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 Explosion of machine learning and artificial intelligence in the

last decade.

 Particle physics not immune: machine learning algorithms
used in every analysis step (trigger, particle identification,
calibration, analysis, etc.).

 But what exactly is machine learning? Any algorithm
that can improve automatically through experience

and by the use of data.
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Supervised learning

Classification

predicting a discrete quantity

Train on signal and background simulated samples
Learn the separation between S and B distributions
Apply on test sample

Apply on data

Input data Linear SVM

Gaussian Process

@
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Regression

predicting a continuous quantity

Train on simulated samples

Learn relationship between a dependent variable (outcome)
and one or more independent variables (features)

Apply on test sample

Apply on data

Boosted Decision Tree Regression

2.0 - “ @ training samples
) - _estimators=1
1.5 - _estimators=300
o®

1.0

0.5 -

target

0.0 -

—1.0 -

—-1.5 -

data
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Multivariate analysis

: : : : : ot vaiabisDeco-rnsfomed  Expresion
* First systematic use of machine learning methods in s BTG 2 -

" » . ’ ; ; : S W /| Background o :
particle physics: multivariate analysis using TMVA S F = 1%
» Combine several, high-level, carefully crafted 3 o] < I

physics variables (e.g. number of hits in a detector, 03 s s
0.2F ) 1@
reconstructed energy, reconstructed track length) oE | - 1%
. . L . . 7 3 | 13
for classification (distinguish between signal and G R RO el
background) or regression (predict the value of an et il
input vaiaieDca'ransformed :Vriabl

output variable, given one or more input variables) £ os g
. . L S / o
» The classification or regression is performed through S o ] S 2 os S
. : z 7 S z 05 g
Boosted Decision Tree, Support Vector Machines, > 03 1 15 o 2
c % S < S
shallow neural networks (few layers), etc. o2t 13 S S
’ o 0.2 % =L |

0.1 > 7 3
§  oi V2 E
BN A AN AR g 0 4 r//".;u_m_.h g

-3 -2 -1 0 1 2 3 4 -3 -2 -1 0 1 2 3

Variable 3 (Deco) [units] Variable 4 (Deco) [units]
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Boosted decision trees

e Boosted Decision Trees (BDTs) are one of most common used machine 0.1 0.6

BERKELEY LAB

learning algorithm in particle physics, not easy to outperform with neural
networks.

 Each split at a node is chosen to maximize information gain or minimize
0.5

no
CHARGE > 100

0.05

entropy

 The splits are created recursively until a stop condition is met (e.g.
depth of the tree)
 Boosting: several trees are created, the tree output is assighed a weight
relative to its accuracy. Misclassified events are assigned a larger weight:
next iteration will pay more attention

ANGLE > 45°
no
LENGTH > 10
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Real-world example: H — t77~ [

BERKELEY LAB

« ATLAS search for the decay of the Higgs boson into a 77 1': 10% L TiepThaa VBF —o— Data _
pair 2 - 1s=8TeV, 20.3 b — ZE] gg; Eﬁj $4) §
* |f you have well-understood background and signal % e - ATLAS B 7 T

models you can train a machine learning algorithm to L%’ - = S;igr:
distinguish between the two , 22 Uncert.
. This ATLAS analysis combined 12 weakly 10
discriminating input variables to increase the
discriminating power between sighal and background. 10
 Evidence of Higgs coupling to tau leptons with 40%
improved efficiency D - e
8 1.5
% 1-o—e—0—3%
8 0.5
CDU | | | | | | | | | | | | | | | | | | |
-1 -0.5 0 0.5 1

BDT output

arXiv:1501.04943
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1eNpOx channel at MicroBooNE &l

arXiv:2110.14065

1eNpOm v, selection

 The goal of the MicroBooNE experiment is to clarify the nature of the low-energy 60 MicroBooNE 6.86 1020 POT
excess of electron events observed by MiniBooNE, which could hint to the o (Qutside TPO) ety
presence of a fourth, sterile, neutrino. ] = votner M

* The 1eNpOr is one of the most promising channel to look for this excess: it consist 540 +
of one electromagnetic shower (the electron), plus one or more short b 30
ionization tracks (the protons). g #_ _+_

* |t is necessary to reject events with 10 ﬁ
photons (which could look like 1eNpOm candidate O + + T

0.0 0.2 0.4 0.6 0.8 1.0

electrons) and muons (which could ROT Score

look like protons). This is achieved
with two BDTs trained with
XGBoost using carefully constructed,
high-level variables, (dE/dx, track
length, etc.)

e/y separation

MicroBooNE 6.86 x102° POT
Il Dirt (Outside TPC) Ve CC
v other Uncertainty
B Cosmics 4 BNB Data

I‘ ‘ v with °

Ul
o

N
o

W
o

N
o

Entries / 0.25 MeV/cm

=
o

BNB Run: 16341 Subrun: 27 Event: 1359

o

1 2 3 4 5
shower dE/dx [MeV/cm]
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Neural networks

 Loosely inspired by the layout of a human neuron:
Input Hidden Hidden Hidden Hidden Output

at the input of each node a weighted sum of inputs layer  lager]l layer? lsperS layerd.  layer
Is given. It is transformed by the activation
function and later send to the output. SNP 1
* Simplest implementation of a neural network S
consist in layers of neurons, fully connected in )— Output
sequence: multi-layers perceptron. BALE |
SNP 4
' L1 O———— W Activation
function Output
1 {22 0——— W2 2 ’f(zz TiW; + b) > Y
L

Weights
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How to train a neural network?

* Once you have several layers made of tens of neurons,
how do you train the network?” Namely, how do you

adapt the weights in the hidden layers in order to Initial |
minimize your loss function? Stochastic Gradient Cost e \ ,"I/ o
Descent with backpropagation. Incremental !
 Training steps: e \ ﬂ
1. Calculating the network output Y for some input X / ’,"
2. Calculating the corresponding value of the loss / e‘(/ ' N
function Derivative of Cost e O
3. Calculating the loss gradient wrt to the weights Weight

4. Finding the value of the weights which minimizes
the loss gradient.

STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER 9
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Backpropagation

« Backpropagation is the key algorithm that makes training deep models computationally

tractable.
* |t essentially consists in applying the derivative chain rule backwards to find the dependence of the

output of the network on the weights.
(a) Forward pass >

 Highly efficient: at each node the
derivatives depend only on the derivatives
already calculated for the parent nodes
and on the node values calculated during
the forward pass.

(b) Backward pass

STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER 10
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Shallow NN applications: track selection

 The goal of the Mu2e experiment is to look for the conversion of a muon into an electron in the field of a
nucleus.

* The signature is a mono-energetic electron around the muon mass: however badly reconstructed
tracks and limited experimental resolution can make the background distribution wider and suppress
the experimental sensitivity.
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Shallow NN applications: track selection s
* First extract meaningful, high-level variables from the reconstructed tracks: e.g. fit momentum error, number of
hits, etc.
* Train a multi-layer perceptron network with two layers and O(10) neurons each to distinguish between “good”
tracks (|p,..o — Piue | < 250 keV/c) and “bad” tracks (p,,., — p;.. > 700 keV/c).
* The ROC curve shows a significant better performance than just applying boxed cuts on the meaningful variables and
It’s also slightly better than a BDT.

= [ C .
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< - 2 08 ?
10—2 e b T Qe ) B 1; . :
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~ @ oLAAn § 5 : § s
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@ 5 = : : : : : A A
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— : : i D 02 ) ML ............... R R TPPRRE ............... ............... _ .............. .............. ..............
. - Q . o BDT: 5 5 5 5 5 5 5
~ | —%— with ANN quality selection _ % | Al Cuts| 2
078 o ) T T SO SO . % ANNCut
= e b P b by 1 1 | 1 | 1 | oLttt N N TN I e NN N N
-10 -8 -6 -4 -2 0 2 4 6 8 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Momentum Resolution High-Quality Measurement Efficiency
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From classification to regression il

* |nstead of classifying tracks as “well reconstructed” or “bad reconstructed?, > [T T T
one could train a NN that tries to predict the value of p,,,, given p,,.. and the O 5 CMS Simulation
other auxiliary variables (fit momentum error, number of hits, etc.): é
regression. 2 4 +[;N=N124.6 .
* This has the advantage of avoiding arbitrary thresholds between “good - 0=15.4 GeV
and “bad” tracks and provides a more natural way to cut tracks in the tail of 3;_ o Tie:i::%ev
the distribution. o 0'=18.0 GeV
* Most importantly, it can improve the experimental resolution by I
accounting for the energy lost, thus impacting the sensitivity of the 1:_ +
experiment (especially important for low-counting experiments such as - o :
Mu2e). T R R IR
* Technique already adopted by CMS and ATLAS. m. (GeV)
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From machine learning to deep learning il

 What If, instead of using few layers with few neurons, we start building network with tens of layers and hundreds

of neurons?
 This is usually what we call deep learning: there is no hard threshold, but when networks start to have more than

a couple of layers then they are called deep neural networks.

Conv-s2-finc

Tconv-s2-fd

Conv-fdec

Softmax

- Residual connection

- - - Concatenation

arXiv:2012.08513
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Deep learning for neutrino experiments
* Neutrino experiments, in theory, represent the ideal candidate to port image-recognition concepts and
techniques to particle physics.
 They produce event display where a trained human is usually able to distinguish the features: electron neutrino
Interaction, muon neutrino interaction, cosmic ray, etc.

5ms of data at the NOvVA Far Detector
Each pixel is one hit cell
Color shows digitized from the light

A .603MeV muon in Super-K.

-n- " menw l.
ﬂ ‘=e ‘EEEA. n-..’:.'... ...' '
‘ -: -~ o - .....

NOvVA - FNAL E929
Run: 18975/43
Event: 628855 / SNEWSBeatSlow

UTC Mon Feb 23, 2015 ,
14:30:1.383526016  Several hundred cosmic rays crossed the detector

(the many peaks in the timing distribution below)

rll)
=10°
10

1000 2000 3000 2000 5000 10°
t (usec) q (ADC)
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pBooﬂh{

Find patterns
(vertices, tracks, showers)



ubooN e

Find patterns
(vertices, tracks, showers) Q



Sl

Find patterns
(vertices, tracks, showers) O



pBOON%

Find patterns
(vertices, tracks, showers) O




L2
nBooN =

Find patterns Distinguish between muon

(vertices, tracks, showers) © tracks and proton tracks




L2
nBooN =

Find patterns Distinguish between muon

(vertices, tracks, showers) © tracks and proton tracks

Distinguish between
photon showers and electron showers



Deep learning for neutrino experiments Eil

 Convolutional Neural Networks are usually used for image recognition tasks
 Let’s just the same CNN we used to do our first deep learning exercise: recognize MNIST handwritten digits!

Image

4\\‘\\ A'JN
“erA = oL

O/ 7R \ > /
DUV, IR SA

% — l"ﬁ"\\\\ /
— L1 SN .
] N7 9
28 x 28 32 x 14 x 14 64 x 14 x 14
32 x 28 x 28 :

Convolution Convolution 3136 x 128

padding = 1, padding =1, Max pooling

kernel = 3x3, Max pooling kernel =_3X3’ Kernel =2x2,  Fjatten

stride = 1 Kernel = 2x2, St”df =1 Stride = 2
+ Stride = 2
RelU RelU

STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER 17
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Highresolution, big image data |
100 M to giga-pixels



pBOONQ -
s

Mostly empty, inactive
pixels are the vast
majority

Highresolution, big image data |
100 M to giga-pixels



MBOON% Not so fast...

Mostly empty, inactive
pixels are the vast
majority

Highresolution, big image data |
100 M to giga-pixels
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L2
nBooN =

Small things matter
(inform direction and topology)



— Color is important
(both absolute value and gradient)

Small things matter
(inform direction and topology)
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End-to-end reconstruction using IVIL

The goal is to identify neutrino interactions in liquid argon. The reconstruction can be automated using ML by
extracting physically meaningful, hierarchical features by chaining multiple ML models designhed for each task.

The input of the chain are 3D hits in the liquid argon, and the output is the full neutrino interaction, with each
product being tagged and reconstructed.

Electron Neutrino
Interaction

a———e MULTI-TASK CASCADE

Pixel clustering ..

» »

N\ I IS

STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER 22
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Pixel feature extraction o)

* Distinguish between different topologies (e.g. tracks and showers)
* |dentify edge points (track start/end point, shower start)

 Supervised classification using simulated samples and a U-ResNet-likde network (encoder-decoder structure)

Input Tensor Output Tensor

Input Output

iy ‘(/ MicroBooNE v 4 MicroBooNE

Simulation Simulation
Data 512X 512X 1 U-RBSNet 512 X 512 X 3

30 cm MicroBooNE
Data

30 cm MicroBooNE

Concatenation of 512 x 512 tensors L
convolutlons S E I S I I N NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EEEEEEEEEEEEN CODVOlutiOHS

H

L J
..
Intermedlate igh spatial resolution _ o ||||" Intermediate
512 X 512 X 6 " 512 X 512 X 64
2 21X )4 Concatenation of tensors 7 7

at all spatial dimensions
(32, 64, 128, 256)

Repeat Repeat
1/2 down sampllng ------------------------------ X2 up_sampling
+ ResNet convolutions + ResNet convolutions

lntermedjate
(most contracted)
16 Xx 16 X 1024

16

16
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Pixel clustering ol

Fragments Edge Update Node Update
4 < N\ 4 O 2\ ( O N
lg @) OO o OO
 Graph NN called GrapPA (graph Particle Aggregator) o gf/, ot Graoh °/ ; AV ° |
employed to predict the adjacency matrix of EM shower | | - © ||
- . . . J ) DBSCAN) i 9 extracti EdgeLayer; ° - Y °
fragments and identify the origin of the showers - 4 s © & o Primarics
L ‘S: ) L O e N e + )
;% §¥ o QO\D%@ [
’ % o© “% o© - / - /
. . L ) \ © ) N © J
Target Prediction
500 / o /
W 450 W
y - &0 600 550 X : 00 S50 o
b )50 & arXiv:2007.01335
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Particle clustering ]
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 Grouping task, we can re-use GrapPA:

* |nteraction = a group of particles that shared the same origin (i.e. neutrino interaction)
 Edge classification to identify an interaction

 Node classification for particle type ID

Target

Prediction

700

700
600

600

/r
400 - "

300

200 l ’ Iy o’ ‘

100

500

400

300

200

100

100
200
200

L J
100 0
20p
3 00 100
40, 100
500 300 §
600 500

100

100
200
3 00
00
s A‘QQ 400
X
500 500

o0

60
700 0

100 700

arXiv:2007.01335
STEFANO ROBERTO SOLETI
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lelp channel at MicroBooNE )

* First analysis using deep learning methods in a LArTPC
* Results consistent with 1eNpOx analysis (more classical approach): “no excess”

100

Run 6046 Run 6046 20.0° > data/> pred = 0.86 * 0.06 (sys) + 0.19 (stat) ¢ Data (25)
SUDbIUn /e Subrun /72 > 175, MicroBooNE 6.67 x102° POT ===l
Event 3633 Event 3633 v E'gtcek%round (3.2)
Enu=1060 MeV 80 Enu=1060 MeV = 15.0; ; e
o re-Constraint
Y-plane Y-plane S 125 7 Prediction
. —~———————————— LEE (11.6)
> 10.
g : a
| o

40

7

3.0
| T , Constrained
S D gg ? B T 77 Uncertainties
20 . D\ﬂ; 1 5 | | ¢
Ny . 21,0155 AAA A ///,i////-////V////////////I//// .
00.5 |
10 cm — 10 cm . 8'5 l | /I | | I |
MicroBooNE Data —— MicroBooNE Data = 200 400 600 800 1000 1200

‘\\

" E, [MeV
(a) (b) v [ ]

arXiv:2110.14080
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Differentiable simulation o)

* The adoption of GPGPU algorithms can enable the implementation of a Y data
differentiable simulator, which means applying gradient-based Define the data/sim
methods to learning and control of physical systems. discrepancy as loss

 This technique requires computing the model derivatives at each step:
can be easily implemented with popular ML packages such as Py Torch.

* Two main applications Minimize the loss by computing

» automatic inference of the detector physics model parameters the model derivatives and

. . ropagating the gradient back
(calibration) propagating g

« automatic inference of the detector simulation input

to model parameters

F(x, 0)
Detector physics
modeling

0: model parameters

X:input Courtesy of K. Terao (SLAC)

STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER 27



S

Differentiable simulation o)

* The adoption of GPGPU algorithms can enable the implementation of a Y data
differentiable simulator, which means applying gradient-based Define the data/sim
methods to learning and control of physical systems. discrepancy as loss

 This technique requires computing the model derivatives at each step:
can be easily implemented with popular ML packages such as Py Torch.

e TWO Mmain app”cations Minimize the loss by computing
the model derivatives and

 automatic inference of the detector physics model parameters

. . propagating the gradient back
(calibration)

to the input
« automatic inference of the detector simulation input

Initialize the input
with random-values

F(x, 0)
Detector physics
modeling

X:input Courtesy of K. Terao (SLAC) 0: model par‘ameters

STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER 28
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Differentiable simulation o)

* The adoption of GPGPU algorithms can enable the implementation of a Y data
differentiable simulator, which means applying gradient-based Define the data/sim
methods to learning and control of physical systems. discrepancy as loss

 This technique requires computing the model derivatives at each step:
can be easily implemented with popular ML packages such as Py Torch.

e TWO Mmain appncations Minimize the loss by computing
the model derivatives and

 automatic inference of the detector physics model parameters

. . propagating the gradient back
(calibration)

to the input
« automatic inference of the detector simulation input

F(x, 0)
Detector physics
modeling

0: model parameters

X:input Courtesy of K. Terao (SLAC)
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Technical implementation oo

* The detector simulation software is implemented as a set of GPU
algorithms that use Numba, a just-in-time compiler that allows to
speed-up pure Python code both on CPU and on GPU, using CUDA Grid

libraries. @g Block (0, 0) | Block (1,0) = Block (2, 0)
NVIDIA.

CU DA Block (0, 1) Block (1, 1) "Block (2, 1) |

* The CUDA platform lets you run your function (the kernel) in large
number of threads, that run in parallel on the GPU and are organized
in blocks. It comes with a natural C++ extension, but can be used also
with other languages (Java, Fortran, Python).

« The advantage is that the CUDA hides the specific underlying
architecture, and allows to compile the same code on different
GPUs with automatic scalability.

Block (1, 1)

STEFANO ROBERTO SOLETI HIGHLY-PARALLELIZED SIMULATION OF A 3D PIXELATED CHARGE READOUT FOR LIQUID ARGON TIME PROJECTION CHAMBERS 30


https://numba.pydata.org
https://developer.nvidia.com/cuda-zone

Implications for DUNE

TRADITIONAL APPROACH
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DIFFERENTIABLE SIMULATOR APPROACH

Analysis

7\

 dEdX >

. (1naccessible)

- e e o = = = = = = = = =

Near detector

Drift & Detector
response

2
@

Image data
(charge/light, accessible)

mda

__________________

dE/dX Drift & Detector Image data :
(inaccessible) response E:> (charge/light, accessible) E:> NSRS e
Detector
calibration
Near detector
Far detector Detector
calibration
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shared across detectors
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An example: drift velocity and lifetime &

BERKELEY LAB

« End-to-end differentiable simulator for the DUNE liquid argon near detector has been used to make
proof-of-principle studies

 As an example, the gradient descent algorithm has been used to find the minimum of the loss
surface in the (drift velocity; lifetime) plane. The loss is defined as the discrepancy between the pixels.
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Summary and prospects

* Machine learning has gone from a niche field with limited applications to an all-encompassing term in

BERKELEY LAB

~10 years.

* Particle physics has started using shallow learning (BDTs, low-depth NN trained with high-level
variables) for a couple of decades. Virtually every modern analysis has one or more “machine-learning”
component.

 Focus has shifted towards deep learning: use directly raw features (event displays) with large,
complex networks, often O(10) of layers of with O(100) of neurons each.

 Not only classification: deep learning is being used for fast simulations (GANs, VAESs), speed up fitting,
anomaly searches (unsupervised learning).

 Differentiable simulator gaining traction: exploiting tools developed for deep learning (autodiff) to
automize parameter estimation and make reconstruction tools detector-agnostic.
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