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- What are the masses of the neutrinos? % g =V
25 2
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- What kind of masses do_ neutrinos 193 2000 92005 92010 9015 5020
have? Are neutrinos their own Snowmass NFO1 Topical Report, arXiv:2212.00809
antiparticles? ,. Mass ordering is unknown.
m m
. [0 ) I R %
* Are there more than 3 kinds of f ’ T lam, "
neutrinos? =
Amztm
W 2
 How are the neutrino masses Bt
ordered? (implications for GUTs, cosmology, 2
Onbb) Am, ‘
4 5 N
/ : / b i M Credit: JGU-Mainz
- Do neutrinos and antineutrinos
oscillate differently? Do neutrinos i V2 Vs
violate CP symmetry (CPV)? (neutrinos
could play a role in the generation of the matter/anti- Va L]
matter asymmetry in the early universe)
« Is our 3-flavor picture of oscillations W
complete?
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Weak preferences for normal
ordering from atmospheric &
long-baseline experiments
Some regions of

joint MO-0cp-623 space are
excluded at >90% by NOvA and
T2K

NOVA and T2K best fit in NO,
consistent at ~10, but mutually
allowed region in 10 at <10

In summary: MO and &¢cp remain
unknown

Definitive experiments needed
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Sanford Underground
Research Facility
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» Several opportunities for major scientific discoveries:

e High precision measurement of neutrino oscillation parameters in
a single experiment

e Determination of the neutrino mass ordering, observation and
measurement of CP violation in the neutrino sector over the entire
possible parameter space

e Large, underground neutrino observatory for neutrino of astrophysical
origin (supernovae neutrino burst, solar, atmospheric) and plethora
of BSM physics.

DUNE Update: J. Maricic, Uni. of Hawaii 7



 DUNE Colla

» Strong, international
collaboration (from 2014):

* 1400+ collaborators!

e 206+ institutions!

* 37 countries and CERN!

Hawaii

CERN, January 2023 —— &
.:! ;
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 Liquid argon detectors

1300 km baseline - long baseline

- large matter effects
* unambiguously measure MO, CPV

 On-axis, wide band beam (v, v)
» High statistics over full period

1300 km‘“‘“ | .‘ * Increased BSM sensitivity
(807 Miles) Fermilath

40 ktons of LAr far detector
a mile underground:

Image NASA
2008 Tele Atla

Missouri
s

near ND and far (FD) LAr TPC detectors |
Reconstruct Ev over broad range:
imaging + calorimetry

Higher resolution, higher efficiency

Systematic errors constraints with ND
DUNE Update: J. Maricic, Uni. of Hawaii 9
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Incoming beam:
100% muon Vv’s
Or anti- v's
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« in the 1st year alone, DUNE will collect ~150 oscillated

Ve events.

- assuming a beam ramp-up to 1.2 MW, 2 FDs,

NO, 5CP=0

- expected range is 70-180 v, events, depending
on true MO, CP

E, (GeV)
* DUNE will be able to unambiguously and
simultaneously measure MO, CP given the baseline and *

on-axis beam
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DUNE v, Disappearance
sin,, = 0.580
700 Am2, =2.451 x 10° eV?
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DUNE v, Appearance
Normal Ordering
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DUNE Collaboration, u
Eur. J. Phys. C80, 978 (2020)
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Simultaneous Measurement of MO, CPV__,
P iixing Parameters in DUNE

0.14 Neutrinos
1285 km
0.12 Normal Ordering

Wb, = w2 014F  Antineutrinos W= | ¢ Effects of MO and
W5, =0 - 1285 km . Ws.-o ;
G 042 Normal Ordering °P CPV have different

Dscp=7d2 DSCP=T"’/2

o1 shape as a function
: of L/E

. DUNE measures
oscillations over

2 3 4 5678 %0 2 3 4 5678

Neutrino Energy (GeV) Neutrino Energy (GeV) more than a fU 1
period, which helps
0.14 eutrinos =- ntineutrinos =-
:‘235t km _ =ch _ oﬂz E :\2;5 kmt _ =ch _ oﬂz resolve .
0.127 |nverted Ordering |:|8:: o 0.12[- Inverted Ordering DSZZ o d eg eneraciles
> >
7 7000 S . o :
£ ool K  This is unique to
| | DUNE, and
complementary to

e B ~ER—— other experiments
Neutrino Energy (GeV) Neutrino Energy (GeV) W| th Narrow ﬂUX
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Long Baseline Neutrino

Facility (LBNF)




Sanford Underground

R Facility (SURF) Sou

* Attractive deep site: 4300 mwe
* Hosted Homestake neutrino experiment

* Accommodates 4 detector chambers and accompanying utilities
e Built-in flexibility to accommodate all detector needs

-

= i«\‘%é:_‘ ': j.’;-‘t" A - - }/} -

DUNE Update: J. Maricte 14



Ross Shaft
1.5km to surface

A

3

- 4850 ft level of Sanford —INNG
',v Un‘.d.erground Research Facility 0
L (SURF)

. from Fermilab

neutrinos

2 x Detector Caverns:
475'Lx65'W x92'H
145m Lx 20m x 28m

1 x Central Utility Cavern (CUC):
624'Lx64'W x37'H
180m Lx20m W x11mH

DUNE Update: J. Maricic, Uni. of Hawaii
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: 5 _—4850-90
Eil i ~4850-90A
485043—\ _4350_01‘ ,‘“1// West Access Drift
| 50-73
L] x J..' | —_ _///:48
— - i
4850-03——— 4
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485004~ {35005/
4 43?0-32
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i
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Benching ‘
4850L to 4910L it
I BenchC 4&?
- Bench D 4850-7
Bench E 2| ~ =
I Bench F 4850-13
Bench G |
- 48|50—1-‘=

4850L Excavation Completed

Excavation and Ground Support complete & accepted

Concrete Complete

All excavation work is under firm-fixed price construction contract and proceeding on cost and on schedule

DUNE Update: J. Maricic, Uni. of Hawaii
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° Hrn-focused wide-band beam, builds on the success of NuMI

broad spectrum of v's (& anti-v's) peaked at 2.5 GeV
focusing parameters optimized to for maximum sensitivity to CPV
o 1.2 MW, upgradeable to 2.4 MW

e Beamline design at 70% final design status. Final design of near detector
complex have been completed.

un-oscillated
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I Beamline Complex: Upstream end view of Primary Beamline, Target Hall, Decay Pipe, and Absorber |
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DUNE Phase I:

« Full near + far site facility and
infrastructure

« Upgradeable 1.2 MW beam
 Two 17kt LArTPC modules

« Movable LArTPC near detector with
muon catcher

 On-axis near detector

DUNE Phase |I:

« Two additional FD modules
« Beam upgrade to > 2MW
 More capable Near Detector

DUNE Update: J. Maricic, Uni. of Hawaii 20



Detector Technology=Liquid Argon—fi¥
Time Projection Chamber

Anode wire planes:

Liquid Argon TPC

m.i.p. ionization:
6000 e/mm

LAAA

|ldentify as v, CC from EM shower

" By Bo Yu (BNL)
Measure E, by summing energy of e

and hadrons (1 1T and 2 p*, here)

LAr TPC: excellent tracking and calorimetry (hadrons and electrons)

Suitable for very large detectors — high signal eff. and bkg. discrimination
High resolution 3D reconstruction — charged particles ionize Ar; electrons drift to
anode wires (~ms) for xy coordinate; drift time — z coordinate

Argon scintillation light (~ns) detected by photon detectors — provides t,

21
DUNE Update: J. Maricic, Uni. of Hawaii



« LBNF provides caverns for 4 detector modules at SURF and
2 far detector modules, each 10 kton of liquid argon (fiducial mass),

the largest LAr TPCs ever constructed.

* FD1: horizontal drift (like ICARUS, MicroBooNE)
« FDZ2: vertical drift (capitalizing on dual phase development)

FD installation 65m

&
| \Starts soon y
] A

. P RP
APA, Horizontal Drift #¥<~— \(; Heal Drift
APA = Anode Plane Assemblies erite
(1 / /// CRP = Charge
L Readout Planes

Order of magnitude more mass than has been deployed up to now from all LAr detectors

» DUNE science begins as soon as the far detectors are operational

DUNE Update: J. Maricic, Uni. of Hawaii 29



Fabrication of the 18! cryostat

|

//]

L is underway at CERN

V/

18m S
: ~. s Agreement
S Signed for CERN
production of 2nd

cryostat.
DUNE Update: J. Maricic, Uni. of
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Successful operation of prototypes of FD
at CERN, Neutrino Platform protoDUNEs
Physics from prototypes from exposure to
CERN test beam

Technology test + calibration
measurements + e,p,K re-scattering data

Eur. Phys. J. C82, 903 (2022) on Ar
DUNE Update: J. Maricic, Uni. of Hawaii 24




_ Near Detector

e ND hall is located 550m from proton target, 215ft deep, on-site at
Fermilab

e Purpose of the ND is to measure rate & spectrum of v’s before they
make their journey west and to the FD. The ND measures Vv's before

oscillations.
- 5 Primary Beam Enclosure
Near Detector
CO m p | eX Target MI-10 Point of Extraction
Absorber Complex Primary Beam
Complex Service Building
(LBNF-5)
= = s e e e Eea e S e e S s e | S —j.BNF o
suR¥



"DUNE ND is optimized with the same technology as FD

- ND LAr is tracking calorimeter, capable of handling beam rate
- > 50 neutrino interactions per beam spill (pixelated readout and optical

segmentation

- Near detector measurements both on & off axis

. ND-l,Aj:Z liquid argon TPC near detector

* TMS: The Muon Spectrometer

*  PRISM: off-axis movement system

b SAND System for On-Axis Neutrino Detection

 Two main detector
components:

- ND-LAr. + TMS
- SAND

the on-axis
neutrino

detector
(stationary)

ND that is
functionally
identical
to the FD

(moveable off-axis)

PRISM

neutrino

i---l{:jzi""'-. beam

C——SAND

26



~ DUNE PRISM

PRISM: Precision Reaction-
Independent Spectrum
Measurement

GENIE-based FD prediction is a
poor predictor for the FD data,

where as the linear combination of
ND (off-axis) data correctly predicts

FD spectrum
Use off-axis data to uncover

interaction modeling problems that
might induce an unexpected bias in
the extracted oscillation parameters

Event rate 10° /GeV /Year

DUNE Update: J. Maric

NuFit 4.1, AIM?I__ =2.52x10°° eV, sin?(6,;) = 0.45
32

15 — ——e—— Far detector 'data’

T e Far detector MC Prediction

E %

% PRISM Prediction + stat. err.
1~ Z

r - Near detector 'data'-driven

- Far detector Flux correction
05+ - Far detector NC+WSB correction

0 2 4 6 8
DUNE ND CDR, arXiv:2103.13910 Eec. proxy (GEV)



rototypes

[ww] A

We are also building prototypes of
the near detector

2x2 Demonstrator (NuMI beam at Fermilab) o
Full Scale Demonstrator (FSD) ~606
- Fully instrumen
Important to .test the pixelated, 20% scale ND-LA
modular design module operat/n@s,at

=200 5o (oo

Bern

Physics results from prototypes at
Bern, and in NuMI beam at FNAL

mh

ND 2x2 demonstrator being installed : , I"L__H!!Il

iIn NuMI beam at Fermi lab.

12 MINERVA 2x2 Cryostat 32 MINERVA
Modules and 4 TPCs Modules

DUNE Update: J. Maricic, Uni. of Hawaii S L 28
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Data points show NO,
0= sin2623= 0.5
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Precision Long Baseline Physics

45

DUNE Sensitivity B 336 kt-MW-years 26 0.03
[0 624 kt-MW-years - - MW= baded 4 P .
40 ::::r::;’:‘::‘;: 1104 kt-MW-years C 2,‘,’:5;:,:?:::" . z:i zmxy:::: - DUNE Sensitivity w845 UNCONStrained
. 9 m— Nominal Analysis | Normal Ordering Y _ Al Systematn::s
sin?20,, = 0.088 + 0.003 ; [ - — 1104 kt-MW-years - Normal Ordering
13 6,3 unconstrained sin®20,, = 0.088 + 0.003 o
—_ 35— sin%,, = 0.580 unconstrained 2.55/-90% C.L. (2 d.o.f.) NUFIT'4.0.90% C.L: 0.025 — sin’20,, = 0.088 unconstrained
] - = TrueValug _ sin%0,, = 0.580 unconstrained
(1]
® 30 — s
D < - 2 0.02-
- o o =) E 7
T 2 £ e F
= Ol oos. NOVA
3 2 oF 2.5 2 P
3 T 0 8 7
T - € 0.01F
L 5 L
=l 24 -
_ 0.005}
[ivenlosualonialoaalanealoanel Yok W [me====s=s=s=sscsmgeccscscgescscacusaaasannnn"
2'%-235 04 045 _0.25 0.55 06 0.65 0- e s 2 D.&ya Bay
0. 708-06 0402 0 02 04 06 08 1 i 5"~ "200 400 600 800 1000 1200 1200
. : ) - ) : ) ' Exposure (kt-MW-years)

Scp/n

* Resolution to 0¢pis ~6-16° depending on true value, and
sensitivity to CPV even if Nature is relatively unkind

« Excellent resolution to 0,3, including octant discovery
potential

« Resolution to 613 approaches Daya Bay, DUNE-reactor
comparison is sensitive to new physics

DUNE Update: J. Maricic, Uni. of Hawaii 32



DUNE is sitive to New Physic

/ in Neutrino Oscillations
- Neutrino Energy (GeV]10| o Neutrino Energy (GeV]101 o A % v
e« [f'v and v spectra are inconsistent with three-

flavor oscillations, 1t could be due to sterile

: oof migzosont | neutrinos (top), CPT violation (middle), or
S of  puad NSI (bottom)

02f— ?‘,‘;771,1, ste:nles

* DUNE covers a very broad range of L/E at both

102 10! 1 10 107 10° 10*

U (km/GeV) the ND and FD

PN o o e 3 T T T T3] 3 7

/A I 3 . DUNE can measure parameters like Am2 with
o BE /o = neutrinos and with antineutrinos
“10f 1 F . ; i

sE CPT 1 E o/ 3 ° DUNE has unique sensitivity to NSI matter

T e effects due to long baseline

AAm ) [10° eV’] Asin’®

* Characterizing new physics will be

st NSI : i challenging: precise measurements with small
si(( O O matter effect in Hyper-K and large matter
"9 0170203 66 effect in DUNE Phase II likely required
e [

DUNE Update: J. Maricic, Uni. of Hawaii 33
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L (10 ergsls)

Sensitivity to Flectron Neutrinos

Infall 1 Neutronization
) H

Accretion Cooling

10™ 1

o
[

Time (seconds)

Events perbin <[

Cooling

DUNE v, ‘
o :I:
| —H
3.05 01 X 19';1 L (s;cond sf)).zs
Ve Ve Vy
DUNE 89% 4% 7%
SK1 10% 87% 3%
JUNOQO? 1% 72% 27%

'Super-Kamiokande, Astropart. Phys. 81 39-48 (2016)
2|_u, Li, and Zhou, Phys Rev. D 94 023006 (2016)

. Time (and energy) profile of

the flux 1s rich in supernova
astrophysics

Flux contains v.and v; as well
as a component of the other
flavors (v,) — DUNE has
unique sensitivity to v,
component

Phase I: O(100s) events
per FD module for
galactic SNB

Phase II: Reach
extends beyond the
Milky Way

, Uni. of Hawaii 34
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T :
.8BvCC

Search for
Physics with DUNE and JUNO

DUNE Prehmmary

. Despite large neutron

¢ ::leptv . background below ~10 MeV,
1 eutron Capture
Zw “r DUNE can measure 8B solar
2 WA
3 flux and observe hep flux
< 10°
g Phase |: >50 sensitivity to
Lﬁ 10
1 I l hep flux
107" ——*
° ’ ReconstructedE (MeV Phase |l: DUNE can Improve
14 Capozzi et al., PRL 123 131803 g
'Sl'n'e'|'(;(')2'2|2""|"": 1om - —T] eX|st|ng 912andAer1
72 - = ; ] .
: . : ] measurements with
10 SN — — eactor I
ol 1 < = Txe 1 solar neutrinos
w 8= — i
L, Sle=l} 2 :
e =} 1 B | JUNO will have by far the
o & 9OF - ~ L Solar § A d
3,0 1 B | O owe) | best precision in 84, and
L ] 44—
gl - i 1 Am,2  DUNE-JUNO
gbnnsalummel iamels et ol comparisonis sensitive to
0.2 0.25 0.3 ; 0.4 ’ 29 ’ aii 2 35
sin%6. . o new physics



1073

Y104
b

10-5

p—scat: DUNE—40 kt-yr, 0 BGs and HK-380 kt-yr, 0 BGs

—— DUNE (My, M, 5M) = (2000, 50, 10) MeV
= = = DUNE (My, My, M) = 2000, 50, 30) McV
—— DUNE (My, My, 6M) = (6, 0.4, 0.5) GeV
..... HK  (My, My, M) = (6, 0.4, 0.5) GeV

0.02 0.05 0.1 0.2 0.5
My [GeV]

0.001

DUNE Update: J. Maricic, Uni. of Hawaii

Hyper-K will have higher statistics,
but DUNE's imaging and spatial
resolution are critical for some
signals

Inelastic dark matter scattering
gives a signature of two low-energy
electron tracks, and a detached
low-energy electron or proton
DUNE can see all of these tracks,
and the displacement — world
leading sensitivity at low mass
already in Phase |

DUNE ND-LAr will see ~100 pp
tridents per year (at 1.2 MW; XS
scales with energy and Z2)

DUNE ND: Heavy neutral leptons,

boosted dark matter -



e Detailed Scheduled developed and tracked
by project.

* Physics runs start as soon as FDs are

operation (before beam starts)

e FD1 LAr filled and commissioned 2029 - ..

Science (underground) starts
e FD2 LAr filled and commissioned 2030
* ND filled and commissioned 2031
e Beam starts 2031 - Beam physics starts
e FD3 LAr filled and commissioned 2034
* FD 4 LAr filled and commissioned 2036

DUNE Update: J. Maricic, Uni. of Hawaii
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v What makes DUNE unique is extra long baseline, wide band
intense neutrino and antineutrino beam, Liquid Argon TPC
detector technology and deep underground location

v' LBNF provides world-class facilities that will provide for decades
to come

v' DUNE is world-class long-baseline neutrino oscillation
experiment, with outstanding ability to:

v' Resolve MO and measure CPV over broad range of
parameters

v’ Precisely measure 643, 6,3, and Am?, and 3-flavor oscillations to
test the 3-flavor paradigm

v DUNE FD deep underground will capture astrophysical
neutrinos, and has extraordinary sensitivity to BSM physics

38
DUNE Update: J. Maricic, Uni. of Hawaii
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DUNE CPV Sensitivity

All Systematics
Normal Ordering

Phase |

-------- Ocp = -M/2
50% of &, values

------------------------------------------------------------------------------------------------

PO T LT L L L L L L L N L LI L L L L LI L L LLLLLERTTIIIIIY

e (UL e ey
A
e

10 12 14 16 18
Years

2 4 6 8

It SCP: Z|Z9OO, DUNE
can establish CP

violation at 3o 1In
Phase 1

For all other oscillation
scenarios, DUNE
requires Phase II to
establish CP violation
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epends on the value of 6

DUNE CPV Sensitivity

All Systematics
Normal Ordering
Phase Il + ACE
— 8CP = -n/2

50% of &, values
s 75% Of O, Values

Booster Replacement
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If dcp = £90°, DUNE
reaches 30 CPV in 3.5
years, 50 in 7 years

HyperK will likely get
there first, if/when the
mass ordering is
known

If Ocp = £23°, it is
extremely challenging
to establish CP
violation at 30 —
DUNE and HyperK are
competitive and
complementary
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Three-flavor unitarity tests are limited by
the dearth of v, data

LArTPC presents a unique opportunity to
image hadrons and improve the
reconstruction of v; CC interactions

LBNF has significant flux above the 1
production threshold, and the beam could
be re-optimized (by moving the focusing
components) to enhance v, CC

This is unique for accelerator beams,
and complementary to atmospheric T
physics that is accessible in IceCube
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