Research of Copper Thermal Spray Coating for Mitigating Electron Cloud

Mulee Yao1, Yusuke Suetsugu1, Kyo Shibata1, Takuya Ishibashi1, Hiromi Hisamatsu¹, Ken-ichi Kanazawa¹, Mitsuru Shirai¹, Shinji Terui¹ Toshiro Nishidono², Hiroyuki Chiba² 1) KEK, 2) Komiyama Electron Co., Ltd.

This study is supported by U.S.-Japan Science and Technology Cooperation Program in High Energy Physics

Introduction

SuperKEKB e- - e+ two-ring collider consisting of

- BELLE-II detector
- Injector (Linac): L ~600 m
- Damping ring (e+): C ~135 m

 Main ring (MR): C ~ 3016 m

 HER: 7 GeV e-, Max. current 1.14 A

 LER: 4 GeV e+, Max. current 1.46 A

Max. number of bunches = 2346 with ~2 RF-buckets spacing

Achieved peak luminosity: 4.65×10^{34} cm $^{-2}$ s $^{-1}$ [World record!] (HER 1.10 A/LER 1.32 A/ 2249 bunches)

The ECE will become a potential problem in SuperKEKB positron ring when we strive for a higher luminosity by increasing beam current in the future.

Electron Cloud Effect (ECE)

- For the beam with positive charge (proton and positron), the high-density electrons around the beam, also called as "electron cloud (EC)", cause the beam instability.

- Beam size starts to increase at a threshold bunch current, resulting in the reduction of the
- luminosity.
 This is known as the electron cloud effect (ECE).
- Threshold electron density in SuperKEKB LER: $3 \times 10^{-11} \, / \text{m}^3$

The Secondary Electron Yield (SEY or δ) is a

Electron bombardment of the inner surface of the beam pipes can reduce SEY 450 eV

Thermal Spray

- Materials with Low SEY can be used to reduce ECE. TiN, for example, has been used in 90% of the SuperKEKB LER
- In addition, rough surface generally has a lower SEY than smooth surface. However, a rough surface will increase the surface impedance, which may cause beam instability and increase

Thermal Spray Coating (T.S. Coating)

- Coating process: Melted or heated powdered materials are sprayed onto a surface.
 Original function: Protective layer, such as crankshaft reconditioning, corrosion pr
 Here we use this technology to increase roughness and, as a result, to reduce SEY. corrosion protection, etc.

Results

Electron Density around the Beam

- These figures show the electron density around the beam against the current linear density (i.e., bunch current/ RF bucket spacing) in the TiN-coated and T.S.-coated beam pipes of SuperKEKB.
- The numbers on the right represent the bunch number.
 The electron density in the T.S.-coated beam pipe was in the same order as that of TiN-coated beam pipe.
- Another phenomenon to be aware of was that the electron density in the T.S.-coated beam pipe increased with the bunch number.
- It may be caused by the differences in the characteristics or locations between monitors (to be checked).

Feasibility in Accelerators

Outgassing Rate Measurement

- · Method: CM method
- Outgassing rates: T.S. coating ≈ Flat Al surface (< 1 \times 10⁻⁹ Pa·m/s after 100 h)
- · Static desorption rate requirement of SuperKEKB: $< 10^{-8} \; \text{Pa·m/s}$

Surface Resistance

σ@5.044GHz [S/m]	$R_s = \sqrt{\frac{\pi\mu_0 f}{\sigma}} \left[\Omega\right]$
5.9E+7	1.8E-2
3.3E+7	2.5E-2
6.8E+6	5.4E-2
1.9E+6	1.0E-1
2.4E+6	9.2E-2
1.5E+6	1.2E-1
	[S/m] 5.9E+7 3.3E+7 6.8E+6 1.9E+6 2.4E+6

- Method: Cavity-resonator method
- Surface Resistance:
 - T.S. coating \approx Ti and SUS304

Adhesive Strength

- Method: JIS H 8402
- T = P/A
 - T [N/mm²]: Tensile adhesive strength P [N]: Tensile breaking load
- A [mm²]: : Coating area
- T values [MPa]: -T.S. coating on Al: 29.17
- -Electroplating Cu on SS: 27.17
- Dust

Method:

Number of particles/coating area: T.S. coating \approx NEG strip 707

Conclusion

- The T.S. coating had a lower $\, \delta_{\it max} =$ $0.7 \sim 0.8$ at higher E_{max} than that of flat
- The outgassing rate and adhesive strength of T.S. coating were adaptable.
- $E_n(eV)$
- The amount of dust and impedance were not inconsiderable.
- The electron density in the T.S.-coated beam pipe installed in SuperKEKB LER was comparable to that of the TiN-coated beam pipes.
- In conclusion, according to the comprehensive evaluation, the T.S. coating can be considered as a candidate technology for reducing ECE, while there are still room for improvement.
- This study can provide a new and useful information for researchers in this field in developing a low-SEY coating on beam pipes.