Survey of AC-LGADs for future 4D trackers with a proton beam

Christopher Madrid (Fermilab) US-Japan Hawaii Symposium 2023

cmadrid@fnal.gov

What are AC-LGADs?

- LGADs: Low Gain Avalanche Detectors
- Si device with internal gain (10-20): Large signals and low noise
- Thin (<50 micron depletion region): Uniform field, fast rise-time

No Chief States

- Gain layer termination requires ~50 µm gap size —
- **AC-coupled LGADs solves fill** factor issue

Why do we need 4D tracking? **Future machines**

- 4D-trackers improve the physics reach of future detectors
- Reduces beam induced backgrounds
- Used for track reconstruction and triggering
- Enhanced capabilities: PID and LLP reconstruction

	Machine	Technical requirement
	Tracking for e+e-	Granularity: 25x50 µm ² pixels
		Resolutions of 5 µm and <10 ps
	Tracking for µ+µ-	Granularity: 25x25 µm ² pixels
		Resolutions of 5 µm and <30 ps
	Tracking for 100 TeV pp	Radiation tolerant up to 8x10 ¹⁷ n/cm ²

EIC is a future machine hosted at **Brookhaven National Laboratory**

Will study the nature of the strong force

Electron Ion Collider

- For example, precise measurements of proton PDFs and quark-gluon plasma
- The ePIC detector is currently in the

• Fermilab Accelerator Complex

- FTBF has been critical in establishing LGAD

• 10mm long 500 µm pitch AC-LGAD		
N		

- - Exploiting signal sharing allows for position reco. resolution equivalent to sensors with ~10x the channel count
 - Measures performance of various strip lengths: 5mm, 10mm, and 25mm lengths

technology, design optimization, and makes way for future 4D detectors

Readout utilizes Lecroy scope for detailed waveform processing 4 second spill

Process ~100k events per

The resolutions obtained with several prototypes are presented, reaching simultaneous 18 µm and 32 ps resolutions With only slight modifications, these sensors would be ideal candidates for a 4D timing layer at the EIC BNL 10-100, 220V Pitch / 12 Exactly one strip observed ---- Two strip expected Two strip observed يستعدن الأخصي والتصادي التصاديني المتعصين Track x position [mm] Position resolution as a function of track x position

High resolution strips

- AC-LGAD strips with relatively narrow pitch (100 µm) have been measured [2]
- Again, utilizing signal sharing allows us to achieve great position resolution
- We present a world's first demonstration of silicon sensors in a test beam that simultaneously achieve better than 6-10 µm position and 30 ps time resolution
- This device is promising for future 4D tracker
- The time resolutions for LGADs has been well established to be ~30 ps for 50 µm thick sensors
- The thickness of the sensor is the limiting factor for the time resolution
- Limiting the Landu fluctuations of the Si and charge particle is the next step
- AC-LGADs with active thickness of 20, 30, and 50 µm have been measured

Thin pixels

┍┰╤┯┲┲┲┲┲┲<mark>┲┍┲╋</mark>┎┲<mark>┲┍┲┲</mark>┲┲┲ Single-channel (w/o TrackerCorrection) Single-channel (w/ TrackerCorrection) Multi-channel (w/ TrackerCorrection and The twenty to the second states of the second s -3.8 -3.6 -3.4 -3.2 -4.8 -4.6 -4.4 -4.2 -4

Conclusions

- A survey of many AC-LGADs scanning channel size and active thickness has been presented
- Look forward to future 4D trackers, AC-LGADs are a prime candidate for EIC's ePIC detectors and show promise for tracking at future HEP colliders

Acknowledgement and references

This poster has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy [1] C. Madrid, et al., First survey of centimeter-scale AC-LGAD strip sensors with a 120 GeV proton beam (2022). arXiv:2211.09698 [2] R. Heller, C. Madrid, et al., Characterization of BNL and HPK AC-LGAD sensors with a 120 GeV proton beam, JINST 17 (05) (2022) P05001. arXiv:2201.07772, doi:10.1088/1748-0221/17/05/p05001

