

Reconstruction algorithms dealing with electrons

By Ben Kuchma

Mentors: Karol Krizka, Simone Pagan Griso, & Sergo Jindariani

Muon collider: The good

- Discussions have begun on how to create the next high energy collider
 - A more compact choice is a muon collider
- Compared to protons, muons:
 - Are fundamental particles:
 - Lets all the energy be used in the collision
 - Known initial momentum
- Compared to electrons, muons:
 - Have a large mass:
 - Less energy is lost when they are accelerated

Muon collider: The bad

- Muons are harder to collimate than the previously mentioned particles
- Muons rapidly decay inside of the particle accelerator → causes beam induced background (BIB) inside of the detector
 - Special relativity increases lifetime in lab frame—can be used in the accelerator
 - Initial decays and secondary particles light up detector
 - Decays into electrons and other particles

The goal

Study electron reconstruction algorithms and identify necessary improvements

- Particle ID is done by:
 - Analyzing tracks created in the inner detector through chains of hits
 - Measuring energy deposition and depth of particle into calorimeters

The ugly truth about electrons

- Electrons undergo bremsstrahlung and multiple scattering
 - \circ Changing their trajectory whilst in the detector \rightarrow makes it difficult to track them
- Bremsstrahlung: electrons emit a photon in the presence of a magnetic field
 - This **changes their course** due to momentum of emitted photon
- Confuses reconstruction algorithm:
 - **Misidentifies electrons** as other particles
 - Sometimes unable to reconstruct any particles

True particle data

- 10000 particles
- No BIB included in events
- I will be using the data from the **conformal tracking** unless otherwise specified
- Particle ID will be done by Pandora

Comparing the true particle data to the reconstructed electrons:

Initial electron values	
p _{T.}	1-1500 GeV
Polar angle	10°-170°
Azimuth	0-360°

Types of reconstructed particles

- With perfect reconstruction, there should **only be photons and electrons**
 - Photons could be the result of bremsstrahlung
 - Additional electrons and positions can appear due to pair production
- All neutrons and pions are incorrectly identified

Polar angle of electrons, photons, and neutrons

Particle matching methods

• Particle linking compares the number of track/calorimeter hits and energies between the reconstructed and truth particle to get a weight

Three matching methods:

- 1. Simple electron (SE) linking:
 - a. The reconstructed electron with the **highest weight** is treated as the truth particle
- 2. Best match (BM) linking:
 - a. Finds the particle that has the **highest weight** out of reconstructed electrons, if none exist, search photons
- 3. Sum matching:
 - a. Takes **sum of momentum** for all electrons and photons and treats the **JUST** erresult as a singular particle
 - b. Accounts for any pair production/ionization by **reconstructing the parent particle**

Sum:

ORIGINAL e⁻

e

SE:

BM:

 $e^{-}OR\gamma$

e

Transverse momentum between SE & BM

- Including photons recovered efficiency at high p_{τ} , misidentification?
- Gap in high energy range due to:
 - Bremsstrahlung occurring less frequently → track may not exhibit traditional electron behavior 0
 - Punch through is higher in the electromagnetic calorimeter resulting in a larger deposition in the 0 hadronic calorimeter \rightarrow problem for both photons and electrons

2

2.5

Polar angle (Bads)

Resolution of matching methods

- Simple electron:
 - Large high tail→particle missing energy, std dev: 165.3
- Best match:
 - Worst mean: 80.8 GeV
 - Another high tail, std dev: 204.3
- Sum method:
 - Best mean: 4.675 GeV (double-ended tail)
 - Adding photon restores gaussian→bremsstrahlung?
 - Double sided tail causes larger std dev: 229.7 GeV

Resolution of different linking methods

Track data of photons

- Most of the time, tracks are accurately calculated, particle ID is failing here
- Photons are commonly ID'd as the highest energy particles
- High p_{τ} and polar angle on extremes \rightarrow Larger total energy \rightarrow More punch through
- Curve in polar angle graph is close to inverse sinusoidal
- Track found for nearly all identified linked photons

Photon ID visuals

- As a sanity check: visuals do confirm an angle on the extremes
- Punch through is quite large
 - Punches through the electromagnetic calorimeter (where electrons are designed to stop)
 - Particle shower continues into the hadronic calorimeter

Pion occurrences

- Pions are commonly reconstructed at higher energies due to their punch-through and large energy deposits in the hadronic calorimeter
- Two "mountains" in polar angle are where the electromagnetic barrel and endcap overlap→pattern recognition is failing in transition region

Pion visual patterns

- Check the visuals as a sanity check
- For electromagnetic calorimeter:
 - Critical energy = 9.64 MeV
 - Radiation length = 0.8903 cm
 - Assuming particle has the maximum 1500 GeV
 - \circ Shower depth should be 15.355 cm

Conformal vs. ACTS(CKF)

ACTS find tracks by:

- 1. Finds seed from 2-3 hits, propagate track
- 2. Using least squares estimation adds hits along estimated trajectory to track
- Compared to conformal, ACTS:
 - Finds more photons, less electrons and pions
 - Worse reconstruction of particles
 - SE matches goes from $\sim 90\% \rightarrow \sim 60\%$

Altering ACTS: Efficiency

- Changed parameters:
 - chi2cutoff: $10 \rightarrow 15$, broadens selection of hits per layer 0

10E

- NumMeasurementsCutoff: $1 \rightarrow 2$, follows two separate seeds per layer 0
- Changing parameters:
 - Removes issue with efficiency falloff at high p_{τ} region for SE matching 0
 - Does not affect BM efficiency→photons identified with old params now identified Ο Transverse momenta of electrons, photons, neutrons, and pions as electrons Count
 - More electrons & pions 0
 - Fewer photons Ο

Transverse momentum reconstruction efficiencies

Conclusions

- Track finding is quite accurate, but ID needs work
 - Electrons most likely to be misidentified as photons, then pions
 - Particle ID algorithms need help with:
 - High energy particles that enter hadronic calorimeter
 - Particles with energy depositions in the transition region
- ACTS helps with dealing with electrons at the high end of energies
- ACTS increases decreases efficiency
 - ID of pions and photons is less tied to polar angle
 - \circ $\,$ At the end of the day, changing ACTS parameters is about optimizing what data you want $\,$
- Algorithms in programs (e.g Pandora and ACTS), can be optimized by machine learning

Thank you

Code used to generate graphs:

https://github.com/Benzillaist/MuC-BIB-electron-tracking

Backup slides

The process

- 1. Simulate single electrons using **ddsim** (detector simulator tool)
- 2. Using a reconstruction tool called **Marlin**, I am testing out two different reconstruction algorithms, **Conformal tracking** and **ACTS**
 - The **pandora** package was used for electron identification
- 3. Output files contain collections of events and particles
 - Most importantly: initial angle and momentum, track momentum, and particle linking data
- 4. From the output files, look through collections of events & identify where Conformal tracking and ACTS can be improved

Resolution of photons

- Isolating the photons \rightarrow Similar pattern to the three methods
 - \circ $\hfill Means many of the electrons are misidentified as photons$
- Higher tail means that photons accuracy is worse
 - Still valuable to search through photons
 - Applying a weight minimum does **not** give a better selection of particles
 - Due to weight not mattering, photons are essentially just mis-ID'd electrons

Conformal vs. ACTS(CKF)

- ACTS accuracy has gone up, even with the increase in electrons
- Point of weakness is spike in relative resolution at ~1 by BM method
 - Caused by increase in photons being selected by BM
 - Means some events have no accurate tracks found for electrons
- Additional photons reconstructed by ACTS are commonly electrons→Jump in photons used in BM

Relative resolution of different linking methods

Truth and best match link p_{τ} relative resolution for photons

Altering ACTS: Resolution

- Increase in SE matching resolution at center compared to tail
- Sum method gets a tiny bit worse everywhere
- BM gets worse→change in types of reconstructed particles is positive
 - Many reconstructed photons with high accuracy are now correctly being identified as electrons

Relative resolution of different linking methods

Truth and best match link $\ensuremath{\textbf{p}}_{\ensuremath{\textbf{\tau}}}$ relative resolution for photons

Photon and pion ties to p_T and polar angle

