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● Review of standard inference in particle physics 
● Beyond simple summary statistics
● Learning the likelihood (ratio)
● Integration and augmentation
● Back to summary statistics
● Systematics
● Conclusion

Inspired by a shorter introduction in Ben Nachman’s talk

Overview

2

https://indico.physics.lbl.gov/event/1970/


● What we want:
○ Fundamental physics parameters, generally expressed through a 

quantum field theory
○ Particle masses, coupling strengths

● What we have:
○ Signals in a detector eg hits in a tracker or calorimeter

What is experimental particle physics?
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Dr. Nachman’s 290E talk

https://indico.physics.lbl.gov/event/1970/attachments/3254/4270/UCBPhysics290ESpring2022.pdf


● Particle physics is a strongly predictive model
○ Can in principle compare data to theory in a statistical way 

■ Ideally through a likelihood (ratio) 
● What makes this challenging?

○ Matrix element -> Hadronization -> Detector interaction -> Readout
■ Factorizable components, but each nontrivial

○ Many final state objects at many energy scales 
○ Full likelihood is practically not feasible to compute 

Full likelihoods in physics analysis
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● Standard strategy to get around intractable 
computations 
○ Summary statistics like mass, pT, other 

kinematic variables
○ Reduce dimensions of problem to 1

● Pros
○ Use physics knowledge to distill massive 

integral over many dimensions to simple 
1-D histograms 

○ Appealing to physical intuition 
● Cons

○ Some information is nearly always lost

Summary statistics
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Higgs discovery in a mass summary 
statistic from ATLAS in 2012

https://arxiv.org/abs/1207.7214v2


● Machine learning has advanced greatly in 
recent years
○ Ability to learn surrogates for likelihood 

(ratio) and/or powerful summary 
statistics directly from the higher 
dimensional data

○ Iterative learning allows for higher 
sample efficiency 

○ New pipelines combining simulation and 
inference can improve both sampling 
efficiency and quality of inference 

Why now?
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● General likelihood estimation requires estimating a density 
● Three steps in the process

○  Run simulation chain for p(x|θ) for variariety of points θ 
○ Train a neural density estimator where θ itself is also an input into 

the model
■ This training treats θ as a continuous parameter in a smooth 

space, leveraging nearby points to generate a conditional 
probability which is valid for general values of θ

○ Once trained, the model can be evaluated for various data and 
parameter points to define best fit points or exclusion limits

● Amortization = High upfront cost, but once p(x|θ) is determined, it can be 
evaluated much more quickly for large numbers of events

Surrogate learning I: likelihood
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● Likelihood ratios are simpler than likelihoods, and can be trained via 
classifiers as opposed to a density estimation
○ Simulating data at some standard point pref(x) (eg the SM) and for a 

variety of θ’s, p(x|θ)
○ A binary classifier, ŝ(x|θ) will converge to: 

pref(x)/[p(x|θ) + pref(x)] 
○ which is simply related to likelihood ratio:

 ȓ(x|θ) = [1 - ŝ(x|θ)]/ ŝ(x|θ)

● A large advantage here is that likelihood ratios can then be treated with 
standard statistical tools and are generally more computationally 
efficient than full likelihoods

Surrogate learning II: likelihood ratio
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● Likelihood (ratio) estimation is powerful in that it reduces data problems 
in HEP to purely statistical problems

● However, we know more about the latent states in the simulation chain 
than is utilized in a purely black box approach, and that can be leveraged 
in ML approaches to simulation based inference

● In particular, 2 useful quantities can be computed and factorized:

Integration and augmentation
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● Joint likelihood ratio and joint score can be reinserted into the training 
pipeline 

● Additional information that can be used as labels in supervised training 
○ Can reduce number of simulated events necessary for precision 

estimation of likelihood ratio 

Integration and augmentation II
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Examples of integration and augmentation
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“the joint likelihood ratio provides 
noisy, but unbiased labels (green)
for the likelihood ratio function to be 
learned (red)”

“the joint score adds noisy, but unbiased 
gradient information (arrows)”



● Problem with aforementioned techniques: new analysis pipelines 
required

● But! Can use some of what we have learned from previous slides to 
systematize the construction of summary statistics

● Near some reference (SM) parameter value, can show the optimal 
observable are the likelihood score

● Compute the joint score for each event, then a NN can be trained to 
minimize 

● Can be shown this quantity asymptotes to the full likelihood score, and 
the NN discriminator can be used as the optimal summary statistics in 
the standard pipeline

Summary statistics (again!)
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● To trust these methods, you must trust two things
○ Simulation
○ ML surrogate 

● For MC simulation, standard techniques such as profiling can be 
incorporated in to the surrogate of the likelihood

● Can compute likelihood (ratios) of toy MC which provides a conservative 
estimate guaranteed to not be more uncertain than the true data itself

● Can also try to apply some off the shelf NN uncertainty classification, not 
discussed at length here

A word on systematic uncertainty
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● Exciting new statistical approach showing some promise on new ML 
focused statistical techniques for inference

● Pros:
○ Generic techniques can take advantage of advances in hardware 

and (ML) software to improve statistical inference
○ In principle, less loss of information than standard, summary 

statistic based methods in HEP 
○ Guaranteed asymptotic behaviour for sufficiently large samples 

often available in HEP
○ Amortization can help with computational complexity

● Cons:
○ Less interpretable that standard summary statistics
○ Uncertainty guarantees can increase computational complexity, and 

understanding systematics more complex

Conclusions
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● Mostly this paper:
○ https://arxiv.org/abs/2010.06439

● With additional resources from:
○ https://arxiv.org/abs/1805.00020
○ https://arxiv.org/abs/1805.00013
○ https://arxiv.org/abs/1911.01429

● And less technical introduction
○ https://www.nature.com/articles/s42254-021-00305-6
○
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