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About myself
• Scientific Engineering Associate

– Applied Nuclear Physics Program
– Nuclear Physics Division
– Lawrence Berkeley National Laboratory

• Born and raised in Switzerland near Basel
• PostDoc in Radiation detectors for Nuclear Structure Physics at LBNL
• PhD in Particle Physics

– Radiation detectors for neutrinoless double beta decay experiments
• Bachelors/Masters in Physics/Physical Engineering

– Ecole Polytechnique Fédérale de Lausanne, Switzerland
• Work focus: Machine Learning as a tool to enhance and inform radiation detection in 

urban environments 
– Mostly Nonproliferation, National, and Homeland Security
– Some basic science



Overview
• Introduction
• Machine Learning for detection and identification of radioactive material
• Semantic segmentation to support radiation detection
• Object detection and radiation attribution
• Machine Learning for beam line operation and optimization



Introduction
to radiation detection in urban environments



Radiological source searches in urban environments

Street Scale Block Scale City Scale
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• We need a signal:

• Emissions are a property of individual isotopes
– Penetrating (allows detection) and characteristic (allows identification)

• And a detector: For example scintillator (NaI,CZT) or semiconductors (HPGe)
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Lots of different detection system!
Static



Source localization
• To localize a source multiple measurements with varying configurations are required
• Static system only provide sufficient data if many detectors are used (masking)
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Source localization
• To localize a source multiple measurements with varying configurations are required
• Static system only provide sufficient data if many detectors are used (masking)
• Moving systems encounter different offsets and orientations to the source over time.
• This enables to formulate a linear system of equations and solve for the unknown 

source location and strength.
– For Poisson data: Maximum Likelihood Estimation Maximization
– Iterative update rule that converges towards a solution

• Requirements: Exact detector trajectory must be measured
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Contextual sensors
Leverage contextual sensors such as lidars, cameras, etc.

K. Vetter, et. al., Advances in Nuclear Radiation Sensing: Enabling 3-D Gamma-Ray Vision. Sensors 2019, 19, 2541. 
https://doi.org/10.3390/s19112541



Localization and mapping
• Simultaneous Localization and Mapping (SLAM) using Google Cartographer 

https://github.com/googlecartographer/cartographer
– Minimize cost function 

between current LiDAR data 
and the reconstructed map
from previous data

– Rotation frequency of LiDAR 
10Hz

• Requires LiDAR sensor and a 
Inertial Measurement Unit (IMU)

• Freebie: A map of the scene
that can be leveraged to 
simplify the localization problem

https://github.com/googlecartographer/cartographer


Nuclear Scene Data Fusion (SDF)
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Part 1
Machine Learning for detection and identification of 

radioactive material



Biggest challenge: variable backgrounds
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Biggest challenge: variable backgrounds
• Terrestrial – Trace, variable levels in building materials

– 40K, Uranium-series, Thorium-series
• Airborne – Modulated by weather and rain

– 222Rn and progeny (mostly from washdown during rain events)
• Cosmogenic – Modulated by space weather and buildings

– Neutrons, Muons
• Artificial – Variable with human factors

– Industrial, medical
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Skyshine and cosmics



Signals in radiation detectors
137Cs – Nuisance or threat

• Characteristic emissions
• Gamma-ray scattering in shielding
• Propagation through air
• Energy deposition in a detector
• Detector resolution

https://arxiv.org/abs/2104.04137



Signals in radiation detectors
• Also backgrounds undergo scattering in air and broadening of the resolution
• Scattering + diverse origin of backgrounds leads to a complex spectrum shape
• We are looking for a small signal at low energy…



What do algorithmic approaches look like?

Neural networks 

Spectral information
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windows

Low rank models 
(PCA, NMF, 

NASVD)

Classifiers
Random forests, 

SVMs

This is far from exhaustive



The Urban Radiological Search Competition
• Competitors are provided with

– A training set of list mode data for ~10k runs, each run lasting 
1-3 minutes.

– A test set of ~16k runs: 43% public, 57% private.
– Energy spectra for each source type.

• For each run in the test set, competitors must
– Detect whether there is an anomalous source.
– Identify the type of source.
– Locate when the detector is closest to it.

• Two Competitions
– .gov – National Laboratories
– TopCoder – Open to the public with cash prizes

• Leaderboard scoring
– Pre-specified scalar that combines all desired aspects of solution

• Data handling:
– Training data: Input + answer provided
– Public test data: Competitors receive feedback during competition
– Private test data: Used to determine final standings 

DOI: 10.13139/ORNLNCCS/1597414

https://www.topcoder.com
/lp/detect-radiation

https://doi.org/10.13139/ORNLNCCS/1597414
https://www.topcoder.com/lp/detect-radiation
https://www.topcoder.com/lp/detect-radiation


Data Generation
• Realistic background variations in K, Th, U

– Developed a large 3D modular Monte Carlo model loosely 
based on Gay St., Knoxville, TN

– 8 instances by arranging seven interchangeable blocks
– Each block + material combo, was simulated 

independently so that material activates could be modified 
block by block

• Simulation of sources and backgrounds
– Calculated background and source detector response 

functions for a 2”x4”x16” NaI(Tl) detector moving through 
one of four lanes of traffic (1 to 13.4 mph)

– ORNL Monaco/MAVRIC Monte Carlo
– 6 different sources at 15 locations with different offsets.

• Full knowledge of data set. 
No unknowns in the data.



Anomaly Identification with NMF (winner .gov)
• Factorize data X into weights A and components V

• Dimensionality reduction (ala PCA)
– Non-negative
– Components are additive
– Components are not orthogonal
– Number of components identified at outset
– Consistent with Poisson statistics

• Lee and Seung, “Learning the parts of objects by non-negative matrix factorization,” 
Nature, 401: 788–791 (1999)

Measured Weights Components



• LBNL contribution to competition
• 1st place in the National Laboratory 

competition
• 13th place in the TopCoder competition

– Outperformed by algorithms that 
included temporal information

Anomaly Identification with NMF (winner .gov)
• Physics informed methodology

– Learned templates from data
– Experimented with multi-base 

templates to model shielding and 
scatter

• Empirical thresholding
• Limitations

– Single integration time
– Time independent implementation



Anomaly detection with NNs (winner topcoder)
• Multi-point lead
• Binned energy approach, at different 

time scales
• Ensemble of neural networks

• Cross validation to avoid overfitting
• Augmented learning (add noise)
• Data driven training (no use of source 

templates)



Anomaly detection with NNs (winner topcoder)
• Multiple time scales, passed through identical neural network
• Combine results with a Softmax
• Threshold to decide if source is present (source id + time) or not



Anomaly detection with NNs (winner topcoder)
• Combine many identical networks (N experts are better than 1)
• Ensembling reduces variance without cost to bias
• Price: Increased computation / code complexity



Conclusion and outlook 
• Physics, instrumentation, and human 

considerations combine to make 
radiological search a challenging task

• Advanced algorithms have shown 
promise for improving sensitivity

– Better performance with the same 
hardware

– Same performance with cheaper 
hardware

– Enable new concepts (networks, data 
fusion)

• Algorithm design must consider
– Perform analysis in real time
– Produce instantaneous results
– Allow to be configured with meaningful 

quantities such as false positive rate 
• Introspection and interpretable of NNs

Follow up project
• Goal: Build a community standard 

benchmark dataset for radiological 
search and use it to evaluate fieldable 
machine learning algorithms against 
literature benchmarks

– More diversity (rural area, bridges over 
rivers, tunnels, etc)

– More realistic (include environmental 
effects such as rain, etc.)

– More sources
– Different detector types

• Better understanding of algorithm and 
enable fieldability of algorithms

– Develop an open source package: 
https://gitlab.com/lbl-anp/radai/radai



Team and references
• LBNL:

– Tenzing H. Joshi, Joseph Curtis, Mark 
Bandstra,Reynold Cooper, Brian 
Quiter,Daniel Hellfeld

• UC Berkeley:
– Kyle Bilton, Kai Vetter

• LANL:
– Christine Anderson-Cook, Kary Myers

• ORNL:
– Andrew Nicholson, Douglas Peplow, 

James Ghawley, Dan Archer

• Support:
– NA-22 Data Science – Radiation 

Detection Data Competition
– NA-22 Near-field -- PANDA

Sources:
• https://gitlab.com/lbl-anp/radai/radai
• Technical report: 

https://doi.org/10.2172/1778748
• Data generation: 

https://doi.org/10.1038/s41597-020-006
72-2

https://gitlab.com/lbl-anp/radai/radai
https://doi.org/10.2172/1778748
https://doi.org/10.1038/s41597-020-00672-2
https://doi.org/10.1038/s41597-020-00672-2


Part 2
Semantic segmentation to support radiation 

detection



Model naturally occurring materials in urban scenes
• Model radioactive background with contextual sensor data

– Focus on a simple urban mock facility with known radioisotope composition
– Build a three dimensional model of the surrounding that includes the most crucial features
– Include energy-dependence though modeling radioisotope spectrum, providing access to 

activities
– MLEM to attribute radiological measurements to surroundings

Linear system:

Maximum Likelihood 
Maximization 

Estimation for solving 
system 



Model naturally occurring materials in urban scenes
• Inversion problem

– Predict radiation and it’s transport by classifying visible surfaces as seen from the detector 
system

– Build a system of linear equations (system response) to solve for the unknown gamma-ray flux 
from various surfaces

• System response
– 3D description of the facility (distance and material class)
– Effective area (detector efficiency and geometry) and description of gamma-ray transport in air
– NORM modelling for complexity reduction originating from energy dependence of radiological 

data
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Building a 3D description of the facility
• Segmentation and classification of images

– Used Google’s Deep Labelling for Semantic Image 
Segmentation (DeepLabv3+) model on pre-trained 
Cityscapes1 dataset

• Applied transfer learning by retraining last, 
fully-connected neural layer with 45 hand-labeled 
images to be closer to ground truth labels:

– Asphalt
– Building red
– Building brown
– Building white
– Building roof
– Concrete

Cityscapes dataset available at: https://www.cityscapes-dataset.com
L.Chen, et. al., Encoder-Decoder with Atrous Separable Convolution for 
Semantic Image Segmentation, ECCV, 2018, 
https://github.com/tensorflow/models/tree/master/research/deeplab

Original image

DeepLabv3+ segmented result

DeepLabv3+ with Transfer Learning 

– Forest
– Grass
– Gravel
– Sky
– Vehicle

https://github.com/tensorflow/models/tree/master/research/deeplab


Building a 3D description of the facility

• Projecting labeled images back to point cloud and pick the label that is observed most often at each point.
• Convert labeled point cloud into a triangular mesh (based on ball pivoting algorithm with smart normal orientation 

algorithm)
• Simplify mesh to reduce number of vertices by a factor of ~10
• Remaining holes are patched using nearest neighbor interpolation and extending to a flat horizon

S. Katz, A.Tal, and R. Basri, Direct visibility of point sets, ACM Trans, Graph. 26, 3, Article 24, 2007
Q. Zhou, J. Park, V. Koltun, Open3D: A Modern Library for 3D Data Processing, arXiv:1801.09847, 2018, http://www.open3d.org

Initial point cloud Labeled point cloud

Labeled and simplified mesh Mesh with patched holes

http://www.open3d.org


Building a 3D description of the facility

• The distance and material class of all the 
surfaces in the field of view of each 
detector can be calculated at every time 
step

• Visualization of panoramic view of mesh 
from detector array center

• Alpha channel is distance between 0 
(transparent) and 80 meter (white)

0°

-90°

90°

-180° 0° 180°



Results of background modeling

M. W. Swinney, et al., A methodology for determining the concentration of naturally occurring radioactive materials in an urban environment. Nuclear Technology, 203(3):325-335, 2018.
A. L. Mitchell, et al., Skyshine contribution to gamma ray background between 0 and 4 MeV. Technical report, Pacific Northwest National Lab. (PNNL), August 2009.
G. A. Sandness, et al., Accurate modeling of the terrestrial gamma-ray background for homeland security applications, 2009 IEEE Nuclear Science Symposium Conference Record 
(NSS/MIC), Orlando, FL, USA (IEEE, Piscataway, NJ, 2009), pp. 126–133.



Results of background modeling
• Our model describes the observed 

background fluctuations well
• Features seen in the exposure to 

distinct classes coincides with features 
seen in the background

• Searches for radioactive sources 
outside of regulatory control can benefit 
from background modeling and 
prediction based on contextual sensor 
data



Team and references
• Team (all LBNL)

– Marco Salathe
– Brian J. Quiter
– Mark S. Bandstra
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– Ross Meyer
– Chun Ho Chow

• References
– M. Salathe, B. J. Quiter, M. S. Bandstra, J. C. Curtis, R. Meyer, and C. H.Chow,  “Determining  

urban  material  activities  with  a  vehicle-based  multi-sensor system”, Phys. Rev. Research 
3, 023070, 2021

– M. S. Bandstra, et al., Attribution of gamma-ray background collected by a mobile detector 
system to its surroundings using panoramic video, NIMA 954, 161126, 2020

– M. S. Bandstra, et al., “Correlations between Panoramic Imagery and Gamma-Ray 
Background in an Urban Area”, 2019 IEEE Nuclear Science Symposium and Medical Imaging 
Conference (2019), pp. 1–5

– M. Salathe, et al., “Using 3D-Scene Data from a Mobile Detector System to Model 
Gamma-Ray Backgrounds”, 2019 IEEE Nuclear Science Symposium and Medical Imaging 
Conference (2019), pp. 1–4



Semi-automated Scene Generation for Diagnostics
• Scene capture and digitization for Nuclear 

Emergency Response missions
• Object of interest found, next step is 

answering “What is it?” and “What to 
do about it?”

– γ and neutron detectors/imagers/
multiplicity counters & X-ray / API active 
interrogation systems deployed

• Scene digitization
– Automatically provides record of 

what/where/when
– Can automatically produce 

geometry portion of Monte 
Carlo input files

– Helps with ensuring events 
(and exercises) are 
documented

Iphone 12 
Max Pro



Semi-automated Scene Generation for Diagnostics
• Semantic segmentation of colorized 

point cloud
– SparseConvNet trained on ScanNet
– http://www.scan-net.org/ScanNet/
– https://github.com/facebookresearch/

SparseConvNet
• Semantic segmentation of images 

and projection to point cloud
– DeepLab3+ trained on ADE20k
– https://groups.csail.mit.edu/vision/

datasets/ADE20K/
– https://github.com/tensorflow/models/

tree/master/research/deeplab
• Work in progress

– Create CAD model for simulation
– Tracking of objects and detectors 

during radiation measurements

http://www.scan-net.org/ScanNet/
https://github.com/facebookresearch/SparseConvNet
https://github.com/facebookresearch/SparseConvNet
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://github.com/tensorflow/models/tree/master/research/deeplab
https://github.com/tensorflow/models/tree/master/research/deeplab
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https://github.com/facebookresearch/SparseConvNet
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://groups.csail.mit.edu/vision/datasets/ADE20K/
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Part 3
Object detection and radiation attribution

It will be a while. Our autonomous car 
has never seen anything like it before 

and needs to process it first.
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Detection and Tracking Pipeline:
1. Perform object detection on images or LiDAR with 

Convolutional Neural Networks 
2. Match detections to those from earlier data through 

predictions from a Kalman Filter.
3. Search for tracks that describes radiation data best 

(Attribution)

Object
Detection

CNN

Image 
Frame Kalman

Filter
Tracker

Obj. 
Positions

Tracks

Rad 
Data

Attribution

Spectral 
Alarm

LiDAR 
Scan

Improved situational awareness and 
anomaly detection performance

M. R. Marshall et al., "3-D Object Tracking in Panoramic Video and LiDAR for Radiological 
Source–Object Attribution and Improved Source Detection,"
doi: 10.1109/TNS.2020.3047646.

Object detection, tracking and attribution



Object detection
Trade-off between performance and speed

50

Image based
A. Bochkovskiy, et al, “YOLOv4: 
Optimal Speed and Accuracy 

of Object Detection,” 
arXiv:2004.10934v1

Object detection in real time on a NVIDIA Jetson NX
● Yolov4-tiny (2020) for image based detection

○ Use TensorRT for increased performance
○ ~45 images / second

● PointPillars (2018) for LiDAR based detection
○ PyTorch based implementation with speed 

tweaks
○ ~10 scans / second

LiDAR based
A. H. Lang, et. al, "PointPillars: 

Fast Encoders for Object 
Detection From Point Clouds," 
doi:10.1109/CVPR.2019.01298



Object detection
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YOLOv4-tiny example at Richmond 
Field station

PointPillars example at Lawrence 
Berkeley National Laboratory



Simple Online and Realtime 
Tracking (SORT)

• Based on bounding boxes in 
image coordinates

• Kalman filter used to predict 
the next likely location of a 
given bounding box

• Intersection over Union 
comparison

• Additional conversion to 3D 
required

Extensions
• 3D position (x, y, z) in Kalman 

Filter used 
• Works with LiDAR
• Multivariate Normal: 3x3 matrix 

used to encoding x, y and z 
uncertainties and orientation

• Hellinger distance as matching 
criteria

Object tracking

52

A. Bewley, et. al, "Simple online and realtime tracking," 
doi: 10.1109/ICIP.2016.7533003.

M. R. Marshall et al., "3-D Object Tracking in Panoramic 
Video and LiDAR for Radiological Source–Object 
Attribution and Improved Source Detection," 
doi:10.1109/TNS.2020.3047646.

FastMOT
• Omni-scale network (OSNet) 

feature vectors CNN for object 
re-identification

• Optical flow for tracking 
between detections (allows for 
slower more performant object 
detection network)

• Limited to images

Y. Yang, “FastMOT: High-Performance Multiple Object 
Tracking Based on Deep SORT and KLT”, 
doi:10.5281/zenodo.4294717
Kaiyang Zhou, et. al, “Omni-Scale Feature Learning for 
Person Re-Identification”, arXiv:1905.00953



Attribution
• Model the expected number of observed gamma rays for each trajectory (r):

• ⍺ and b are fit parameters that are optimized with respect to radiation data
• Calculate Poisson log-likelihood and p-value of observing data given the optimal model
• Use s-value (-log2[p-value]) as exclusion metric

S. Greenland, “Valid P-Values Behave Exactly as They Should: Some Misleading Criticisms of P-Values and Their Resolution With S-Values”, 
doi:10.1080/00031305.2018.1529625

53



Experimental data
• Measurements performed with static 

contextual sensor system (Professor)
• Both LiDAR and video detection, tracking 

and attribution in real time (not 
simultaneously)

• Robotic operating system 
(https://www.ros.org) for real-time 
processing and recording

54



Experimental results

55
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M. R. Marshall et al., "3-D Object Tracking in Panoramic Video and LiDAR for Radiological Source–Object Attribution and 
Improved Source Detection," doi: 10.1109/TNS.2020.3047646.

M. R. Marshall et al, “Mobile Object Tracking in Panoramic Video and LiDAR for Radiological Source-Object Attribution and 
Improved Source Detection”, submitted to TNS.



Container counting
• Count nuclear storage containers

– System with LiDAR and 
Realsense camera

– Object detection in images: 
https://github.com/Megvii-BaseD
etection/YOLOX



Combine SLAM result and object detection results



Filter detections



Filter detections



Clustering
• Clustering with DBSCAN 

based on the Bhattacharyya 
distance (metric including 
uncertainties)

– https://scikit-learn.org/stabl
e/modules/clustering.html

– https://en.wikipedia.org/wik
i/Bhattacharyya_distance

• Good performance for 
clustering

• A bunch of false positives
• Possible improvements:

– Use actual shape of 
containers during 
clustering

– Tracking based approach

https://scikit-learn.org/stable/modules/clustering.html
https://scikit-learn.org/stable/modules/clustering.html
https://en.wikipedia.org/wiki/Bhattacharyya_distance
https://en.wikipedia.org/wiki/Bhattacharyya_distance


Stanford - Charm Lab 
• Allison Okamura and Team

• Vine Robots development
• http://charm.stanford.edu

Team
LBNL

• Tenzing H. Joshi
• Reynold J. Cooper
• Marco Salathe
• Nicholas Parrilla
• Daniel Parker
• Victor Negut

http://charm.stanford.edu


Part 4
ML for beam line operation and optimization



Machine learning for accelerator and detector control
• Study machine learning as a tool for controlling and optimizing accelerator and detector 

systems at LBNL
– Gamma-ray tracking array (GRETA)
– Venus ion source

• Both systems will be crucial for FRIB
a new nuclear physics accelerator facility
build at Michigan State University



Integrating the Subsystems of GRETA 

FPGA-based energy filters, 
event selection in response 
to physics triggers

E, t, x 40

E, t, (x, y, z)
crystal n

Continuous 100MHz 
digitization of 40 preamplifier 
signals per crystal

Detector
Systems

Electronics 
Systems

Computing 
Systems

•Crystals located 
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space to +/- 0.4 
mm

Crystals located 
absolutely in space 
to +/- 0.4 mm
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Machine learning for GRETA
• 120 crystals with each 40 preamplifier 

signals
• Converted to energy, x, y, z and t for each 

detected gamma-ray
• Operational controls

– Cooling systems (30 modules require liquid 
nitrogen controls and monitoring)

– High voltage (120 crystals)
– Filter parameters
– Auxiliary devices

• Large amount of data (to much for a 
operator to handle)

– Anomaly detection
– Operational optimization (energy resolution, 

spatial resolution)



Venus ion source

VENUS

O6+

Analyzing 
dipole

Faraday
cup

O4+

O5+

O8+

• Dipole allows tuning to 
specific charge states

• Faraday cup used for 
measuring beam current

• Plasma, contained by magnetic field 
created by a sextupole and 3 
superconducting solenoids.

• Radio-frequency heating with two 
waveguides

• Isotope injection through back 
(oven, gas valves)

O7+
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First results
• Automated tuning

– Main parameters controlling beam current: 3 magnet currents
– Beam requires about 5 min at each configuration to stabilize → Total tuning requires 

infrequent input from operator but will take hours to complete.
– Idea: Use bayesian optimization to find configuration with best beam properties (for now 

current on the faraday cup)
– Two weekend long runs to run different programs and understand parameter space 



First results
• Automated tuning

– Main parameters controlling beam current: 3 magnet currents
– Beam requires about 5 min at each configuration to stabilize → Total tuning requires 

infrequent input from operator but will take hours to complete.
– Idea: Use bayesian optimization to find configuration with best beam properties (for now 

current on the faraday cup)
– Two weekend long runs to run different programs and understand parameter space
– Gaussian Process regressor for parameter space modeling 



Team
• GRETA

– Heather L. Crawford
– Christoper M. Cambell
– Paul Fallon

• VENUS
– Damon S. Todd
– Larry W. Phair
– Janilee Benitez

• ANP
– Marco Salathe
– Brian J. Quiter
– Reynold J. Cooper

• Undergraduates
– Wenhan Sun, UC Berkeley
– Yubin (Harvey) Hu, UC Berkeley
– Alex Kireeff, Carnegie Mellon University



Thanks
Please feel free to contact me with questions and/or 

interesting ideas:
msalathe@lbl.gov

mailto:msalathe@lbl.gov


• Effective area Ai is product of efficiency and geometric area
• Simulated using a simple model of RadMAP in all 4π 
• Folded with estimated detector energy resolution

73

Detector response (Effective Area)



Down scattering in air

• Down scattering in air has been simulated with a tool developed by Mark S. Bandstra 
named Ersatz (not yet published)

– A square box with equal sides was used as a simulation volume
– Gamma-rays were emitted isotropically from a point-like mono-energetic source
– The sensitive (detection) area covered 1/9th of the surface opposing the source
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Complexity reduction with NORM modeling
Main sources of NORM:

● Terrestrial (KUT)
○ K-40,
○ U-238 series,
○ Th-232 series

● Airborne
○ Radon
○ skyshine

● Cosmic
○ Continuum
○ 511 keV from positrons

asphalt concreteconcrete

building 2

grass

vehicle

mobile 
detector 
system

building 1

Skyshine and cosmics

● K, U and T from simulation, leaving 3 
free parameters for each label

● Modeling airborne and cosmic is hard, 
energy dependence was not enforced 
(~120 free parameters)

● About 155 free parameters in total, a 
factor of 10 improvement from an 
unconstrained fit



From 2D image to 3D representation

● Object’s standoff required in attribution analysis (dominated by 
1/r2)

● 3D position from LiDAR from object detection
● Not directly accessible in images based object detection
● Current method: Compare average size of object (persons height, 

car dimensions) with bounding box size and use camera intrinsics
○ https://docs.opencv.org/master/d9/d0c/group__calib3d.html

● Possible improvements: Neural network for depth extraction, 
ground plane estimation, etc.

○ https://filippoaleotti.github.io/demo_live/
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https://docs.opencv.org/master/d9/d0c/group__calib3d.html
https://filippoaleotti.github.io/demo_live/


Model introspection
Are common features learned in the ensemble? Yes.



NMF as a physical model
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M.S. Bandstra, T.H.Y. Joshi, K.J. Bilton, A. Zoglauer, and B.J. Quiter, “Modeling Aerial Gamma-Ray Backgrounds using Non-negative Matrix Factorization,” IEEE Trans. Nucl. Sci., 67 (5), 2020.

• Airborne data is subject to large background fluctuations
• Aerial survey flying repeatedly over a land/water interface
• NMF finds structure with physical origins:

– “Nearby KUT” decreases the 
most abruptly over water

– “Distant KUT” has a slower
ecrease

– “Radon/cosmics/aircraft” component remains approximately constant

NaI detector data from Aerial Measurement System (AMS) at Lake Mohave, NV

Individual 2 Hz spectra

Mean NMF component spectra

Tl-208 (T)

Rn-222 progeny

scattering

K-40 cosmics

June 16th 2021 PANDA Independent Review | NMF For Detection and ID



Overview over submissions (Top Coder)
• Top 7 participants used a 

– Spectra rather than list mode
• Minimal emphasis on threshold setting

– No mention of Receiver Operator Cost 
(ROC), False Alarm Rate (FAR), or 
False Positive Rate (FPR)

• 7 of 10 used neural networks (NN)
– None in top 3 of .gov used NNs

• Each neural network approach:
– was an ensemble (multiple nets)
– contained at least one convolutional 

layer
• Most competitors used python

– 2 Java (random forests)
– 1 R (likelihood testing)

• Each top approach:
– used some cross validation to avoid 

overfitting
– added statistical noise to input before 

training
– used labeled training data instead of 

source templates (data driven training)
– calculated the closest approach time 

with a metric weighted average across 
temporally smoothed energy bins

• The first-place approach:
– held a multi-point lead over competitors
– used appropriate statistics during 

training
– simultaneously analyzed all data from 

each run
– made comments on augmentations for 

real-time operation



Model introspection
The first layer (1D conv) learns some spectral features



Computer vision challenge
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● Video and LiDAR both produce a rich representation of the nearby scene
a. Finding specific objects in these data
b. Tracking these objects as a function of time through the scene
c. Use these data to improve anomaly detection performance

● Hardware limitation on the edge (NVIDIA Jetson NX)



Data handling for competitors
Available Data

Training Data:
Inputs and Answers 

provided

Test Data:
Inputs provided

Other rules:
• Some constraint on # of submissions
• Competitors may have to specify 

which solution(s) they want 
considered for final standings

• Sometimes options for teams to 
combine/collaborate

Public Test Data:
Competitors receive 

feedback on this subset 
during competition

Private Test Data:
Used to determine final 
standings (no feedback 

during competition)

Competitors don’t know which runs are in each of the test 
data sets

Leaderboard scoring: pre-specified scalar that combines all desired aspects of solution
Courtesy of Christine Anderson-Cook



3D Radiation Mapping Applications



What about Machine Learning?
• Most systems have also cameras installed.
• Images provide more context and allow for semantic segmentation
• Combined with the point cloud these information can be used to build a simplified 

model of the detectors surrounding
– Better understand/estimate backgrounds
– Build more accurate simulations to for example support diagnostic of emergency response 

operations (investigation of possible nuclear threats)



Radkit (internal software suite)
• Collection of python libraries to process 

contextual and radiation data products
• Integrate with the Robotic Operating 

System for real time operation



Summary of the top 5 competitors
User Input Data Preprocessing ML Approach Cross Validation

pfr • Fixed number of time bins 
(40, 80, 160)

• Increasing size energy bins

• Ensemble of 1D CNN's at 3 time 
scales

• Thresholded output

• 10 splits repeated 3 times
• Driving direction reversed 
• Binomial downsampling

p_kuzmin • 1 second bins
• 50 keV bins
• Listmode statistical features

• 3 1D CNN or MLP ensembles for 
determining det, ID and time

• LGBM classifiers

• 5 splits

gardn999 • Square root energy bins
• Listmode statistical features

• One random forest classifier per 
source

• 8 splits

rayvanve • Multiple energy bin 
structures

• Multiple constant time bin 
widths

• 2D gaussian smoothing

• 2D CNN over sliding time window
• Heuristic distance between spectral 

shape & source terms
• Random forest classifiers

• Feature ranking and 
selection for RF's

cyril.v • Constant 0.5 s time bins
• Log(E) bin widths

• 1D CNN's passed into LSTM
• 3 models for det/ID, coarse time 

and fine time

• Driving direction reversed



Keys to competition success
• Robust training

– Input preparation (increasing energy bin widths, multiple time scales)
– Data augmentation (add noise, leverage symmetry)
– Cross-validation (split up data)
– Appropriate labeling (binary vs continuous)

• ML classification methods
– Neural networks
– Decision trees

• Power in numbers
– N experts are better than 1
– Ensembling reduces variance without cost to bias
– What is the price?

• Computation
• complex/poorly documented code submissions



Outlook
• Real-time

– Reduce or remove ensembles
– How deep is deep enough?

• Rolling analysis
– “entire drive-by” based analyses deliver 

answers too late
– Reshape networks to run on smaller 

blocks of waterfall data
– Alarm time becomes implicit

• False positive rate
– Need to be low and adjustable
– Threshold perturbation rather than 

re-training
• Many more sources

– Re-think network designs for 
generalization

– Handling unknown source classes

Follow up project
• Goal: Build a community standard 

benchmark dataset for radiological 
search and use it to evaluate fieldable 
machine learning algorithms against 
literature benchmarks

– More diversity (rural area, bridges over 
rivers, tunnels, etc)

– More realistic (include environmental 
effects such as rain, etc.)

– More sources
– Different detector types

• Better understanding of algorithm and 
enable fieldability of algorithms

– Develop an open source package: 
https://gitlab.com/lbl-anp/radai/radai


