

ITk Strip Module Cold Noise

lan Dyckes

On behalf of the LBNL ITk Strip Modules Team

Outline

- Intro to ITk strip module.
- Threshold scans and noise.
- Cold noise.
 - General observations.
 - Some interesting tests.
 - What's next.

ITk Strip Barrel Module

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
 - Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
 - Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
 - 10 ABCs: amplify and discriminate signal.
 - 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

- LV step-down for ASICs and HV-switching for sensor biasing.
- Monitoring and interlock.

lan Dyckes

ITk Strip Barrel Module хну

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
 - Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
 - Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
 - 10 ABCs: amplify and discriminate signal.
 - 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

- LV step-down for ASICs and HV-switching for sensor biasing.
- Monitoring and interlock.

lan Dyckes

ITk Strip Barrel Module

Silicon sensor:

- Multiple rows of 1280 strips with a 75 μ m pitch.
 - Long-strip sensor \rightarrow 2 rows, strip length \approx 5 cm.
 - Short-strip sensor \rightarrow 4 rows, strip length \approx 2.5 cm.

Hybrid:

- Printed circuit board holding the read-out ASICs.
 - 10 ABCs: amplify and discriminate signal.
 - 1 HCC: interface between ABCs and back-end electronics.

Powerboard:

- LV step-down for ASICs and HV-switching for sensor biasing.
- Monitoring and interlock.

1400 mm

Threshold Scans, S-Curves, vt50 & Noise

Front-end basics:

- ABCs amplify, shape, and discriminate signal from strips.
- Discriminator threshold can be tuned.
 - Balancing signal efficiency vs. noise.

S-curves:

- Scan over threshold, triggering *N* times at each step.
 - With or without charge injection.
- Occupancy vs. threshold \rightarrow S-curve (error function)
 - Derivative is a gaussian.
 - Mean \rightarrow vt50.
 - Width \rightarrow output noise.

Response Curve

Response Curve:

- Perform threshold scans while varying injected charge.
- For each charge injection, get s-curve.
 - Mean \rightarrow vt50.
 - Width \rightarrow output noise. ٠
- Plot vt50 vs. injected charge \rightarrow response curve. •
- Slope of RC \rightarrow gain.
- Input noise = output noise / gain.

Response Curve

Response Curve:

- Perform threshold scans while varying injected charge.
- For each charge injection, get s-curve.
 - Mean \rightarrow vt50.
 - Width \rightarrow output noise.
- Plot vt50 vs. injected charge \rightarrow response curve.
- Slope of RC \rightarrow gain.
- Input noise = output noise / gain.

lan Dyckes

Cold Noise Intro

Background:

- BNL has been thermal cycling modules before gluing them to staves.
- Earlier this year, BNL noticed noise appearing when testing pre-production modules at cold temperatures.
 - Was not clear if there was something wrong with their setup.
 - But seen in modules from BNL, SCIPP, and LBNL.
- Eventually confirmed by other sites in their cold boxes.
 - Also observed on the stave.
- Eventually decided to pause pre-production to investigate.
- Cause not yet understood.

Cold Noise Intro

Observations:

- Always in the strip rows under the hybrids & PB.
- Tends to appear in certain regions.
 - Power pads between hybrids and PB.
 - DCDC converter.
 - HCC.
- Some variation between thermal cycles:
 - Turn-on temperature changes after 1st cycle.
 - Same region gets cold noise each cycle.
 - But worst strips move around.
- Worse on short-strip modules than long-strip.
 - But seen on LS if cold enough or if increase load on PB via shunts.
- Usually worse on X hybrids than Y hybrids.
 - Backend edges slope down towards sensor, worse on X. Related?
- Usually goes away at room temperature.
- Seen on pre-production modules (A & B), but not prototype.
 - A & B are similar, but many changes since prototype.

Interesting Tests

- 1. Repeatability/progression & turn-on.
- 2. Bypassing the PB for hybrid power.
- 3. Magnetic triggering.
- 4. Mitigation: increasing hybrid & PB glue heights.

lan Dyckes

Repeatability & Turn-On (LBNL)

Outline & General Observations

Process:

- Performed multiple careful thermal cycles on 4 PPB SS modules.
 - 10C steps from +20C to -40C.
 - Measured noise at each step (down-cycle & up-cycle).

General Observations:

- Cold noise seen on both hybrids on all 4 modules.
- Usually worse after 1st down-cycle
 - 1st down-cycle has less noise than 1st up-cycle, 2nd down-cycle, etc.
- Cold noise progression shifting towards warmer temperatures.
 - Can even persist all the way back up to +20C!
 - Cause is not purely electrical (e.g. bPol switching freq. vs. temp).
- Appears that noise "freezes in".
 - But can be "baked-out".
- Will now show details of worst hybrid.

LBNL_PPB_SS_15 HY: Cycle 1 Down

					inputivois	c at 1.0010		r	Entripe	_					input iv	JISC AL 1.JUIU			T Patrice		_					input Nois	c at 1.5010			Enter-	
Input Noise (ENC)	1400 1200 1000 800 600 400 200 633.0 0	ie 624.1 e	611.5 e	630.0 e [°]	^{634,6 e'} 512 64	613.8 e 40 768	827.9 e [°] 616	.6e 604.9 1024	+ 20C	1400 1200 1000 800 600 400 200		609.5 e [°]	594.9 e [°] 256	614.7 e	614.9e ⁻ 512	593.8 e ⁻	610.3 e [°]	601.3 e	588.7 e ⁻	591.3 e	1400 1200 1000 800 600 400 200 0 0	613.3 e ⁻	594.8 e	588.7 e ⁻	600.2 e' 84 5	601.2 e	580.9 e ¹	596.4 e [°]	591.4 e ⁱ 96 102	579.4 e	+2C
Input Noise (ENC)	1400 1200 1000 800 400 200 00	1e ⁻ 582.7 e 128	576.0 e' 256	584.2 e [°] 384	586.6 e ⁻ 512 64	568.7 e [°] 40 768	579.6 e [°] 575 896	5 e' 562.8 1024	Enres -6C -559.3 e ['] 1152 128	1400 1200 1000 800 600 400 200 80 0		571.9.e [°] 128	567.2 e [°] 256	5744.0"	572.9 e 512	551.9 e ⁻ 640	566.8 e	564.3 e [°] 896 10	Entre 549.4 e ⁻ 024 Å	549.7 e	= 1400 1200 1000 800 600 400 200 0 0		564.2 e [°] 88 25	557.8 e [°] 6 38	563.8 e [°] 84 5	560.1 e 12 64	543.8 e [°] 40 76	558.9 o 8888	557.1 e [°] 96 102	Cher Erres 541.0 e 4 115	22C
Input Noise (ENC)	1400 1200 1000 800 400 200 575.	1 e ⁻ 552.5 e 128	548.4 e 256	557.5 e [°] 384	553.3 e ⁻ 512 6	532.6 e ⁻ 40 768	543.7 ° 54 3 896	2.4 e ⁻ 526.6 1024	-30C	1400 1200 1000 800 600 400 200 30))))))) 567.7 °	128	539.6 e [°] 256	700 mar 384	538.0 e	519.0 e ⁻	532.9 e [°]	535.9 e [°] 896 1 (517.9 e [°]	519.8 e [°]	1400 1200 1000 800 600 400 200 0	556.5 e ⁻	Tog may Sector	527.9 e [°] 56 38	Too may 2	528.9 e ⁻ 12 64	512.7 e ⁻ 40 76	526.1 e [°] 888	525.9 e [°] 96 102	513.5 e 4 115	500C

• Cold noise starts around chuck = -12C.

LBNL_PPB_SS_15 HY: Cycle 1 Up

- Cold noise "freezes-in" & persists all the way back up to chuck = +20C!
- Left modules unpowered overnight in cold box.
 - Noise still there the next day at 20C.
 - Also still present after opening and closing cold box lid.

LBNL_PPB_SS_15 HY: Cycle 2 Down

Cold noise still present at +20C, 2 days after 1st cycle.

LBNL_PPB_SS_15 HY: Cycle 2 Up

Cold noise again persists back up to +20C. ٠

640

526.5 e

541.9 e

542.6 e

526.8 e

1024

527.1 e

1280

1152

543.3 e

256

Too many detects

548.2 e

512

Too many detects

538.2 e

512

519.3 e

640

532.9 e

533.6 e

517.6 e

1024

518.1 e

1152

538.8 e

256

200

566.6 e

LBNL_PPB_SS_15 HY: Bake-Out

LBNL_PPB_SS_15 HY: Bake-Out

- Next, cycled +20C \rightarrow +40C \rightarrow +20C.
- Appears to help.

• Performed 1 more cold cycle after bake-out \rightarrow similar to 2nd cold cycle.

Bypassing the Powerboard (SCIPP)

Bypassed Powerboard

- Removed connections between hybrids and PB on a SS module.
 - Except hybrid LV GND to PB LV GND.
- Separately powered hybrids & added resistive load for PB.
- PB on \rightarrow still see cold noise. PB off \rightarrow cold noise disappears.
 - Noise must be coupling into strips.
- Strange that noise still appears by HCC. Far from PB.
 - Expected it to disappear without the PB-to-hybrid bonds.

Magnetic Triggering (UBC)

Magnetic Triggering (UBC)

- Measure noise occupancy triggered by phase of bPOL12V with magnetic loop
 - Exact phase of bPOL12V with respect to trigger delay is not understood
- Shows the cold noise is in-phase with bPOL12V
 - One pushing channels up, one down
- Could be magnetic, conducted noise or mechanical
 - Conducted noise unlikely
- We don't understand the diagonal striping.
 - May be sign of vibrations?? Consistent with speed of sound
 - Trying encapsulation of capacitors to "dampen" effect on module with known cold noise
- Urgently need to confirm results with 2nd system

We're working on it

Trigger Delay [2 ns steps]

Increased Glue Under Hybrid and Modules (LBNL & BNL)

Extra Glue

Modification:

- LBNL Built 4 PPB short-strip modules with ~2x the hybrid & PB glue.
 - Doubled the glue volume.
 - Shimmed tools to double the hybrid & PB glue height.

Motivation:

- Extra glue height might reduce noise coupling from hybrid/PB into sensor.
- Some people are suspicious of bPol (DC-DC converter ASIC) performance at cold temperatures.
 - Extra glue should keep it warmer.

lan Dyckes

• Some people are suspicious of hybrid flex bottoming-out on sensor.

	Glue weight / nominal								
Module	HX	HY	PB						
PPB_SS_20	2.0	2.1	1.1						
PPB_SS_21	1.9	2.1	2.1						
PPB_SS_22	1.9	2.1	1.5						
PPB_SS_23	1.7	2.2	1.7						

Mitigations (Thicker Glue)

- Module built with thicker glue layers for hybrids + PBs
 - BNL: 5 LS PPB with 300 um
 - LBL: 4 SS PPA with 240 um
- BNL + No cold noise seen in LS modules down to -55 C chuck temperature
- LBNL Less cold noise (number of channel/level of noise/temperature) in SS modules

• Is improvement coming from warmer PB, less coupling, or less mechanical stress?

9/14/2022

Temperature Comparison

Comparison:

- Temperatures for nominal vs. 2x glue modules.
 - NB: PTAT in bPol (DCDC converter ASIC).
- Extra glue \rightarrow warmer PB.

Thoughts:

- Extra glue mitigates cold noise.
- Could be due to warmer bPol?
 - Maybe bPol switching freq. changes with temperature are culprit...
 - But fact that cold noise can persist back up to +20C makes it unlikely.
- Could be thermomechanical?
 - CTE mismatch?
 - Extra glue \rightarrow less stress?
 - We know hybrids & PBs are bowing at cold temperatures.
- Increased separation → less noise coupling from PB into strips?

What's next?

What's Next

LBNL:

- Building more LS module with increased hybrid & PB glue heights.
- Building module(s) with more elastic glue: Sylgard 186 (LBL), SE4445 (RAL?).
- Magnetic triggering.
- Check if noise is in-time?
- Metrology on modules with residual "cold" noise at +20C before & after bakeout.
- Test glue electrical properties vs temperature?

Community:

- Building 1 SS & 1 LS stave with modified glue heights.
 - 280 um glue thickness
 - 1/3rd standard, 1/3rd PB only raised, 1/3rd PB + hybrids raised
- Build another module bypassing PB for hybrid power, but make PB height adjustable.
- Add extra shield under hybrids/PB.
- Modify hybrid/PB loading (C7/C8 capacitors, pi-filter inductors, extra capacitor between ground/power on hybrids, thicker ground/power connections between PB/hybrid).

Backup

Bypassed Powerboard

Bypass powering scheme:

- Biased like IV scan: HV directly to HVtab, bias ring to frame bond for HVret.
- Now stick hybrid on top with its own LV+/-.
 - Have hybrid to bias ring bonds, so strip pads not floating.
- Now stick PB on top with its own LV+/-.
 - Add hybrid GND to PB GND bonds.
 - So hybrid GND = PB GND.
- But is HVret = hybrid GND = PB GND?
 - Yes, since powering PB via frame.
 - HVret and LV ground tied together on frame.
 - So HVret = PB GND = HVret = hybrid GND.

Normal biasing/powering scheme:

- HV from frame \rightarrow PB \rightarrow frame \rightarrow HV tab \rightarrow sensor backplane.
- Bond from bias ring to hybrid for HVret.
 - Bias ring connected to implants. Hybrid connected to strip bond pads.
- HVret bond from hybrid to PB.
- HVret and LV GND tied together on PB (and also on frame).
- Hybrid gets LV and LV GND from PB.

Temperature Monitoring

- Four nominal PPB SS modules.
- Monitored with powertools, not ITSDAQ.
 - But know they agree (backup).
- Plotting temps at time of RC test.
- Determine PTAT offset at 20C with DCDC off.
- Constantly recalibrate throughout cycle.

Measured during down cycle from 20C

Temperature Monitoring

- Four nominal PPB SS modules.
- Monitored with powertools, not ITSDAQ.
 - But know they agree (backup).
- Plotting temps at time of RC test.
- Determine PTAT offset at 20C with DCDC off.
- Constantly recalibrate throughout cycle.
- Saturating NTCpb?
 - **PTAT** has voltage divider on PBv3.2.

