The Structure of the Proton

Aug 21, 2022

The Proton is Not a Point-like Particle

- Quark model says p consists of 3 quarks
- Are they real?
- Gyromagnetic moment $g_{p}=5.586$ is far from the Dirac value of 2 that holds for pointlike spin- $\frac{1}{2}$ particles
- Pattern of baryon magnetic moments can be explained using quark model with fraction charges, fitting for quark masses
- Size of nucleus consistent with nucleons of size $\sim 0.8 \mathrm{fm}$

To study structure of the proton, will use scattering techniques Similar idea to Rutherford's initial discover of the nucleus

Scattering of Spinless Pointlike Particles

- Rutherford Scattering (spinless electron scattering from a static point charge) in lab frame:

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4}\left(\frac{1}{2} \theta\right)}
$$

here E is energy of incident electron and θ is scattering angle in the lab frame

- Mott Scattering: Taking into account statistics of identical spinless particles

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \cos ^{2}\left(\frac{1}{2} \theta\right)}{4 E^{2} \sin ^{4}\left(\frac{1}{2} \theta\right)}
$$

Scattering of Spin- $\frac{1}{2}$ Pointlike Particles

- Elastic Scattering of a spin- $\frac{1}{2}$ electron from a pointlike spin- $\frac{1}{2}$ particle of mass M :
- Elastic scattering of electron from infinite mass target changes angle but not energy
- For target of finite mass M, final electron energy is

$$
E^{\prime}=\frac{E}{1+\frac{2 E}{M} \sin ^{2}\left(\frac{1}{2} \theta\right)}
$$

and the four-momentum transfer is

$$
q^{2}=-4 E E^{\prime} \sin ^{2}\left(\frac{1}{2} \theta\right)
$$

The elastic scattering cross section is:

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2} \cos ^{2}\left(\frac{1}{2} \theta\right)}{4 E^{2} \sin ^{4}\left(\frac{1}{2} \theta\right)} \frac{E^{\prime}}{E}\left[1-\frac{q^{2}}{2 M^{2}} \tan ^{2}\left(\frac{1}{2} \theta\right)\right]
$$

What Happens if the Target Particles Have Finite Size?

- Charge distribution $\rho(r): \int \rho(r) d^{3} r=1$
- Scattering amplitude modified by a "Form Factor"

$$
F\left(q^{2}\right)=\int d^{3} r e^{i \vec{q} \cdot \vec{r}} \rho(r)
$$

So that the cross section is modified by a factor of $\left|F\left(q^{2}\right)\right|^{2}$

- Note: As $q^{2} \rightarrow 0, F\left(q^{2}\right) \rightarrow 1$
- We therefore can Taylor expand

$$
F\left(q^{2}\right)=\int d^{3} r\left(1+i \vec{q} \cdot \vec{r}-\frac{1}{2}(\vec{q} \cdot \vec{r})^{2}+\ldots\right) \rho(r)
$$

Form Factors

- The first $\vec{q} \cdot \vec{r}$ term vanishes when we integrate

$$
\begin{aligned}
F\left(q^{2}\right) & =1-\frac{1}{2} \int r^{2} d r d \cos \theta d \phi \rho(r)(q r)^{2} \cos ^{2} \theta \\
& =1-\frac{2 \pi}{2} \int d r d \cos \theta q^{2} r^{4} \cos ^{2} \theta \\
& =1-\frac{\leq r^{2}>}{4} q^{2} \int \cos ^{2} \theta d \cos \theta \\
& =1-\frac{\leq r^{2}>}{4} q^{2}\left[\frac{\cos ^{3} \theta}{3}\right]_{-1}^{1} \\
& =1-\frac{<r^{2}>}{6} q^{2}
\end{aligned}
$$

- For elastic scattering, can relate q to the outgoing angle

$$
q=\frac{2 p \sin (\theta / 2)}{\left[1+\left(2 E / M_{p}\right) \sin ^{2}(\theta / 2)\right]^{\frac{1}{2}}}
$$

where p and E are the momentum and energy of the incident electron in the lab frame

Interpreting Form Factors

- If proton is not pointlike cross section modified

$$
\frac{d \sigma}{d \Omega} \longrightarrow\left(\frac{d \sigma}{d \Omega}\right)_{\text {pointlike }}\left|F\left(q^{2}\right)\right|^{2}
$$

- Finite size of scattering center introduces a phase difference between plane waves scattered from different points in space

What is the proton made of?

- Is the proton a soft mush or does it have hard composite objects inside?
- Need a high energy probe to resolve distances well below proton size
- Elastic cross section falls rapidly with q^{2}
- Inelastic cross section where proton breaks dominates rate at large q^{2}
- "Deep inelastic scattering" (DIS)
- Study energy and angle of outgoing electron
- For inelastic scattering these are independent variables (subject to kinematic bounds of energy and momentum conservation)

Deep Inelastic Scattering: Kinematics

- W is the invariant mass of the hadronic system
- In lab frame: $P=(M, 0)$
- In any frame, $k=k^{\prime}+q, W=p+q$
- Invariants of the problem:

$$
\begin{aligned}
Q^{2} & =-q^{2}=-\left(k-k^{\prime}\right)^{2} \\
& =2 E E^{\prime}(1-\cos \theta)[\text { in lab] } \\
P \cdot q & =P \cdot\left(k-k^{\prime}\right) \\
& =M\left(E-E^{\prime}\right)[\text { in lab }]
\end{aligned}
$$

- Define $\nu \equiv E-E^{\prime}$ (in lab frame) so $P \cdot q=m \nu$ and

$$
\begin{aligned}
W^{2} & =(P+q)^{2} \\
& =(P-Q)^{2} \\
& =M^{2}+2 P \cdot q-Q^{2} \\
& =M^{2}+2 M \nu-Q^{2}
\end{aligned}
$$

where $Q^{2}=-q^{2}$

- Elastic scattering corresponds to $W^{2}=P^{2}=M^{2}$
- $Q^{2}=2 M \nu$ elastic scattering
- We can define 2 indep dimensionless parameters

$$
\begin{aligned}
x & \equiv Q^{2} / 2 M \nu ; \quad(0<x \leq 1) \\
y & \equiv \frac{P \cdot q}{P \cdot k}=1-E^{\prime} / E ; \quad(0<y \leq 1)
\end{aligned}
$$

The Most General Form of the Interaction

- Express cross section

$$
d \sigma=L_{\mu \nu}^{e} W^{\mu \nu}
$$

where W describes the proton current (allowing substructure)

- Most general Lorentz invarient form of $W^{\mu \nu}$
- Constructed from $g^{\mu \nu}, p^{\mu}$ and q^{μ}
- Symmetric under interchange of μ and ν (otherwise vanishes when contracted with $L_{\mu \nu}$)

$$
W^{\mu \nu}=-W_{1} g^{\mu \nu}+\frac{W_{2}}{M^{2}} p^{\mu} p^{\nu}+\frac{W_{4}}{M^{2}} q^{\mu} q^{\nu}+\frac{W_{5}}{M^{2}}\left(p^{\mu} q^{\nu}+p^{\nu} q^{\mu}\right)
$$

- W_{3} reserved for parity violating term (needed for ν scattering)
- Not all 4 terms are independent. Using $\partial_{\mu} J^{\mu}=0$ can show

$$
\begin{aligned}
W_{5} & =-\frac{p \cdot q}{q^{2}} W_{2} \\
W_{4} & =\frac{p \cdot q}{q^{2}} W_{2}+\frac{M^{2}}{q^{2}} W_{1} \\
W^{\mu \nu} & =W_{1}\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right)+W_{2} \frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right)
\end{aligned}
$$

Structure Functions

- Using notation from previous page, we can express the x-section for DIS

$$
\frac{d \sigma}{d \Omega d E^{\prime}}=\frac{\alpha^{2}}{4 E^{2}} \frac{\cos ^{2}\left(\frac{1}{2} \theta\right)}{\sin ^{4}\left(\frac{1}{2} \theta\right)}\left[W_{2}\left(q^{2}, W\right)+2 W_{1}\left(q^{2}, W\right) \tan ^{2}\left(\frac{1}{2} \theta\right)\right]
$$

- These are the same two terms as for the elastic scattering
- W_{1} and W_{2} care called the structure functions
- Angular dependence here comes from expressing covariant form on last page in lab frame variables
- Two structure functions that each depend on Q^{2} and W
- Alternatively, can parameterize wrt dimensionless variables:

$$
\begin{aligned}
x & \equiv Q^{2} / 2 M \nu \\
y & \equiv \frac{P \cdot q}{P \cdot k}=1-E^{\prime} / E
\end{aligned}
$$

Structure Functions in terms of Lorentz Invariants

- Change variables

$$
\begin{aligned}
& F_{1}\left(x, Q^{2}\right) \equiv M W_{1}\left(\nu, Q^{2}\right) \\
& F_{2}\left(x, Q^{2}\right) \equiv \nu W_{2}\left(\nu, Q^{2}\right)
\end{aligned}
$$

- Rewrite cross section in terms of x, y, Q^{2}

$$
\frac{d^{2} \sigma^{e p}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[\left(1-y-\frac{M^{2} y^{2}}{Q^{2}}\right) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right]
$$

- In DIS limit, $Q^{2} \gg M^{2} y^{2}$:

$$
\frac{d^{2} \sigma^{e p}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right]
$$

- Can event-by-event determine x, y and Q^{2} from lab frame variables

$$
Q^{2}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2}, \quad x=\frac{Q^{2}}{2 M\left(E-E^{\prime}\right)}=\frac{Q^{2}}{2 M \nu}=, \quad y=1-\frac{E^{\prime}}{E}
$$

The Parton Model

- Supposed there are pointlike partons inside the nucleon
- Work in an "infinite momentum" frame: ignore mass effects
- Proton 4-momentum: $P=(P, 0,0, P)$
- Visualize stream of parallel partons each with 4 -momentum $x P$ where $0<x<1$; neglect transverse motion of the partons
- x is the fraction of the proton's momentum that the parton carries
- If electron elastically scatters from a parton

$$
\begin{aligned}
(x P+q)^{2}=m^{2} & \simeq 0 \\
x^{2} P^{2}+2 x P \cdot q+q^{2} & =0
\end{aligned}
$$

Since $P^{2}=M^{2}$, if $x^{2} M^{2} \ll q^{2}$ then

$$
\begin{aligned}
2 x P \cdot q & =-q^{2}=Q^{2} \\
x & =\frac{Q^{2}}{2 P \cdot q}=\frac{q^{2}}{2 M \nu}
\end{aligned}
$$

Deep inelastic scattering can be described as elastic scattering of the lepton with a parton with momentum $x P$

Electron Quark Scattering

- Quarks are Dirac particles, so can just calculate the scattering in QED
- We won't do the calculation here (see Thomson p. 191). Answer is

$$
\frac{d \sigma^{e q}}{d Q^{2}}=\frac{4 \pi e_{i}^{2}}{Q^{4}}\left[(1-y)+\frac{y^{2}}{2}\right]
$$

- Looks pretty similar to the previous page

$$
\frac{d^{2} \sigma^{e p}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right]
$$

- The $F_{1}\left(x, Q^{2}\right)$ and $F_{2}\left(x, Q^{2}\right)$ carry the information about the distribution of the quarks inside the proton
- Note: $F_{1}\left(x, Q^{2}\right)$ is due to the magnetic (spin-spin) interaction while $F_{2}\left(x, Q^{2}\right)$ is the electric (Coulomb) interaction
- If partons are Dirac particles, we expect a well defined relationship between these two terms

Convolution of PDF with scattering cross section

- Cross section is incoherent sum over elastic scattering with partons

$$
\begin{aligned}
\frac{d \sigma^{e q}}{d Q^{2}} & =\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y)+\frac{y}{2}\right] \\
\frac{d \sigma^{e p}}{d x d Q^{2}} & =\int_{0}^{1} d x \sum_{i} e_{i}^{2} f_{i}\left(x, Q^{2}\right) \frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y)+\frac{y^{2}}{2}\right] \delta\left(x-\frac{Q^{2}}{2 M \nu}\right)
\end{aligned}
$$

- Comparing to the previous expression for $e p$ scattering

$$
\frac{d^{2} \sigma^{e p}}{d x d Q^{2}}=\frac{4 \pi \alpha^{2}}{Q^{4}}\left[(1-y) \frac{F_{2}\left(x, Q^{2}\right)}{x}+y^{2} F_{1}\left(x, Q^{2}\right)\right]
$$

We find

$$
\begin{aligned}
F_{2}^{e p}\left(x, Q^{2}\right) & =x \sum_{i} e_{i}^{2} f_{i}\left(x, Q^{2}\right) \\
F_{1}^{e p}\left(x, Q^{2}\right) & =\frac{1}{2} \sum_{i} e_{i}^{2} f_{i}\left(x, Q^{2}\right) \\
\therefore F_{2}^{e p}\left(x, Q^{2}\right) & =2 x F_{1}^{e p}\left(x, Q^{2}\right)
\end{aligned}
$$

- Last equation is called the Callan-Gross relation
- If partons had spin-0 rather than spin- $\frac{1}{2}$, we would have found $F_{1}=0$

What does the data look like?

The partons act like spin-1/2 Dirac particles!

Some Observations (I)

- $f_{i}(x)$ is the prob of finding a parton of species i with mom fraction between x and $x+d x$ in the proton.
- If the partons together carry all the momentum of the proton

$$
\int d x x f(x)=\int d x x \sum_{i} f_{i}(x)=1
$$

where \sum_{i} is a sum over all species of partons in the proton

- We call $f(x)$ the parton distribution function since it tells us the momentum distribution of the parton within the proton
- This is the first example of a "sum rule"

Some Observations (II)

- It's natural to associate the partons with quarks, but that's not the whole story
- Because $e p$ scattering occurs through the electromagnetic interaction, it only occurs via scattering with charged partons.
- If the proton also contains neutral partons, the EM scattering won't "see" them
- For example: EM scattering blind to gluons
- Let's assume that the $e p$ scattering occurs through the scattering of the e off a quark or antiquark
- We saw that the $\operatorname{SU}(3)$ description of the proton consists of $2 u$ and $1 d$ quark.
- However we can in addition have any number of $q \bar{q}$ pairs without changing the proton's quantum numbers
- The 3 quarks (uud) are called valence quarks. The additional $q \bar{q}$ pairs are called sea or ocean quarks.
- Pair production of $q \bar{q}$ pairs within the proton

Another Sum Rule

- To get the right quark content for the proton:

$$
\begin{aligned}
\int u(x)-\bar{u}(x) d x & =2 \\
\int d(x)-\bar{d}(x) d x & =1 \\
\int s(x)-\bar{s}(x) d x & =0
\end{aligned}
$$

If partons are quarks, what do we expect?

Max Klein, CTEQ School Rhodos 2006

- Elastic scattering from proton has $x=1$
- If 3 quarks carry all the proton's momentum each has $x=0.3$
- Interactions among quarks smears $f(x)$
- Radiation of gluons softens distribution and adds $q \bar{q}$ pairs
- Describe the 3 original quarks as "valence quarks"
- $q \bar{q}$ pairs as sea or ocean
- Some of proton's momentum carried by gluons and not quarks or antiquarks

Using Isospin: Comparing the Proton and Neutron

- Ignore heavy quark content in the proton: consider only u, d, s
- Write the proton Structure Function

$$
\frac{F_{2}^{p}(x)}{x}=\sum_{i} f_{i}^{p}(x) e_{i}^{2}=\frac{4}{9}\left(u^{p}(x)+\bar{u}^{p}(x)\right)+\frac{1}{9}\left(d^{p}(x)+\bar{d}^{p}(x)\right)+\frac{1}{9}\left(s^{p}(x)+\bar{s}^{p}(x)\right)
$$

- Similarly, for the neutron

$$
\frac{F_{2}^{n}(x)}{x}=\sum_{i} f_{i}^{n}(x) e_{i}^{2}=\frac{4}{9}\left(u^{n}(x)+\bar{u}^{n}(x)\right)+\frac{1}{9}\left(d^{n}(x)+\bar{d}^{n}(x)\right)+\frac{1}{9}\left(s^{n}(x)+\bar{s}^{n}(x)\right)
$$

- But isospin invariance tells us that $u^{p}(x)=d^{n}(x)$ and $d^{p}(x)=u^{n}(x)$
- Write F_{2} for the neutron in terms of the proton pdf's (assuming same strange content for the proton and neutron)

$$
\frac{F_{2}^{n}(x)}{x}=\frac{4}{9}\left(d^{p}(x)+\bar{d}^{p}(x)\right)+\frac{1}{9}\left(u^{p}(x)+\bar{u}^{p}(x)\right)+\frac{1}{9}\left(s^{p}(x)+\bar{s}^{p}(x)\right)
$$

- Assuming sea q and \bar{q} distributions are the same:

$$
u(x)-\bar{u}(x)=u_{v}(x), \quad d(x)-\bar{d}(x)=d_{v}(x), \quad s(x)-\bar{s}(x)=0
$$

- Taking the difference in F_{2} for protons and neutrons:

$$
\frac{1}{x}\left[F_{2}^{p}(x)-F_{2}^{n}(x)\right]=\frac{1}{3}\left[u_{v}(x)-d_{v}(x)\right]
$$

which gives us a feel for the valence quark distribution

What the data tells us

Fig. 9.8 The difference $F_{2}^{F}{ }^{7}-F_{2}$ as a function of x, as measured in deep inelastic scattering. Data are from the Stanford Limear Accelerator.

From Halzen and Martin

- Looks the way we expect from the cartoon on page 27
- Next question: How to measure the partons' charge
- To do this, must compare e and ν scattering!

Neutrino-(anti)quark Charged Current Scattering (I)

- Start with ν_{μ} or $\bar{\nu}_{\mu}$ beam
- Distribution of ingoing $\nu 4$-momenta determined from beam design
- Outgoing $\mu^{ \pm}$momentum measured in spectrometer
- Exchange via $W^{ \pm}$("charged current interaction")
- ν scatter against d and \bar{u}
- $\bar{\nu}$ scatter against u and \bar{d}

Neutrino-(anti)quark Scattering (II)

- Neutrinos left handed, anti-neutrinos right handed
- Left handed $W^{ \pm}$couples to left-handed quarks and right-handed anti-quarks

- νq and $\bar{\nu} \bar{q}$ scattering allowed for all angles, but $\bar{\nu} q$ and $\nu \bar{q}$ vanish in backward direction

$$
\frac{d \sigma^{\nu q}}{d \cos \theta} \propto \text { constant } \quad \frac{d \sigma^{\bar{\nu} q}}{d \cos \theta} \propto\left(1+\cos \theta^{*}\right)^{2}
$$

where θ^{*} is scattering angle in νq center of mass

Neutrino-(anti)quark Scattering (III)

- The charged current cross sections are:

$$
\begin{aligned}
\frac{d \sigma\left(\nu_{\mu} d \rightarrow \mu^{-} u\right)}{d \Omega} & =\frac{G_{F}^{2} s}{4 \pi^{2}} \\
\frac{d \sigma\left(\overline{\nu_{\mu}} u \rightarrow \mu^{+} d\right)}{d \Omega} & =\frac{G_{F}^{2} s}{4 \pi^{2}} \frac{(1+\cos \theta)^{2}}{4} \\
\frac{d \sigma\left(\nu_{\mu} \bar{u} \rightarrow \mu^{-} \bar{d}\right)}{d \Omega} & =\frac{G_{F}^{2} s}{4 \pi^{2}} \frac{(1+\cos \theta)^{2}}{4} \\
\frac{d \sigma\left(\overline{\nu_{\mu}} \bar{d} \rightarrow \mu^{+} \bar{u}\right)}{d \Omega} & =\frac{G_{F}^{2} s}{4 \pi^{2}}
\end{aligned}
$$

- Also, one can prove that:

$$
1-y=\frac{p \cdot k^{\prime}}{p \cdot k}=\frac{1}{2}\left(1+\cos \theta^{*}\right)
$$

which allows us to rewrite the above expressions in terms of the relativistically invariant variable y

- Since $\frac{1}{4} \int(1+\cos \theta)^{2} d \cos \theta=1 / 3$,

$$
\begin{array}{rlll}
\sigma^{\nu d}: & \sigma^{\nu \bar{u}}: & \sigma^{\bar{\nu} u}: & \sigma^{\bar{\nu} \bar{d}}= \\
1: & \frac{1}{3}: & \frac{1}{3}: & 1
\end{array}
$$

What is the Advantage of ν Scattering?

- The quarks and antiquarks have different angular dependence, so we can extract their pdf's separately by looking at cross sections as a function of angle
- Angular dependence can be expressed in terms of dimensionless variable y
- Parity violation means we have a third structure function F_{3} that I won't talk about today
- Weak "charge" of the u and d is the same, so factors of $4 / 9$ and $1 / 9$ are not present
- Using previous expressions and integrating over angle:

$$
\begin{aligned}
\frac{d \sigma(\nu p)}{d x} & =\frac{G_{F}^{2} x s}{\pi}\left[d(x)+\frac{1}{3} \bar{u}(x)\right] \\
\frac{d \sigma(\nu n)}{d x} & =\frac{G_{F}^{2} x s}{\pi}\left[d^{n}(x)+\frac{1}{3} \bar{u}^{n}(x)\right] \\
& =\frac{G_{F}^{2} x s}{\pi}\left[u(x)+\frac{1}{3} \bar{d}(x)\right]
\end{aligned}
$$

where we have written everything in terms of the proton PDFs

- If we believe the partons in the proton and neutron are quarks, we can relate the structure functions measured in νN and $e N$

Comparing $e N$ and $\nu N \nu N$ Scattering (I)

- Now, let's take an isoscalar target N (equal number of protons and neutrons)
- In analogy with electron scattering

$$
\frac{F_{2}^{\nu N}}{x}=u(x)+d(x)+\bar{u}(x)+\bar{d}(x)
$$

- If we go back to our electron scattering and also require an isoscalar target

$$
\frac{F_{2}^{e N}}{x}=\frac{5}{18}(u(x)+d(x)+\bar{u}(x)+\bar{d}(x))
$$

- So, if the partons have the charges we expect from the quark model

$$
F_{2}^{e N}(x)=\frac{5}{18} F_{2}^{\nu N}(x)
$$

Comparing $e N$ and $\nu N \nu N$ Scattering (II)

- The partons we "see" in $e N$ scattering are the same as the ones we "see" in νN scattering
- This confirms our assignment of the quark charges:

The Quarks Have Fractional Charge!

Using νN scattering to Count Quarks and Antiquarks

- As we previously did for electron scattering, we can look at an isoscalar target N
- Starting with the cross sections for νq scattering we can go through the same convolution with the PDFs that we did for the $e N$ case
- The result is

$$
\begin{aligned}
\sigma^{\nu N} & =\frac{G_{F} 2 M E}{2 \pi}\left[Q+\frac{1}{3} \bar{Q}\right] \\
\sigma^{\bar{n} u N} & =\frac{G_{F} 2 M E}{2 \pi}\left[\bar{Q}+\frac{1}{3} Q\right]
\end{aligned}
$$

where

$$
\begin{aligned}
Q & \equiv \int x[u(x)+d(x)] \\
\bar{Q} & \equiv \int x[\bar{u}(x)+\bar{d}(x)]
\end{aligned}
$$

and we have ignored the small strange component in the nucleon

- Thus

$$
R_{\nu / \bar{\nu}} \equiv \frac{\sigma^{\bar{\nu} N}}{\sigma^{\nu N}}=\frac{\bar{Q}+Q / 3}{Q+\bar{Q} / 3}=\frac{1+3 \bar{Q} / Q}{3+\bar{Q} / Q}
$$

Experimental Measurements of νN Scattering

- Experimentally $R_{\nu / \bar{\nu}}=0.45 \rightarrow \bar{Q} / Q=0.5$

There are antiquarks within the proton!

How Much Momentum do the q and \bar{q} Carry?

- Momentum fraction that the q and \bar{q} together carry is

$$
\int x F_{2}^{\nu N}(x) d x=\frac{18}{5} \int x F_{2}^{e N}(x) d x
$$

- At $q^{2} \sim 10 \mathrm{GeV}^{2}$ that this fraction ~ 0.5

Only half the momentum of the proton is carried by quarks and antiquarks

- What's Left? The gluon!

Some Comments

- Charged lepton probes study charged partons
- Neutrinos study all partons with weak charge
- $\int x F_{2}^{\nu N}(x) d x=\frac{18}{5} \int x F_{2}^{e N}(x) d x$ tells us that all the weakly interacting partons are charged
- To study the gluon directly, will need a strong probe
- No pointlike strong probes
- Will need to convolute two pdf's

- Can also indirectly study gluons by seeing how they affects the quark distributions

Scaling Violations in DIS

- QCD corrections to DIS come from incorporating gluon brem from the q and \bar{q} and pair production $g \rightarrow q \bar{q}$
- The ability to resolve these QCD corrections are q^{2} dependent
- Higher q^{2} : can disguish $q+g$ from q
- Effect on observed PDFs:
- At high x the quark PDFs decrease
- At low x the quark and antiquark PDFs increase
- Complete treatment in QCD via coupled set of differential equations, the Alterelli-Parisi evolution equations

DIS in the Modern Era: The HERA collider

- ep collider located at DESY lab in Hamburg
- 27.5 Gev $(e) \times 920 \mathrm{GeV}(\mathrm{p})$
- Two general purpose detectors (H1 and Zeus)

What Q^{2} and x are relevant?

Our best fits of PDFs at present

- Fit experimental data to theoretically motivated parameterizations
- Combine data from many experiments, using Alterelli-Parisi to account for differences in Q^{2} (correct to common value)
- Analysis of uncertainties to provide a systematic uncertainty band

Modern $F_{2}\left(x, Q^{2}\right)$ Measurements

$37 / 37$

