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Overview

Why do particle accelerators need ML?


Detection of instrumentation faults 
(Beam Position Monitors)

Reconstruction of settings 
imperfections  



De-noising of beam measurements
Virtual diagnostics:  






Developing Machine Learning applications
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Teaching machines to learn from experience

What is “Learning”?

• Traditional programming • Machine Learning approach

Data

Program
Output


Data
ProgramOutput


learn from data automaticallycreating manually a set of 
commands and rules
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Learning from data: Supervised Learning

Training input 
data

Training 
output data

example 1

example 2 
example 3

.

.

.
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Learning from data: Supervised Learning

Training input 
data

Function with adjustable  
parameters (weights, bias)

Model 
output

Training 
output data

example 1

example 2 
example 3

.

.

.

𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝒊 + 𝒃)
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Learning from data: Supervised Learning

Training input 
data

Function with adjustable  
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss  
(approximation error ): 

e.g. Mean Squared Errorexample 1

example 2 
example 3

.

.

.

𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝒊 + 𝒃)

Adjust parametersMinimizing the loss
e.g. Gradient Descent

‣ How to prove generalisation?

➡ Learning from data automatically

➡ Explaining relationship between input and output variables in all training samples.

➡ Generalisation: the capability of explaining new cases
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Training and generalization

Simple models underfit

• Derivate from data (high bias)

• Do not correspond to data structure 

(low variance)
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Training and generalization

Simple models underfit

• Derivate from data (high bias)

• Do not correspond to data structure 

(low variance)

Complex models overfit

• Very low systematical deviation (low bias)

• Very sensitive to data (high variance) 



10

Training and generalization

Simple models underfit

• Derivate from data (high bias)

• Do not correspond to data structure 

(low variance)

Bias-Variance tradeoff 

•Separate data into train and test sets

•Find optimal model hyperparameter e.g. 

with cross-validation

Complex models overfit

• Very low systematical deviation (low bias)

• Very sensitive to data (high variance) 
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Relevant ML concepts and definitions
Supervised Learning Unsupervised Learning

• Input/output pairs available

• Learn a mapping function, generalizing for all 

provided data

• Predict from unseen data 

• Only input data is given

• Discover structures and patterns

Regression Classification Clustering

Reinforcement Learning

• No labeled dataset for training

• Interact with an environment

• Trying to learn optimal sequences of 

decisions



Large Hadron Collider at CERN: 
Why do we need Machine Learning?
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CERN and the Large Hadron Collider
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• World’s largest and highest-energy particle collider

• Powerful discovery tool: 13.6 - 14 TeV center of 

mass energy

• Goal: search for new elements and forces, 

answering open questions if fundamental research. 




Beam optics control at the LHC

Why and how is the beam optics controlled in the LHC?


Large Hadron Collider:

• 9300 magnets for bending and focusing the beam.

• Main experiments: ALICE, ATLAS, CMS, LHCb 

• Collision rate: sufficient and balanced between 

experiments —> Luminosity

➢ How to increase chances of collisions?

➢ How to ensure machine protection?

! Beam Optics control
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• Luminosity:  maximize the number of collision events. 

Why and how is the beam optics controlled in the LHC?


Beam optics control at the LHC

ℒ  ∼
𝑓 ⋅ 𝑁2

4𝜎2 𝜎 = 𝜀𝛽

 
 

 

𝜀
𝜷

! Const

! Determined by quadrupole 

arrangement and powering

 

 

Optics
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• Luminosity:  maximize the number of collision events. 


• Optics errors: beta-beating 

Why and how is the beam optics controlled in the LHC?


Beam optics control at the LHC

ℒ  ∼
𝑓 ⋅ 𝑁2

4𝜎2 𝜎 = 𝜀𝛽

! Const

! Determined by quadrupole 

arrangement and powering 

• Access to the magnets for direct 
measurements is not possible during 
operation. 


! Beam-based measurements and corrections 
of lattice imperfections.

Optics
 
 

 

𝜀
𝜷



Limitation of traditional optics control techniques
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1. Instrumentation faults ! unreliable measurements of beam properties and optics analysis


2.  Corrections methods to compensate measured deviations from optics design  
!what are the actual magnet errors? 

3. Dedicated time to obtain advanced optics observables ! how to reduce the time effort?


4. Uncertainties in the measured optics functions  
! reduce the noise without removing valuable information?


5. Missing data points due to the presence of faulty instrumentation 
 ! How to reconstruct the missing data? 
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ML is a powerful  
tool for prediction and 

data analysis

Which limitations can be solved by ML with reasonable effort?

ML and accelerators: motivation

Machine Learning methods can learn an arbitrary model from 
given examples without requiring explicit rules.

Accelerators

• Operation

• Diagnostics

• Beam Dynamics Modeling

➢ large amount of optimization targets

➢ computationally expensive simulations

➢ direct measurements are not possible

➢ previously unobserved behaviour

➢ non-linear interacting sub-systems, rapidly changing environment. 



Detection of instrumentation faults
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Measuring the optics

What are the limitations of traditional techniques?


Turn-by-turn beam position

Po
sit

io
n 

[m
m

]

Turn no.

Spectrum

Frequency

Am
pl

itu
de

• Excite the beam to perform transverse 
oscillations.


! Beam Position Monitors (BPMs) to 
measure the beam centroid turn-by-turn

• Harmonic analysis using  
Fast Fourier Transform (FFT)

Denoising (SVD)

Signal cuts

Semi-automatic and 
manual cleaning of 

outliers
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Measuring the optics

What are the limitations of traditional techniques?


Turn-by-turn beam position

Po
sit

io
n 

[m
m

]

Turn no.

Spectrum

Frequency

Am
pl

itu
de

Denoising (SVD)

Signal cuts

Semi-automatic and 
manual cleaning of 

outliers

Optics

Unphysical values still 
can be observed 

• Compute beta-beating 
and other optics functions

/ 
Δ

𝛽
𝛽

• Harmonic analysis using  
Fast Fourier Transform (FFT)

• Excite the beam to perform transverse 
oscillations.


! Beam Position Monitors (BPMs) to 
measure the beam centroid turn-by-turn
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Measuring the optics: challenges 

What are the limitations of traditional techniques?


Local outliers while global beta-
beating is expected to be uniform

Causes a spike,  
obviously, a bad BPM

Causes a spike, but how to detect 
before computing the optics?

Δψ(s) Δψ(s)

/ 
Δ

𝛽
𝛽

/𝜟𝜷 𝜷(𝐬)
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Detection of faulty Beam Position Monitors 

!Ability to identify anomalies without predefined 
thresholds or rules. 

Instrumentation faults detection

• No ground truth ! Unsupervised Learning 

• Applied clustering algorithms: DBSCAN, Local Outlier Factor,  Isolation Forest  
(implemented with Scikit-Learn)

Problem: Faulty BPMs are a-priori unknown: 

• cause erroneous computation of optics functions

• manual cleaning is required

• repeating optics analysis after manual cleaning
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Isolation Forest Algorithm

• Forest consists of several decision trees

• Random splits aiming to “isolate” each point

• The less splits are needed, the more 

“anomalous”


• Contamination factor: fraction of anomalies to 
be expected in the given data


! First obtained empirically from the past 
measurements


	 	 ! Refined on simulations introducing  
	 	 expected BPM faults.

 

Conceptual illustration of Isolation Forest algorithm
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Detection of faulty signal
Harmonic analysis of all BPMs 

Instrumentation faults detection

• Input data: signal properties extracted by 
FFT as part of optics analysis


	 ! No additional data handling needed.

- Amplitude

- Main frequency (Tune)

- Noise (SVD analysis ) ratio
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Integrating ML into traditional beam optics analysis

Instrumentation faults detection

Harmonic analysis of all BPMs Detection of faulty signal  
prior to optics computation

• Outlier detection based on  
combination of several signal properties


• Immediate results

Avoid the appearance of 
erroneous optics computation

! no manual cleaning and 
repeated optics analysis


“Detection of faulty beam position monitors using unsupervised learning”, Phys. Rev. Accel. Beams 23, 102805.
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Are the BPMs really faulty? Beam Instrumentation checks

Instrumentation faults detection

Note: for the LHC with ~ 1000 BPMs, it is more critical to eliminate all faulty signal than to keep all good 
BPMs in the analysis data

Verifying false positive BPMs:  removed as trade-off for detecting actual faults.

Thanks to ML: Detection of otherwise unexplored hardware and electronics problems in BPMs

Advantages of IF-algorithm

• Ability to identify signal properties, which are relevant for classification between good and bad signal  

hints to possible instrumentation issues.

Information provided by cleaning algorithms

✓  Statistical analysis of data starting from 2018

✓  Identified 116 critical faulty BPMs out of  more than a thousand BPMs in the LHC. 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LHC commissioning 2022: operational results

Instrumentation faults detection

LHC Commissioning 2022: 

✓BPM upgrades considering the findings by cleaning methods. 

✓Verification of updated cleaning settings against false positives:        
no negative impact on optics

• Instant faults detection instead of offline diagnostics. 

• Full optics analysis is possible directly during dedicated 
measurements session instead of iterative procedure of 
cleaning and analysis.



Machine Learning for magnets errors reconstruction 
and beam corrections
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Correcting the optics

What are the limitations of traditional techniques?


Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections

 Before After

/ 
Δ

𝛽
𝛽

𝜷 ! Determined by quadrupole 
arrangement and powering 

• Access to the magnets for direct measurements is not possible during 
operation. 


! Beam-based measurements and corrections of lattice imperfections.
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Correcting the optics

What are the limitations of traditional techniques?


➢ What are the actual errors of individual quadrupoles?

➢ How to obtain the full set of errors in one step?

Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections

• Corrections are implemented by changing 
the strength of circuits 


• Optics perturbations are caused by  
all individual magnets.
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Estimation of quadrupole errors

Estimation of magnet errors and optics corrections
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Estimation of quadrupole errors

Training ML- regression model:

• 1256 target variables: randomly assigned field errors in 

quadrupoles + other error sources


• 3304 input variables: optics functions 

• Using Linear Regression as baseline model 

min
𝑤

𝑋𝑤 − 𝑦
2

2
+ 𝛼 𝑤 2

2

Estimation of magnet errors and optics corrections

Published in:  The European Physical Journal Plus volume 136, 
Article number: 365 (2021) , “Supervised learning-based 
reconstruction of magnet errors in circular accelerators”.
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Random Forest Regression
Supervised Learning approach:

➡  generalized model explaining relationship between input and output variables in all training samples.


Decision Trees:

• Partition data based on a sequence of thresholds


• Continuous target y, in region estimate:


• Mean Square Error:


Random Forest:


•  Random subset of examples, train separate model on 
each subset


•  Only random subset of features is used at each split

•  Increases variance, tend not to overfit 
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Simulations: true magnet errors are known 
! directly compare prediction to simulated data ! residual error 

Estimation of quadrupole errors: simulations

Estimation of magnet errors and optics corrections

Measurements: magnet errors are unknown!

How well can we correct the optics with predicted errors?
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LHC commissioning 2022:  beam optics corrections

1. Beam optics measurements  

2. Reconstruct the magnet errors 

3.  Propagate the errors within the region (simulations) 

4. Compare with measurements 

5. Apply the reconstructed quadrupole strength errors with opposite sign —> optics corrections!

Optics Corrections path in the LHC

Note: using traditional techniques, this procedure is performed per Interaction Region, for Beam 1 and Beam 2
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LHC commissioning 2022:  beam optics corrections

1. Beam optics measurements  

2. Reconstruct the magnet errors 

3.  Propagate the errors within the region (simulations) 

4. Compare with measurements 

5. Apply the reconstructed quadrupole strength errors with opposite sign —> optics corrections!

Optics Corrections path in the LHC

Predict all errors using ML-model 
trained on simulations!
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✓ Phase errors can be corrected applying the 
errors with opposite sign as correction 
settings


✓ Simultaneous local correction in all IRs 
within seconds.

Example: Corrections in Interaction Region 1, squeeze to  𝛽* = 30 cm (challenging low beta optics)


 
! Potential to save operation time!

E.Fol et al.,“Experimental Demonstration of Machine Learning 
Application in LHC optics commissioning”,IPAC’22 MOPOPT047

LHC commissioning 2022:  beam optics corrections

https://ipac2022.vrws.de/papers/mopopt047.pdf
https://ipac2022.vrws.de/papers/mopopt047.pdf
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Look into the future: Optics control in HL-LHC
Reinforcement learning - based local corrections

- Uses the previously presented approach to learn LHC model from simulated data


• Environment =  Surrogate model of HL-LHC lattice

• Reward = Average beta-beating in IRs

• State space =  Quadrupole strengths (only triplet magnets for now)

• Action space =  Correctors settings

Based on V.Kain et al., ”Sample-efficient RL for 
CERN accelerator control”

Reinforcement Learning based corrections for HL-LHC



40

Optics control in HL-LHC studies
Implementation

- Introducing local magnetic errors in triplet magnets in one of 

the LHC Interaction Points

- RL algorithms implementations based on OpenAI

- PyTorch for the training of critic networks


Reinforcement Learning based corrections for HL-LHC

Work by Hector Garcia Morales, BE-ABP

Results: 

After the learning process, the model is able to perform 

the optics correction in one single iteration with residual  
β-beating of 1-2% (up to 20% initially )




De-noising of optics measurements
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De-noising of optics measurements
• Uncertainties in the measured optics functions ! “noise”   ! 

Simulated optics observables  
+ noise

Denoised optics

Autoencoder Neural Network

Noise in the measurements 
degrades the performance of 
corrections techniques



43Virtual Diagnostics

✓ Reconstruction error is by factor 2 
smaller than simulated realistic noise.

Simulated data: Noise Reduction Simulated data: Reconstruction 

✓ Reliable reconstruction after denoising

De-noising of optics measurements

➢ Potential improvement of measurements quality

➢ Possibility to reconstruct the phase advance at the location of faulty BPMs.



Reconstruction of advanced beam optics observables
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Reconstruction of 𝛃-beating in Interaction Regions 
• Special technique, “k-modulation” is performed to obtain the measurements: 

modulation of quadrupole current   —> Time consuming!

➢ How to reconstruct optics observables without direct measurements?

• 𝛽-functions at the location of the BPMs next to the IPs are 
needed for local correction computation


• Accuracy varies depending on tune measurement 
uncertainty, magnet errors and 𝛽* settings. 

Supervised Learning based Optics corrections
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Regression Models
• Linear model for input X / output Y pairs, i – number of pairs (training samples): 


•
Squared Loss function for model optimization: 


• Find new weights minimizing the Loss function:  

! Update weights for each incoming input/output pair.


𝒇(𝑿, 𝒘) = 𝒘𝑻 𝑿

𝑳(𝒘) =
𝟏
𝟐 ∑

𝒊
(𝒀𝒊 − 𝒇(𝑿𝒊; 𝒘))

𝟐

𝒘∗ = 𝐚𝐫𝐠𝒎𝒊𝒏𝒘𝑳(𝒘)

! Regularization places constraints on the model parameters (weights) 

- Trading some bias to reduce model variance.


- Using L2-norm: , adding the constraint to the 

weights update rule

- The larger the value of , the stronger the shrinkage and thus the 

coefficients become more robust.

𝜴(𝒘) = ∑
𝒊

𝒘𝟐
𝒊 𝜶𝜴(𝒘) 

𝜶
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Reconstruction of 𝛃-beating in Interaction Regions 

Supervised Learning based Optics corrections

Reconstruction error:  


 1% 
𝜷𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅 − 𝜷𝒓𝒆𝒄𝒐𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒆𝒅

𝜷_𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒆𝒅
  =

Simulations LHC Commissioning 2022, comparison to traditional technique

• 𝛽-functions next to Interaction Points within a few seconds vs. several minutes for k-modulation


• Difference between prediction and measurement : 5 % for 𝛽* = 30 cm. 
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Reconstruction of horizontal dispersion

Supervised Learning based Optics corrections

Simulation example: Beam 1 

• Input: simulated phase advance deviations given noise


• Output: normalized dispersion 


• Using linear regression model: 10 000 samples 
∆ 𝐷x /√𝛽x

• An important optics observable  (independent from BPM calibration) and is included into the 
computation of global optics corrections. 


• Computed by acquiring turn-by- turn data from several beam excitations, shifting the momentum. 


➡  Reconstruct directly from phase advances on momentum,  
using ML-model trained on simulations.
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Operational results from LHC Commissioning 2022

Supervised Learning based Optics corrections

✓ Simultaneous reconstruction of normalised 
dispersion in beam 1 and beam 2 requires only a 
few seconds. 

✓   The relative error of prediction is 5% (beam 1 ) 
and 7% (beam 2). 

• Potential speedup of machine commissioning for 
the same performance.



Machine Learning as a tool for accelerator design
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ML in Muon Collider Design Studies
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Muon Collider Design study [1]:

• Reduction of transverse emittance of produced muon beams as one of the biggest challenges: 

! Final Cooling system with challenging design

! High dimensional parameter space to be optimized in order to achieve low emittance, high intensity muon beams

! Trade-off between different optimization objectives 


• Extending existing simulation frameworks towards 
automatic, fast executing optimization.


• Exploring application of Supervised Learning  
! surrogate models

[1]: https://muoncollider.web.cern.ch



ML in Muon Collider Design Studies

52

1. Speeding up optimization:

• Exploring application of Supervised Learning  
! surrogate models

2. “Backwards” design:

✓ First results demonstrating orders of magnitude 
optimization speed up 


✓ Accurate prediction of initial parameters to achieve 
desired cooling performance[1]: https://muoncollider.web.cern.ch



Conclusions
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54Summary

✓ ML-based toolbox for beam optics analysis

• Detection of instrumentation faults ! no manual cleaning and repeated optics analysis

• Estimation of individual magnet errors ! Better knowledge and control of individual optics errors

• Denoising of optics measurements ! Increasing the quality of the measurements

• Reconstruction of optics observables   ! Additional observables without dedicated measurements


ML in the LHC beam optics control

• More in “Machine learning for beam dynamics studies at the CERN Large Hadron Collider” 
https://doi.org/10.1016/j.nima.2020.164652

https://doi.org/10.1016/j.nima.2020.164652


55Summary

✓ ML-based toolbox for beam optics analysis

• Detection of instrumentation faults ! no manual cleaning and repeated optics analysis

• Estimation of individual magnet errors ! Better knowledge and control of individual optics errors

• Denoising of optics measurements ! Increasing the quality of the measurements

• Reconstruction of optics observables   ! Additional observables without dedicated measurements


ML in the LHC beam optics control

• More in “Machine learning for beam dynamics studies at the CERN Large Hadron Collider” 
https://doi.org/10.1016/j.nima.2020.164652

✓ Paving the way for new studies currently being in progress:  
	 - Optics corrections for High Luminosity – LHC upgrade (Reinforcement Learning)


	 - Exploring more complex optics error sources in the LHC: coupling corrections

- Improving Dynamic Aperture estimates using clustering 


	 - Optimizing the design of future colliders (muon cooling).

https://doi.org/10.1016/j.nima.2020.164652
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Optimization and 
operation 

automation

Virtual 
Diagnostics

Beam control  
and lattice 

imperfection 
corrections

Detection of 
instrumentation 

failures

➢ Defining a narrow task (optimization of 
specific parameters rather than the entire 
machine) 

➢ Performance measure of selected model 
(beam size, pulse energy, …) 

➢ e.g. when no analytical solution is 
available, rapidly changing systems,  
no direct measurements are possible.

Summary: Where can we use ML in accelerators?

Important to identify where ML can surpass traditional methods

How much effort is needed to implement a ML solution? Is appropriate infrastructure for data 

acquisition available? Enough resources to perform the training?



Thank you for your attention! 
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Cat!
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ML in accelerators: summary
Accelerator Problem ML methods Benefits To be considered

• Automation of particular 
components 

Supervised techniques for 
classification: Decision Trees, 
SVR, Logistic Regression, NN

Saving operation time, reducing 
human intervention, preventing 

subjective decisions

Dedicated machine time usually 
required to collect training data 

and to fine tune developed 
methods.

• Online optimization of 
several targets which are 
coupled


• Unexpected drifts, 
continuous settings 
readjustment needed to 
maintain beam quality

 
Reinforcement Learning,

Bayesian optimization,


Gaussian Process,

Adaptive Feedback

Simultaneous optimization 
targeting several beam 

properties, automatically 
finding trade-off between 

optimization targets, allows 
faster tuning offering more user 

time.

Ensuring that all important  
properties are included as 

optimization targets.

• Detection of anomalies Unsupervised methods: 
clustering, ensembles of 

decision trees (e.g. Isolation 
Forest), supervised 

classification, Recurrent NN for 
time-series data.

Preventing faults before they 
appear, no need to define rules/ 

thresholds,

no training is needed and can 

be directly applied on received 
data

In unsupervised methods, 
usually no “ground truth” is 

available ! methods can be 
verified on simulations.
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Computationally heavy, slow 
simulations


• Reconstruct unknown 
properties from 
measurements

 
Supervised Regression models, 

NN for non-linear problems

Learning underlying physics directly 
from the data, faster execution

100% realistic simulations 
are not possible ! the 

model performance will be 
as good as your data is.

• Reduction of parameter 
space e.g. for optimization

Clustering, Feature Importance 
Analysis using Decision trees

Speed up of available methods, 
simpler defined problems, easier to 

interpret

Parameter selection and 
combination (feature 
engineering) can have 

significant impact on ML 
methods performance

• Missing or too noisy data Autoencoder NN Robust models, data quality Significant information 
should not be removed from 

the signal.
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Finding optimal (supervised) model: Cross-Validation
General rule: split available data 


• Train set —> find model parameters which minimise the total 
loss between prediction and known true output


• Test set —> how does the model perform on unseen data? 


How to find optimal model parameters? 

Grid-search of parameters using cross-validation:


• Split train set into k folds

• Each fold is spitted into train and validation subsets


• In each fold, e.g. 80% of samples for training, 20% for 
validation


• Repeat k times, take the mean as model’s performance 
score


➡ Robust estimation of performance for the different 
combination of model parameters.  https://scikit-learn.org/stable/modules/cross_validation.html


