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Introduction

● Attempting to use Neural Networks for identifying boosted hbb jets; Xbb tagger performance used as reference
● Trying to identify h->bb decay jets where both b quarks are often merged into one jet
● Jet Types: [hbb (signal), QCD (bb), QCD (other)]

Architectures Used

● Feed-Forward Neural Networks (ANNs)
● Convolutional Neural Networks (CNNs)
● Graph Neural Networks (GNNs)

We will focus on GNNs, since they were most successful, some of them matching and beating Xbb performance.
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Sample Overview

Samples used for each label

Hbb jets: hh_bbbb samples (Mass = [1000, 1100, 1400])

QCD (gbb): jetjet (Jz Slice = [5])

QCD (other): jetjet (Jz Slice = [5])
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Exploring the Data

Calorimeter, Track, and jet information were used as feature variables in separate models.

The following are the per-element features that were totally used for each type of data

Fatjet Data: ['C2','D2','e3','Tau32_wta', ‘Tau21’, ‘Split12','Split23']

Track: ['d0','z0SinTheta','qOverP', 'd0Uncertainty','z0SinThetaUncertainty']

Jet Selection: nConstituents > 2,  pt>500e3

Truth Labels:

Hbb signal: GhostHBosonsCount==1

QCD (gbb): (df.GhostHBosonsCount==0)&(df.GhostBHadronsFinalCount == 2)

QCD (other): (df.GhostHBosonsCount==0)&(df.GhostBHadronsFinalCount != 2)

Other jets were excluded
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Data singularization: Engineering/Limiting # of tracks

We investigated whether limiting/engineering 
track data is useful

Overall Track average: There is not much 
variance between labels

All tracks together: Discrimination in the tails of 
d0, z0

Certain features are distributed normally around 
0 --> z-scoring, taking absolute, regular 
normalization
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Observing Leading tracks

Variation between labels is a lot more distinct when 
considering the leading tracks of jets.

All tracks were kept in input data, since model 
performance increased with more tracks included.

**When taking leading 2 tracks: Jets with <2 tracks 
were excluded, since graph_nets could not recognize 
dummy axes**
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Graph Architectures Investigated

Dataset -> [0.47, 0.06, 0.47], batchsize = 10,000

Training size: 150,000 jets, Testing size: 50,000 jets

GNN Architectures Investigated:
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Globals: fatjet features

Nodes: Tracks

Edges: None

Fully Connected 
Graph

Edges - None, 

Nodes - tracks (d0, z0, etc), 

Globals - fat jet info (c2, d2, t32, etc)

Graphs were fully connected with 
edges as zero vectors.

Full Graph Network Graph Independent Deep Set

● Since the fatjet globals were not normalized, a graph independent 
normalization layer on globals was included in each model.

● Prediction logits: output graph’s global variables

Image ref. Relational inductive biases, deep learning, and graph networks arXiv:1806.01261

https://arxiv.org/abs/1806.01261


GNN performance: High-Level

Red: Current ATLAS Xbb tagger

Blue: Graph Independent on tracks+features

Yellow: Deep Set on tracks+features

Green: Deep Set on tracks

Purple: GI-DS model on tracks+features
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Graph Independent Networks

● No interaction between graph attributes (node, global, edge) in graph independent networks.
● Our GraphIndep network operates exclusively on fatjet global features (no tracks) with only a global function
● Hence, we are emulating regular feed-forward NNs with this architecture.
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Graph Independent Best

Model Blue

Model Arch: (global:[512, 512, 3]) 

GI model crosses 1e-1 AOC for  
both labels.

AOC

QCD (bb) - 0.09 
QCD (other) - 0.06 
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Deep Sets

● Most appropriate graph net architecture for our data, since we have node and global info w/o any emphasis on 
edges.

● The output graph’s global variables are updated based on node and global information, hence becoming our output 
logits.

● This model architecture performed best for QCD (other), since it had track d0 parameters.
● 2 versions of iterations

○ Training over tracks (nodes) and fatjet feat (globals)
○ Training over only tracks (nodes)
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DS tracks+feat best

Arch: (node:[256, 256, 7], 

global:[256, 256, 3]) 

AOC

QCD (bb): 0.12

QCD (other): 0.017
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DS tracks best
Model Green

Arch: (node:[256, 256, 7], 

global:[256, 256, 3]) 

AOC

QCD (bb): 

QCD (other): 

- Lower-mass distributions of Labels 1 
& 2 somewhat match original 
distribution.

- Reduced mass sculpting effect might 
be due to absence of jet features
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Comparing the best single models per label

Graph independent networks seem to perform significantly better for QCD (bb) rejection, while Deep sets are marginally 
better for QCD (other) rejection. 

Model Yellow
Deep Sets (node - [256, 256, 7], global - [256, 256, 3])
50 epochs

QCD (bb) - 0.12 AOC
QCD (other) - 0.017 AOC

Model Blue
Graph Independent (global - [512, 512, 3])
50 epochs

QCD (bb) - 0.09 AOC
QCD (other) - 0.06 AOC 14



Combining Graph Indep & Deep Set

Combining GI & DS through 2 
methods:

Purple: Best GI-DS model

Gray: Best 4-hidden layer DS model. 
(Orig. 2 hidden layers -> global func) 15

- Increasing DS node model 
complexity

- Training a GI-DS pipeline

Graph Independent Deep Set



Conclusion

● Graph Neural Networks could match and beat the Xbb tagger
● Presence of Jet features results in sculpting issue for QCD labels
● Combined GI-DS model beats Xbb tagger, but suffers from mass 

sculpting
● Deepset on tracks has notable performance with reduced sculpting 

effect
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Appendix
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Data Stats Cont.
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Initial Stage of GNN work

Using madgraph-simulated samples for [hbb, gbb, other] discrimintation that also forced mass threshold
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Nature of Datasets and Model Architecture

Data -> Graph Conversion

Track data was used for the Graph Networks. Each jet was a fully connected graph with nodes representing the tracks and 
their information. No global weights were used and no edge weights were used. 

Track data used : ['trk_btagIp_d0','trk_btagIp_z0SinTheta', 'trk_qOverP', 'trk_btagIp_d0Uncertainty', 
'trk_btagIp_z0SinThetaUncertainty']

Model Architecture: 2 layers of Interaction networks, followed by a Relation Network

Each Interaction Network: 

● Edge model: 2-layer MLP with ReLu activation
● Node model:2-layer MLP with ReLu activation
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Utilizing graph global variables

● graph_globFeature: jet mass
● graph_globNN: simplenn label 0 prediction
● Graphnn: no global variables

Graphs could only hold 1 global variable, not an array of multiple features

Obs: using mass shows virtually no improvement, while label 0 predictions 
display minor improvement towards the Feature NN model.

Providing all 3 simplenn prediction values could have set a baseline for the 
graph nn’s performance, which was not possible.

At the time, I was unaware that graph_nets could only take singular global 
variables, and had actually tried to run the model on all features and all prediction 
outputs. If a single variable proved to be statistically significant from either sets, I 
could have specifically investigated by training with it.
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Graph Networks on Leading 2 tracks

Batch size 10,000

Train: 21 (r10201), Test 10 (r9364)

graph_leading2: testing from batches of same data

graph_leading2_indep: testing on different data

graphnn: baseline graph network from previous data (outdated)

Raw track data was used, which was not engineered.

Leading2_indep essentially shows that a model trained on a larger, structured, 
and engineered dataset outdid the previous graph network (which was trained 
on <100k jets). Better comparison will be made in following slides.

Model stats on next slide
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Graph Network on all Tracks
To test whether the current data and model arch could grant any better 
performance, we trained a graph network on all tracks. 

graph_nn_2layer: 2-layer network on all tracks, 20 epochs

graph_nn: 1-layer on all tracks, 10 epochs

graph_norm: 2-layer network on leading 2 tracks, 20 epoch

Results: 

● Improvement in QCD (other) rejection w.r.t  graph_norm
● Decrease in performance for QCD (bb) rejection

○ better performance with only the two leading tracks -> need to figure 
out how to teach GNN to select only important tracks
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Leading_2: Model stats

There did not seem to be learning beyond the first epoch.

From this, I felt that there was no intrinsic characteristic of the leading tracks 
themselves other than the distribution of their features. The most a model 
could have learnt was to discriminate along the feature distribution 
boundaries.
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Training on abs, normalized graphs

A graph network was trained on the absolute, normalized track features of 
the leading 2 tracks.

graph_norm: current graph network

graph_leading2_indep: network trained on raw leading 2 tracks

No improvement, due to my simple normalization
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Graph_norm stats

Right: ROC curves per-epoch, Bottom: Final score distribution in a batch
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Model Complexity

Testing different number of Interaction network layers on the leading 2 
normalized data

I felt the smooth nature of the roc curves indicated some missing 
dimensionality/complexity, which could be speculated to be shown through 
the absence of learning in loss curve. 

However, all models have the exact same performance, indicating that 
limitations lie elsewhere, in model architecture or data 
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GNN Architectures Cont.
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Graph Networks

● Standard architecture for operating on graphs. 
● Since our graphs lack edge info, this architecture becomes slightly inappropriate.
● Since Node and global updates came after edge updates, we assumed that the lack of edge data would not affect 

performance.

I have lost most of the plots for these networks, but it was clear that this architecture was inappropriate. 
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Graphnets, an example

Data: all tracks with fatjet parameters as global variables

Graph network models: (Edge: [2], Node: [3], Globals: [256, 256, 3])

This network showed no learning, and hence was ineffective
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Reducing Learning Rate

Reducing the Learning rate was only observed to bring the model to the stable optimum faster, preventing over-correction. Hence, it 
was only useful for reducing training time, since all learning fluctuations stabilized at ~5e-1 loss, regardless of learning rate.

Learning rates below 0.01 were observed to train much slower than normal, requiring immense training time.

Learning rate: 0.1 → 0.01

Learning Rate: 0.01 Learning Rate: 0.1
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GI Increasing Complexity - 3 hidden layers

Graphindep_allfeat_na-na–256e3-nl_50: graph independent (global: [256, 256, 256, 3]) for 30 epochs 
(Error in naming convention)

The vanishing gradient issue is greatly significant with an increase in complexity. 
Possible approach-> reducing the learning rate, or individually training network layers
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Simpler GI Model
Graph Indep on all tracks w/ fatjet global info, (Globals: [256, 256, 3])

Simplenn: baseline feature nn 

Graphnn: baseline previous graphnn 

Graphindep_allfeat_na-na-256-256-nl_20: given model w/ 20 epochs training
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GI increasing Complexity 
- 512-node layers 
There a marginal improvement for both labels

(Error in 256-node layer model over 50 epochs, so its 40th epoch is shown)

34



A 2-label Graph Independent QCD (bb) network

Blue (current): GI 2-label model (global:[256, 256, 3]) over 30 epochs

Yellow: GI model (global:[256, 256, 3]) over 50 epochs

Only a marginal improvement was observed. Given the reducing 
learning gradient, a significant increase is unlikely given longer time.
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A 2-label Deep Set QCD (other) network

Red (Current): Deep Set 2-label model (node: [3], global: [256, 256, 3]) over 50 epochs

Blue: Regular Deep Set model (node: [3], global: [256, 256, 3]) over 50 epochs

There is a marginal improvement in rejection.

(Dataset had 0.002% QCD (bb) jets so a curve is shown, must be ignored)
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GI-DS Combined Arch Cont.
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Individually training layers

Since network architectures are different, I decided to investigate a combination of Graph independent networks and deep 
sets. 

The initial graph independent network had only a global model, which passed through all nodes while outputting predictions 
as global variables. 

The outputted graph was then used as a transformed dataset for the deep sets’s training, which would aggregate the global 
variables with node track information.

Potential area for exploration: Graph independent node model modifies and aggregates track nodes, with a secondary deep 
set operating over separate predictions by the global and node models
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Primary: Graphindep(global: [256, 256, 3]) over 40 epochs 

Secondary: Deepset(node: [256, 256, 7], global: [256, 256, 3]) over 30 epochs
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Applying other Neural 
Network Architectures

ANNs, CNNs
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Feature Variables Neural Net
Training an Artificial Neural Net on jet features
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Simple Neural Network on feature variables

Feature variables – ['mass', 'C2','D2','e3', ‘Tau21’, 'Tau32_wta','Split12','Split23']

2 hidden linear relu-activated layers with 1024 nodes each

100 epochs

(roc curve on next slide)
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Feature Ranking: Mass

In order to observe the feature ranking, mass and Tau21 were excluded from the feature variables and run.

Holdout_mass – mass excluded

Ht_mass_t21 – mass and tau21 excluded

Simplenn - regular model (mass and tau21 included)

We excluded mass from the trainable jet 
features to gauge the networks dependence 
on mass for discrimination.

Results: We observed that excluding mass 
did not prove to have a major difference in 
model performance. 
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Using Xbb predictions as input features

Results: Massless xbb-dependent model seems to perform better than 
mass-included xbb-dependent model,not to mention scope for improvement with 
a decreasing loss curve. Also, gbb rejection is significantly improved in the case 
of the massless model.

We observe an improvement in performance, revealing the potential for 
improvement for both gbb and misc background.

The 3 Xbb output predictions per jet were included as model features. Two 
iterations were conducted: with and without mass.

Simplenn - original NN
Feat_r10 - 10 epochs with mass feature included (Xbb included)
Simplenn_massless - 100 epochs without mass feature (Xbb included)
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Training Information for Xbb-dependent, massless nn

Even after 100 epochs, the loss curve still continued to gradually decrease.
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Convolutional Neural Networks (CNNs)
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Simple CNN on Calorimeter images

Calorimeter heat maps were generated in terms of dphi and deta.

The below image shows the average heatmap post-engineering for each label in a total training dataset. 

Label 0: gbb signal

Label 1: QCD (gbb)

Label 2: QCD (other)

Data Engineering was conducted via a log log method.

-> log(const. + nonnegative-rectified-log(x))
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Calorimeter Image Feature Engineering

Various feature engineering methods were tested and applied 
exclusively on calorimeter images.

Current best displayed - rectified double log with <0 → 1 shift

The left graphs indicate the original distribution of all nonzero cell values in 
a batch/dataset, while the right is its engineered counterpart
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Training a CNN with 2 fully connected Layers

Layers - 

● Hidden1 - 10 output channels w/ kernel (3, 3), relu activation
● Hidden1 - 5 output channels w/ kernel (3, 3), relu activation

Run over 50 epochs

Best performance of a simple tensorflow cnn on heatmap images. Performance is worse that the feature nn maybe due to the sparsity 
of data in images
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GNN on purely calorimeter data

Graph neural network applied on calorimeter data – acts as some form of upper bound 
for the cnn performance. Since the sparsity of data through image cells did not persist 
for graphs, I made each graph node be particular calorimeter constituent (individual 
particle constituent, not image cell). 

– Input data is raw, pt ranges from [400, 120000]

– deta, dphi, m are unfiltered

– ['pt', 'deta', 'dphi', 'm'] are the each node’s (jet’s) features

Graph_part: calo gnn in question

Graphnn: baseline graph nn on tracks

Results: While there was noticeable 
improvement in performance as compared to the 
cnn on calorimeter data (next slide), the loss 
curve indicates a limit to the performance that is 
significantly lower than Xbb as well as the 
baseline graphnn.

train/test overlap due to data/model infeasibility? 50


