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§  We are a user facility at the Berkeley Lab, operated by the US Department of Energy.
§  Anyone can submit a proposal (including for computation, simulation or analysis!).
§  If accepted by independent review board, access to microscopes and staff is free. 

Open Call for Proposals – September 2023 – foundry.lbl.gov
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Scanning Transmission Electron Microscopy

“A Synchrotron in a Microscope” – Mick Brown
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Introduction to Scanning 
Transmission Electron
Microscopy

converged electron probe

sample

annular dark field 
(ADF) detector

diffraction pattern

pixelated detector

2D images recorded
over a 2D grid of probe positions:

Four dimensional
scanning transmission electron microscopy

(4D-STEM)
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Jiang et al., Nature 559, 343 (2018)

Motivation – Why do 4D-STEM?
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STEM Diffraction from Crystalline Samples

§ Ideally, the diffracted signal is simply a 2D 
Fourier transform of the projected 
potential, multiplied by the probe intensity.

§ Thus the position and intensity of Bragg 
disks of each diffraction pattern acts as a 
fingerprint for the local structure and 
orientation of the (crystal) sample.

§ Interpretation is complicated by multiple / 
dynamical scattering (thickness effects), 
overlapping grains, background signals.
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4D-STEM Diffraction from Amorphous Samples

§ Ideally, the diffracted signal is simply a 2D 
Fourier transform of the projected 
potential, multiplied by the probe intensity.

§ The position and shape of amorphous 
halos of each diffraction pattern acts as a 
fingerprint for the local structure factor, 
given by the mean atomic arrangement.

§ Interpretation is complicated by multiple 
/ dynamical scattering (thickness effects), 
background, more than crystal diffraction!
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Complex Sample Analysis with 4D-STEM
Gadolinium Titanate 4D-STEM

experiment

recrystallized fluorite mixed polycrystalline fluorite mixed

single crystal 
pyrochlore amorphous

B Savitzky et al., Microscopy and Microanalysis 27, 712 (2021)
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4D-STEM
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4D-STEM – Classification and Segmentation
Single crystal

Amorphous

Polycrystalline

Unsupervised 
classification of the 
GTO sample:

200 nm

General classification is performed by 
using NNMF on feature vectors, 
constructed from Bragg vector maps, 
amorphous signals, virtual images, etc.

B Savitzky et al., Microscopy and Microanalysis (2021).
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4D-STEM – Crystalline Strain Mapping

lattice in 
compression

lattice in 
tension

increased spot spacing decreased spot spacing
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4D-STEM – Crystalline Strain Mapping
Strain measured in single-crystal GTO pyrochlore / recrystallized fluorite

B Savitzky et al., Microscopy and Microanalysis (2021).
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X-ray spectroscopic ptychography using a TEM holder
Inverse Learning of LiFePO4 Chemo-Mechanics 

HD Deng et al., Nature Materials 21, 547 (2022).        Hughes et al., Materials Today 52, 102 (2022)
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Inverse Learning of LiFePO4 Chemo-Mechanics 
4D-STEM strain mapping of the same particles from x-ray study.

HD Deng et al., Nature Materials 21, 547 (2022).        Hughes et al., Materials Today 52, 102 (2022)
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Inverse Learning of LiFePO4 Chemo-Mechanics 
Alignment and correlation of all channels à inverse learning of constitutive law

HD Deng et al., Nature Materials 21, 547 (2022).        Hughes et al., Materials Today 52, 102 (2022)
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4D-STEM – Orientation Mapping of Soft Matter
Bragg peaks detected in each diffraction pattern:

§ Image template 
from vacuum 
reference probe 
or synthetic disk.

§ Use template 
matching / image 
correlation to 
identify peaks.

§ Record data, move 
onto next image.

C Ophus*, O Panova* et al., Nature Materials 18, 860 (2019)
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4D-STEM – Orientation Mapping of Soft Matter

C Ophus*, O Panova* et al., Nature Materials 18, 860 (2019)

Visualization of the two morphologies:

Single orientation through thickness, 
large continuously-turning domains.

Multiple orientations through thickness, 
small single-orientation domains.

No additive to T1: DIO additive to T1:
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4D-STEM – Orientation Mapping of Soft Matter
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Carbon Basal Plane Orientations, Color Relative to Pores

Huize Wang, Charles Otieno Ogolla et al., Advanced Functional Materials 2207406 (2022)
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Carbon Basal Plane Orientations, Color Relative to Pores

1 um

Huize Wang, Charles Otieno Ogolla et al., Advanced Functional Materials 2207406 (2022)
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Orientation / Phase from a Diffraction Pattern Library

C Ophus, M and M 25, 563 (2019) E Rauch et al., Arch Metall Mater 50, 87, (2005) G Brunetti et al., Chem Mater 23, 4515, (2011)
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Kinematical / Dynamical Diffraction Patterns

C Ophus et al., Microscopy and Microanalysis 28, 390 (2022).
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Orientation Mapping via Sparse Correlation

[001]

[011]

C Ophus et al., Microscopy and Microanalysis 28, 390 (2022).
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Orientation Mapping via Sparse Correlation

[227]

[135]

C Ophus et al., Microscopy and Microanalysis 28, 390 (2022).
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4D-STEM of Twisted AuAgPd Nanowires

C Ophus et al., Microscopy and Microanalysis 28, 390 (2022).
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Orientation Mapping of AuAgPd Nanowires
First Match Second Match experiment

simulation
hkl

C Ophus et al., Microscopy and Microanalysis 28, 390 (2022).
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py4DSTEM Tutorials
Tutorial repository – https://github.com/py4dstem/py4DSTEM_tutorials
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Crystalline Orientation Mapping in py4DSTEM
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Crystalline Orientation Mapping in py4DSTEM



30
30 

Crystalline Orientation Mapping in py4DSTEM
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Crystalline Orientation Mapping in py4DSTEM



32
32 

Crystalline Orientation Mapping in py4DSTEM
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Crystalline Orientation Mapping in py4DSTEM
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Deploying py4DSTEM into the Materials Project
§ PR contribution accepted into crystal Toolkit repo, live “soon”
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Vortex Structures in STO/PTO Superlattices

AK Yadav*, CT Nelson*, Observation of polar vortices in oxide superlattices, Nature 530, 198 (2016)

High angle annular dark field (HAADF) image vortex-antivortex pair

Multilayers grown on SrRuO3/DyScO3 substrate

Polar displacements 
overlaid on curl of 
polar displacement.

Polarization vectors 
from phase field 
simulation.

Polar displacements 
overlaid on HAADF 
image, from A sites.

PbTiO3

SrTiO3

PbTiO3

SrTiO3

PbTiO3

SrTiO3

PbTiO3
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Domain Wall Configuration of STO/PTO Layers

AK Yadav*, CT Nelson*, Nature 530, 198 (2016) S Susarla et al., accepted to Nature Commuunications

Dark field TEM
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3D Vortex Structures in STO/PTO Superlattices

AK Yadav*, CT Nelson*, Observation of polar vortices in oxide superlattices, Nature 530, 198 (2016)

Large gradient energy of 
vortices is balanced by:

§ Elastic energy from with 
epitaxial constraints.

§ Electrostatic energy reduction 
by removing polar 
discontinuities at interfaces.

Open questions about 
vortex structure in 3D: 
§ Vertical [001] asymmetry in 

position of vortex cores?

§ Non-zero polarization 
vectors along vortex cores?

Atomic-resolution imaging uses 2D projections – difficult if structure varies along beam direction. Alternatives?
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Measuring PbTiO3 Polarization using 4D-STEM

PrTiO3 
8 x 32 x 8 cells

polarization field 
varying in-plane

Compare 
intensities of
200 and 200 
beams:
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STO/PTO/STO Multilayer – 4D-STEM Experiments
converged

electron beam

fast direct 
electron detector

STO

PTO

STO

P = ?

16 UCs

16 UCs

16 UCs

000

Virtual 
detectorsmean diffraction pattern

200200

020

020

110110

110110

50 nm

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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PbTiO3 Polarization with Dynamical Diffraction
4D-STEM measurements of intensities differences in Friedel pairs of Bragg disks 
works for kinematical diffraction (thin samples). 

But what about dynamical 
diffraction (thick samples)?

Investigate with Bloch wave simulations:

Bloch wave 
coefficients

normal comp. 
wavevectors

structure matrix: electron wave at depth z in sample:

where:
Scattering 

matrix 
(S-matrix)

Simulating multilayers with an S-matrix is straightforward:
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Ψ 𝑥, 𝑦, 𝑧 = exp *
!

"

𝑖𝜎𝑉 𝑥, 𝑦, 𝑧 +
𝑖𝜆
4𝜋

𝛻#,%& Ψ 𝑥, 𝑦, 0

What is a Scattering Matrix?
Probe at exit surface

Advanced Computing in Electron Microscopy, 2nd Edition, Earl Kirkland – Probe figures from Hamish Brown

Initial probe

𝓢
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PTO Polarization in 16/16/16 STO/PTO/STO
PX = 0.00 PX = 0.25 PX = 0.50 PX = 0.75 PX = 1.00 polarization vector

𝑃! =
𝐼"## − 𝐼"##
𝐼"## + 𝐼"##

polarization estimate
(inset, normalized to PX=1)
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S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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PTO Polarization in 16/16/16 STO/PTO/STO

Polarization Estimate

-1 0 +1+0.5-0.5

y Tilt qY  (mrads)

x 
Ti

lt 
q X

  (
m

ra
ds

)

Under dynamical diffraction conditions, tilt and polarization are not orthogonal.

Multiple scattering leads to complex nonlinear 
intensity response, contrast decrease, even 
contrast reversals.

How can we measure polarization in complex 
structures, locally tilted, thick samples?

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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Flexible Inversion of Dynamical Scattering Data
Directional derivative 
of matrix exponential. 

Derivative of matrix after 
spectral decomposition.

where

Product rule for 
multiple S-matrices 

Sample tilt derivatives Sample polarization derivatives
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Preliminary 16/16/16 STO/PTO/SRO Inversion
DI – intensity scale I0 – intensity offset

50 nm

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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Preliminary 16/16/16 STO/PTO/SRO Inversion
x Tilt qX (mrads) y Tilt qY (mrads)

50 nm

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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Preliminary 16/16/16 STO/PTO/SRO Inversion
Axial Polarization PX Lateral Polarization PY

50 nm

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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Preliminary 16/16/16 STO/PTO/SRO Inversion
Axial Polarization PX

m
ea

n 
P X

Axial Polarization – expected to alternate

§ Oscillating behavior observed everywhere.

§ However, many domains show net 
polarization in one direction.

§ Need a more complex 3D model of P?

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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Preliminary 16/16/16 STO/PTO/SRO Inversion
Lateral Polarization PY

50 nm
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Lateral domain type I 

m
ea

n 
P Y

Lateral domain type II 

I

I
I

I

II

II

S Zeltmann et al., Ultramicroscopy 250, 113732 (2023).
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Dynamical Diffraction Complicates Disk Detection

Diffraction 
pattern from 
using small 

convergence 
angle, thin 

sample

Diffraction 
pattern from 
using large 

convergence 
angle, thick 

sample

correlation detection Deep learning

correlation detection Deep learning

Can machine learning 
methods help us when 
our conventional image 
analysis pipelines fail?

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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Simulation Pipeline Infrastructure
4D-SCRAPE 
& Manipulatt

4D-MAKE 4D-PREP 4D-OPTIMIZE Many open source 
software tools used:

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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Solving Diffraction with Deep Learning

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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Dynamical Diffraction Defeated by Deep Learning

Diffraction 
pattern from 
using small 

convergence 
angle, thin 

sample

Diffraction 
pattern from 
using large 

convergence 
angle, thick 

sample

correlation detection Deep learning

correlation detection Deep learning

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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Solving Diffraction with Deep Learning – FCU-Net

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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Strain Mapping of SiGe Multilayers w/ Deep Learning

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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Strain Mapping of SiGe Multilayers w/ Deep Learning

Strain mapping of alternating 
multilayers of Si and SiGe.

§ Our deep learning approach significantly improves the measurement accuracy 
over conventional correlation, and does not require any labeled training data.

J Munshi*, A Rakowski*, et al., npj computational materials 8, 254 (2022)
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More Info – clophus@lbl.gov – ncem-lbl.slack.com

4D-STEM Review
C Ophus, Microscopy and 
Microanalysis 25, 563 (2019)

Fast 4D-STEM 
Simulation Code
Source code, GUI programs for 
Windows, OSX, Linux, tutorials

www.prism-em.com4D-STEM analysis:
py4DSTEM

github.com/py4dstem/py4DSTEM
github.com/py4dstem/py4DSTEM_tutorials
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