0*0		

* * * * * *		

Sapphire (uncoated)

Sapphire (5-sides AI coated)

Fermilab evaporation system for Csl photocathode deposition

Mechanical structure design for radiator

Readout electronics

- Waveform digitizer (CAEN DT5742B, DRS4 16ch) for initial lab test (time resolution < 50ps)
- CAEN PETIROC system (64ch) for prototype beam test (time resolution ~15ps)

CAEN DT5742B

Cherenkov Detector First Prototype

Construction of the first prototype for the Cherenkov detector in progress

- Combined radiator/Csl-photocathode (US) + DLC-RPC (Japan)
- Performance such as QE, stability and timing resolution to be tested

Setup for first prototype (in preparation)

Mechanical structure design for radiator

Scintillation Detector

SiPM-on-strip technology

• High granularity with reduced number of readout channels (×1/10)

• Challenges

- Wider and longer strip
- Light yield and uniform response
- Possibility of double SiPM readout

Synergy with expertise of US and Japan

Strip-SiPM optical coupling (Tokyo, Shinshu)

Scintillator strip ECAL prototype (Tokyo, Shinshu)

Scintillation Detector

Original plan

Scintillator pellet with high light yield production in US

\Rightarrow Injection moulding for strip production in Japan

Equipments for scintillator pellets production (Fermilab)

Metal moulding for scintillator strip (Tokyo, Shinshu)

Light yields for scintillator pellets (Fermilab)

Wataru OOTANI "Development of Detectors for High-Granularity Dual-Readout Calorimetry", 45th meeting of the US-Japan Science and Technology Cooperation Program in High Energy Physics, May 23rd, 2023

Modified plan

Optimisation of strip-SiPM design op in progress

Optical photon simulation for scintillator strip

Strip-SiPM optical coupling

MPPC

scintillator strip

Simulation Study

• Started simulation study on expected performance with this calorimeter technology

• Setup

- Based on CALICE-AHCAL test beam setup
- Large stack instrumented with 30x30mm², 3mm-thick tiles, total size 2.16 x 2.16 x 2.133 m³
- Alternate layers of plastic scintillator / sapphire

Digitisation

- Scintillator: 10p.e./MIP, 10k-pixel SiPM
- Cherenkov: Count superluminal path length within tile (v > c/n)

New R&D for a new calorimetric technique to address crucial requirements for calorimeters at future collider experiments

• Fusion of two key calorimeter technologies (high-granularity and dual-readout) together with excellent timing performance

Cherenkov detector

- Cherenkov radiator + UV-GasPM with DLC-RPC
- Promising timing performance already obtained even with non-optimal RPC. To be further improved
- Construction of the first prototype by combining RPC (Japan) and radiator (US) in progress

Scintillation detector

- SiPM-on-strip technology
- Optimisation for strip-SiPM deign in progress

• Plan

- Construction and performance test of first prototype of Cherenkov detector to be done soon
- Construction of full prototype toward beam test at Fermilab in 2024

Summary

• Down-sizing R&D plan. No R&D for scintillator material with improved performance and production with injection moulding

Wataru OOTANI "Development of Detectors for High-Granularity Dual-Readout Calorimetry", 45th meeting of the US-Japan Science and Technology Cooperation Program in High Energy Physics, May 23rd, 2023

Backup

Ir Instruments and Methods in Physics Research A 611 (2009) 25–40

Energy Resolution rms ₉₀	$(E_j)/E_j$	
= 45 GeV	$E_j = 100 \mathrm{GeV}$	$E_j = 180 \mathrm{GeV}$
7	2.9	3.0
)	2.0	1.6
2	0.7	0.8
	0.5	0.8
5	0.5	0.9
7	1.8	2.1
3	1.0	1.1
	1.3	1.7
2	0.7	0.5

neutral hadron cluster.

Timing

Increasing attention as additional value to enhance collider detector performance

- Tracking
- Particle ID to cover inaccessible momentum region by dE/dx
- Rejection of pileup/off-timing BG
- Rejection of slow neutron events
- Improve PFA performance
- ...

Pileup rejection with timing cut @CLIC (0.5ns bunch separation)

Effect of TOF (res. 100ps) on particle ID performance

ECAL hit selection for TOF measurement

arXiv:2105.12495

Timing resolution

- Best resolution of $80 \, \mathrm{ps}$ obtained for large signal
 - Large signal = avalanche over full gap length in GasPM
 - Average # primary electrons ~2 (<u>https://doi.org/10.1016/S0168-9002(03)00337-1</u>

 \Rightarrow Single photoelectron time resolution: 80 ps $\times \sqrt{2} \sim 110$ ps

- Timing resolution expected for Cherenkov detector
 - Expected # photoelectrons with (3mm-thick MgF2 and CsI photocathode)

 \Rightarrow Expected timing resolution: 35 ps

• Promising. Still to be improved.

• Further optimisation of RPC design for timing

- Thinner gap
- Higher voltage
- Optimise gas mixture
 - Larger fraction of SF6 for better timing performance
 - Eco-friendly gas

6 85/5	5/10	0		
	···· •	1.1	111	
	1			
	1			
	1			
		1		
	1			
	1			
	1			
	-			
	1	1		
	1			
THE .	1			
A	÷.	Q :		
24				
	2			
	1	4	à	6
1	i	4		Ł

Cherenkov Detector Progress in Japan

Setup for Cherenkov Detector R&D in Japan

Gas system

Measurement system

Glove box for gasPM assembly

RPC prototype

