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Why do we need machine learning?

2

arXiv submissions by category• Explosion of machine learning and artificial intelligence in the 
last decade.


• Particle physics not immune: machine learning algorithms 
used in every analysis step (trigger, particle identification, 
calibration, analysis, etc.).

• But what exactly is machine learning? Any algorithm 
that can improve automatically through experience 
and by the use of data.
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Supervised learning

3HIGHLY-PARALLELIZED SIMULATION OF A 3D PIXELATED CHARGE READOUT FOR LIQUID ARGON TIME PROJECTION CHAMBERS

Classification Regression

1. Train on signal and background simulated samples

2. Learn the separation between S and B distributions

3. Apply on test sample

4. Apply on data

1. Train on simulated samples

2. Learn relationship between a dependent variable (outcome) 

and one or more independent variables (features)

3. Apply on test sample

4. Apply on data

predicting a discrete quantity predicting a continuous quantity 



STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER

Multivariate analysis

4

• First systematic use of machine learning methods in 
particle physics: multivariate analysis using TMVA

• Combine several, high-level, carefully crafted 

physics variables (e.g. number of hits in a detector, 
reconstructed energy, reconstructed track length) 
for classification (distinguish between signal and 
background) or regression (predict the value of an 
output variable, given one or more input variables)


• The classification or regression is performed through 
Boosted Decision Tree, Support Vector Machines, 
shallow neural networks (few layers), etc. 
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Boosted decision trees

5

• Boosted Decision Trees (BDTs)  are one of most common used machine 
learning algorithm in particle physics, not easy to outperform with neural 
networks.	 

• Each split at a node is chosen to maximize information gain or minimize 

entropy 

• The splits are created recursively until a stop condition is met (e.g. 

depth of the tree)

• Boosting: several trees are created, the tree output is assigned a weight 

relative to its accuracy. Misclassified events are assigned a larger weight: 
next iteration will pay more attention 
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Real-world example: H → τ+τ−

6

• ATLAS search for the decay of the Higgs boson into a  
pair 

• If you have well-understood background and signal 

models you can train a machine learning algorithm to 
distinguish between the two


• This ATLAS analysis combined 12 weakly 
discriminating input variables to increase the 
discriminating power between signal and background.


• Evidence of Higgs coupling to tau leptons with 40% 
improved efficiency 

ττ

arXiv:1501.04943
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Figure 9. Distributions of the BDT discriminants for the data taken at
√
s = 8 TeV in the signal

regions of the VBF (left) and boosted (right) categories for the τlepτlep (top), τlepτhad (middle),
and τhadτhad (bottom) channels. The Higgs boson signal (mH = 125 GeV) is shown stacked with
a signal strength of µ = 1 (dashed line) and µ = 1.4 (solid line). The background predictions
are determined in the global fit (that gives µ = 1.4). The size of the statistical and systematic
normalisation uncertainties is indicated by the hashed band. The ratios of the data to the model
(background plus Higgs boson contributions with µ = 1.4) are shown in the lower panels. The
dashed red and the solid black lines represent the changes in the model when µ = 1.0 or µ = 0 are
assumed respectively.

– 35 –
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 channel at MicroBooNE1eNp0π

7

• The goal of the MicroBooNE experiment is to clarify the nature of the low-energy 
excess of electron events observed by MiniBooNE, which could hint to the 
presence of a fourth, sterile, neutrino.


• The  is one of the most promising channel to look for this excess: it consist 
of one electromagnetic shower (the electron), plus one or more short 
ionization tracks (the protons).

1eNp0π

9

FIG. 5. Response of the 1eNp0⇡ selection BDT designed to
reject events with ⇡

0s. Background events are predicted to
peak at low BDT scores and electron neutrinos at high BDT
scores. Events with BDT score above 0.67 are retained as
part of the final selection. Gray bands denote the systematic
uncertainty on the prediction.

quired to be proton-like which further helps to suppress
cosmic-ray backgrounds, ⌫µ backgrounds, and ⌫e inter-
actions with final-state charged pions. At pre-selection
the purity of the 1eNp0⇡ selection is expected to be at
the percent level. After the full selection is applied the
⌫e purity is expected to be 80% with an e�ciency of 15%
for true 1eNp0⇡ events defined based on the 40 MeV pro-
ton energy threshold. The response of the BDT targeting
events with ⇡

0’s is shown in Fig. 5 for the full data-set
after the loose selection. The selected sample is obtained
by rejecting events with BDT score less than 0.67 and
0.70 for the ⇡

0 and non-⇡0 BDTs respectively. Relative
to pre-selection, cosmic background events are reduced
by 99.98% and background events with ⇡

0s are reduced
by 99.93%. The predicted composition of the selected
1eNp0⇡ sample is shown in Table I. The selected ⌫e CC
events are predicted to be 95% true 1eNp0⇡ events, with
a ⇠5% contamination of events with pions.

TABLE I. Predicted composition of the 1eNp0⇡ selected
events with unconstrained systematic uncertainties in the re-
constructed neutrino energy range 0.01–2.39 GeV for 6.86 ⇥

1020 POT.

1eNp0⇡ Selection
True Category Predicted Events
⌫e CC 0p0⇡ 0.4± 0.1
⌫e CC Np0⇡ 71.7± 10.6
⌫e CC XpN⇡ 3.3± 0.9
⌫e CC total 75.4± 11.0
⌫ with ⇡

0 5.1± 1.4
⌫ other 5.5± 1.1
Cosmic-rays 0.8± 0.5
Total 86.8± 11.5

2. 1e0p0⇡ selection

The 1e0p0⇡ topology is sensitive to ⌫e events in the
eLEE model, as well as potentially to single-electron
events from a broader range of models. In addition,
it complements the 1eNp0⇡ selection by mitigating mi-
gration e↵ects that may arise from mis-reconstruction or
mis-modeling of the multiplicity and kinematics of pro-
tons produced by neutrino interactions.
A single BDT is trained to select true 1e0p0⇡ events

and true 1eNp0⇡ events in which protons are not recon-
structed. The methods used are the same as those for
the 1eNp0⇡ selection described in Sec. VC1, except that
only a single BDT is used to reject backgrounds. The
BDT leverages 28 topological and calorimetric variables,
the most important of which are the measurements of
dE/dx which separate electrons from ⇡

0s. The BDT re-
sponse is shown in Fig. 6 for the full data set after ap-
plying the loose selection. The final selection is made by
requiring events have a BDT score greater than 0.72.

FIG. 6. 1e0p0⇡ selection BDT response. Background events
are predicted to peak at low BDT scores and electron neutrino
events at high BDT scores. In the final selection, events with
BDT score above 0.72 are retained. Gray bands denote the
systematic uncertainty on the prediction.

After pre-selection the ⌫e purity is estimated to be at
the percent level. After the full selection is applied the
⌫e purity is expected to be 43% with an e�ciency of
9% for true 1e0p0⇡ events. The selected ⌫e events are
predicted to be 70% true 1e0p0⇡ events and 30% true
1eNp0⇡ events. Relative to pre-selection cosmic back-
ground events are reduced by 99.8% and the backgrounds
from events with ⇡

0s are reduced by 99.7%. Even with
this level of ⇡0 background suppression, the overall ⇡0

contribution to the predicted event rate is, at low en-
ergies, comparable to that of electron neutrinos. This
is due to the relatively low rate of 1e0p0⇡ interactions
as well as residual reconstruction limitations. The pre-
dicted number of events after the BDT selection is shown
in Table II.

7

resolution for both selected ⌫e and ⌫µ events in the low
energy region primarily targeted by this analysis. For ⌫e
events this definition measures the the energy deposited
by charged final state particles above threshold and pro-
vides an accurate estimate, with an average bias at the
percent level; when compared to the true neutrino en-
ergy, however, it typically underestimates by 16% (9%)
for selected 1e0p0⇡ (1eNp0⇡) events. More details on
PID are described in Sec. V.

V. NEUTRINO EVENT SELECTIONS

Neutrino candidate events are initially identified using
the reconstruction methods described in Sec. IV. The fol-
lowing section presents a description of several of the PID
tools developed for this analysis as well as the ⌫µ and ⌫e

selections in which they are used.

A. Particle identification

The primary PID tasks required for this analysis are
the separation of highly ionizing proton tracks from min-
imally ionizing muons and pions as well as the separation
of photon and electron electromagnetic showers. To dis-
tinguish stopping muons from protons we leverage the
di↵erence in the energy loss profile at the Bragg peak
through a measurement of the energy loss per unit length
(dE/dx) versus particle residual range. A probability
density function for simulated protons and muons is used
to construct a likelihood function that combines the mea-
sured dE/dx at each point along a particle’s trajectory
from the calorimetric information on all three planes [58].
This tool provides a 90% relative e�ciency for proton se-
lection with a 5% mis-identification rate. Track PID is
used to identify muon candidates produced by ⌫µ CC in-
teractions, isolate protons, and remove pion candidates.

Two key features are used to achieve electron-photon
separation: the calorimetric measurement of dE/dx at
the start of the shower and the displacement of the elec-
tromagnetic shower’s start position from the primary ver-
tex in neutrino interactions with hadronic activity. To
evaluate dE/dx, reconstructed showers are fit using a
Kalman filter [59] based procedure to identify the main
shower trunk and reject hits that are transversely or lon-
gitudinally displaced. Values of dE/dx measured in the
first few centimeters of the electromagnetic shower, be-
fore it starts to cascade, are used to compute a median
dE/dx characteristic of the shower’s energy loss [60]. In-
formation from all three wire planes is used to optimize
the ability to perform electron-photon separation inde-
pendently of particle orientation. Multiple ranges at the
shower start point are used to evaluate dE/dx to ac-
count for the potential impact of protons at the vertex
and early branching of the electromagnetic shower and
provide additional separation power. The dE/dx vari-
able is shown in Fig. 3. Good separation between elec-

FIG. 3. Energy deposited per unit length (dE/dx) for
electron-photon separation. The figure shows dE/dx mea-
sured in the [0,4] cm range from the shower start point for
a combination of events with and without protons. Data
from the signal region (E⌫ < 0.65 GeV) is excluded from
this validation plot. The contributions to the stacked his-
togram are comprised of charged-current intrinsic ⌫e interac-
tions with any number of final state hadrons in green, ⌫µ and
neutral-current ⌫e interactions that produce one or more ⇡

0s
in the final-state in light blue, and all other ⌫ interactions in
cyan. Dirt backgrounds are in red, and cosmic backgrounds
in grayish-blue. This categorization is used in all ⌫e selection
figures.

tron and photon showers is observed and contributes to
the ⇡0 background rejection achieved by this analysis. In
this and other data/simulation comparison plots shown
in the article data points are shown with associated sta-
tistical uncertainty, computed as

p
N , while systematic

uncertainties on the prediction are shown as a shaded
gray band.

B. ⌫µ measurement

The vast majority of neutrinos reaching the Micro-
BooNE detector are muon neutrinos. They come from
the same flux of parent hadrons and interact on the
same target argon in the detector as the electron neu-
trinos. This makes the measurement of high-statistics
⌫µ interactions a valuable handle with which to validate
and constrain intrinsic ⌫e flux and cross section system-
atic uncertainties. This is done with a ⌫µ CC inclusive
selection that allows any number of final state hadrons
and prioritizes performance at low energy. A muon neu-
trino candidate is identified by the presence of a muon
candidate inside the TPC fiducial volume. The muon is
required to be contained, which preserves good e�ciency
for low-energy ⌫µ interactions, while suppressing cosmic-
ray muon backgrounds. Cosmic rays are the primary
background for ⌫µ CC events, and an additional 64%

3

(a) 1eNp0⇡ candidate event (b) 1e0p0⇡ candidate event

FIG. 1. Event displays of selected electron neutrino candidate data events. The horizontal axis corresponds to the wire
number, which is converted into a distance based on the wire spacing, the vertical axis corresponds to the time of the recorded
charge, which is converted to a distance along the TPC drift direction using the drift velocity in the TPC drift direction, and
the color scale corresponds to the deposited charge. The 1eNp0⇡ event shown (a) has a long electron shower and a short proton
track attached at the vertex with a large amount of deposited energy. The 1e0p0⇡ event shown (b) consists of a single electron
shower.

neutrino interactions in the BNB. Analysis results are
obtained through a series of statistical tests with the in-
troduction of an empirical model which interprets the
MiniBooNE anomaly as an enhancement of the flux of
low energy electron neutrinos.

This article is organized as follows. Section II describes
the neutrino beamline and MicroBooNE detector. Sec-
tion III provides details of the tools used to simulate
neutrino events. Section IV presents the reconstruction
methods used to identify neutrino interactions. Section V
presents the PID methods as well as the ⌫µ and ⌫e event
selections. Section VI describes the blinding procedure
and studies on data sidebands. Section VII details the
formalism of the procedure used to reduce uncertainties
based on the ⌫µ observation, referred to as the ⌫µ con-
straint. Section VIII presents the analysis results.

II. BEAMLINE AND DETECTOR OVERVIEW

This section provides a brief overview of the Booster
Neutrino Beamline, the MicroBooNE detector, and the
dataset used for the analysis. The MicroBooNE detec-
tor sits at a distance of 468.5m from the BNB target,
on-axis with respect to the neutrino beam. The neu-
trino beam begins with 8 GeV protons extracted from
the Fermilab Booster synchrotron. These protons inter-
act with a beryllium target and produce pions and kaons,
which then decay to produce neutrinos. The resulting
neutrino beam is composed predominantly of muon neu-
trinos with a small (< 1%) electron neutrino component.

This electron neutrino component produced by meson de-
cay chains in the BNB is referred to as “intrinsic ⌫e” in
this article. The BNB is structured in spills, each with
a duration of 1.6µs and an intensity of up to 5 ⇥ 1012

protons, with an average repetition rate of up to 5 Hz.
Additional details on the BNB are found in Ref. [28, 29].

The MicroBooNE detector [21] consists of a time pro-
jection chamber (TPC) and a photon detection system.
The TPC measures 2.56m (drift coordinate, x) ⇥ 2.32m
(vertical, y) ⇥ 10.36m (beam direction, z) and contains
85 tonnes of liquid argon in its active volume. Charged
particles traversing the detector ionize the argon leav-
ing trails of ionization electrons which drift under the
273V/cm electric field towards the anode where three
planes of wires record induced currents and collect the
ionization electrons. The three planes of wires, spaced
3mm apart and oriented at 0 degrees (vertical) and
at ±60 degrees, produce three di↵erent two-dimensional
views of the neutrino interaction and allow for three-
dimensional reconstruction with O(mm) spatial resolu-
tion. The low-noise TPC electronics allow for measure-
ment of the charge with few percent resolution [30]. Com-
bined, these features enable the MicroBooNE detector to
record the final-state particles produced by neutrino in-
teractions with the detail required to perform particle
identification and accurately measure particle kinemat-
ics. The light detection system, composed of 32 pho-
tomultiplier tubes (PMTs), has a timing resolution of
O(µs), which allows us to select events in the BNB time
window and to remove a large fraction of the cosmic-ray
background. In addition, a cosmic-ray tagger (CRT) [31]

• It is necessary to reject events with 
photons (which could look like 
electrons) and muons (which could 
look like protons). This is achieved 
with two BDTs trained with 
XGBoost using carefully constructed, 
high-level variables, (dE/dx, track 
length, etc.)

 candidate1eNp0π

arXiv:2110.14065
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Neural networks

8

• Loosely inspired by the layout of a human neuron: 
at the input of each node a weighted sum of inputs 
is given. It is transformed by the activation 
function and later send to the output.


• Simplest implementation of a neural network 
consist in layers of neurons, fully connected in 
sequence: multi-layers perceptron.
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How to train a neural network?

9

• Once you have several layers made of tens of neurons, 
how do you train the network? Namely, how do you 
adapt the weights in the hidden layers in order to 
minimize your loss function? Stochastic Gradient 
Descent with backpropagation.


• Training steps:

1. Calculating the network output Y for some input X

2. Calculating the corresponding value of the loss 

function

3. Calculating the loss gradient wrt to the weights

4. Finding the value of the weights which minimizes 

the loss gradient.
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Backpropagation

10

• Backpropagation is the key algorithm that makes training deep models computationally 
tractable.


• It essentially consists in applying the derivative chain rule backwards to find the dependence of the 
output of the network on the weights.

Baydin, Pearlmutter, Radul, and Siskind
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Figure 1: Overview of backpropagation. (a) Training inputs xi are fed forward, generating
corresponding activations yi. An error E between the actual output y3 and the
target output t is computed. (b) The error adjoint is propagated backward,

giving the gradient with respect to the weights ∇wi
E =

(

∂E
∂w1

, . . . , ∂E
∂w6

)

, which is

subsequently used in a gradient-descent procedure. The gradient with respect to
inputs ∇xi

E can be also computed in the same backward pass.

2.1 AD Is Not Numerical Differentiation

Numerical differentiation is the finite difference approximation of derivatives using values of
the original function evaluated at some sample points (Burden and Faires, 2001) (Figure 2,
lower right). In its simplest form, it is based on the limit definition of a derivative. For
example, for a multivariate function f : Rn → R, one can approximate the gradient ∇f =
(

∂f
∂x1

, . . . , ∂f
∂xn

)

using

∂f(x)

∂xi
≈

f(x+ hei)− f(x)

h
, (1)

where ei is the i-th unit vector and h > 0 is a small step size. This has the advantage of
being uncomplicated to implement, but the disadvantages of performing O(n) evaluations
of f for a gradient in n dimensions and requiring careful consideration in selecting the step
size h.

Numerical approximations of derivatives are inherently ill-conditioned and unstable,5

with the exception of complex variable methods that are applicable to a limited set of
holomorphic functions (Fornberg, 1981). This is due to the introduction of truncation6 and

5. Using the limit definition of the derivative for finite difference approximation commits both cardinal sins
of numerical analysis: “thou shalt not add small numbers to big numbers”, and “thou shalt not subtract

numbers which are approximately equal”.
6. Truncation error is the error of approximation, or inaccuracy, one gets from h not actually being zero.

It is proportional to a power of h.

4

• Highly efficient: at each node the 
derivatives depend only on the derivatives 
already calculated for the parent nodes 
and on the node values calculated during 
the forward pass.
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Figure 1: Energy spectra of signal electrons (red) and background electrons (blue) for various
scenarios. The pale curves show the theoretical spectra [10, 11]

�
assuming signal rate is 10�16� ,

the dashed curves show the theoretical spectra convolved with the measurement resolution without
a measurement quality selection (figure 2, black), and the solid curves show the theoretical spectra
convolved with the measurement resolution with the ANN measurement quality selection (figure 2,
blue).

simulation propagates the electrons through a realistic model of the experiment and calculates the
energy deposited in individual detector elements with Geant4 [12–14]. Then, a dedicated tracker
electronics simulation (tuned to prototype data) converts the energy deposited in the tracker straws
into realistic tracker hits. To produce the expected hit environment for the track reconstruction, we
add tracker hits from other processes (e.g. proton emission after nuclear muon capture or photon
conversion in the stopping target). Standard Mu2e track finding identifies hits of potential signal
tracks from the thousands of total hits per event, and a Kalman Filter fit reconstructs the electron
trajectory from these hits, using simulated annealing [15] to improve the hit purity. From the
Kalman Filter fit, we have a measurement of the electron’s momentum. Comparing this to the
Monte Carlo truth momentum of the electron gives us the momentum resolution. The measurement
resolution has a Gaussian core and non-Gaussian tails. The Gaussian core is due to multiple
scattering of the electron, and the non-Gaussian tails are due to energy losses (on the low side) and
the non-linear straw response, impact of pile-up hits, and pattern recognition errors (on the high
side). The distribution fits well to a double-sided Crystal Ball function [16] in the high-side tail, in
the core and at the start of the low-side tail. The furthest part of the low-side tail is not important

– 3 –

• The goal of the Mu2e experiment is to look for the conversion of a muon into an electron in the field of a 
nucleus.


• The signature is a mono-energetic electron around the muon mass: however badly reconstructed 
tracks and limited experimental resolution can make the background distribution wider and suppress 
the experimental sensitivity.

Shallow NN applications: track selection
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Shallow NN applications: track selection

12

• First extract meaningful, high-level variables from the reconstructed tracks: e.g. fit momentum error, number of 
hits, etc.


• Train a multi-layer perceptron network with two layers and O(10) neurons each to distinguish between “good” 
tracks ( ) and “bad” tracks ( ).


• The ROC curve shows a significant better performance than just applying boxed cuts on the meaningful variables and 
it’s also slightly better than a BDT.

|preco − ptrue | < 250 keV/c preco − ptrue > 700 keV/c
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Figure 3: ROC curves for the BDT (red squares), ANN (blue circles) and box-cut optimization
(black triangles). The ANN cut used for figure 1 (solid) and figure 2 (blue) is shown as a blue star
in the inset.
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Figure 2: Reconstructed momentum resolution for simulated electrons with an ANN quality
selection (blue triangles) and without a quality selection (black circles) and their associated double-
sided Crystal Ball fits.

for our studies.
Figure 1 (dashed) shows the convolution of the theoretical energy spectra with the double-

sided Crystal Ball fit and we see that the Mu2e signal is overwhelmed by background. The large
background comes from background electrons in the high-side tail of the resolution function.
Although the fraction of such measurements is small, there are enough low-energy background
electrons that this produces a significant challenge for the experiment. To overcome this challenge,
Mu2e needs to identify and remove low-quality measurements in the high-side tail of the resolution.

3 Measurement Quality Variables

The variables selected for this study each have some sensitivity to the measurement quality. From
the Kalman fit, we know both the fraction and absolute number of hits that survived the simulated
annealing process and are used in the fit ( 5used, =used). Large values of these variables indicate
a well-constrained fit with few background hits in the final reconstruction stage. Also from the
Kalman fit, we can determine the tracker straws that should have seen hits and calculate the fraction
of straws that did contain hits

�
5expected

�
. A large value would show that there are missing hits. The

Kalman fit tries to assign a drift distance to the straw hits. If a large fraction of hits do not have
an assigned drift distance ( 5drift), then that would indicate a larger uncertainty in the hit position.

– 4 –
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From classification to regression

13

• Instead of classifying tracks as “well reconstructed” or “bad reconstructed”, 
one could train a NN that tries to predict the value of , given  and the 
other auxiliary variables (fit momentum error, number of hits, etc.): 
regression.


• This has the advantage of avoiding arbitrary thresholds between “good 
 and “bad” tracks and provides a more natural way to cut tracks in the tail of 
the distribution.


• Most importantly, it can improve the experimental resolution by 
accounting for the energy lost, thus impacting the sensitivity of the 
experiment (especially important for low-counting experiments such as 
Mu2e).


• Technique already adopted by CMS and ATLAS.
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Figure 5: Dijet invariant mass distributions for simulated samples of Z(! `+`�)H(! bb) events,
where two jets and two leptons were selected. Distributions are shown before (dotted blue) and after
(solid red) applying the b jet energy corrections. A Bukin function [44] was used to fit the distribution.
The fitted mean and width of the core of each distribution are displayed in the figure.

In addition, a dedicated study was performed to test how well the algorithm performance can
be transferred from Monte Carlo simulations to the domain of pp collision data. A set of Z bo-
son candidates decaying to a pair of charged leptons was extracted from pp collisions recorded
by the CMS experiment in 2017. A standard set of requirements [28, 45] was applied to se-
lect events with electron or muon pairs compatible with having originated from the decay of
a Z boson. Events were further required to have at least one b-tagged jet. The jet with the
largest pT was required to have |h| < 2, while the pT of the dilepton system was required to
be larger than 100 GeV. The pT balance between the Z boson and the b-tagged jet candidate
was enforced by requiring that extra jets have a pT less than 30% of the Z pT to suppress events
with additional hadronic activity. Events satisfying these requirements were used to evaluate
the agreement between data and MC simulations. In addition, the resolution of the jets was
measured by extrapolating to zero additional hadronic activity following the methodology de-
scribed in Ref. [28].

Figure 6 shows the ratio between the pT of the leading jet and that of the dilepton system for
events in which the pT of the subleading jet is less than 15 GeV. The left and right panels show
the distributions obtained before and after applying the DNN-based corrections, respectively.
It can be seen that the effect of the corrections is to reduce the width of the distribution. Using
the method detailed in Ref. [28], the double ratio of the relative jet resolution s measured in data
and in simulated events was found to be 1.1 ± 0.1 before and after applying the DNN-based
corrections. This validates that the resolution improvement achieved in simulated events is
successfully transferred to the data domain.

8 Summary

We have described an algorithm that makes it possible to obtain point and dispersion estimates
of the energy of jets arising from b quarks in proton-proton collisions. We trained a deep, feed-
forward neural network, with inputs based on jet composition and shape information, and
on properties of the associated reconstructed secondary vertex for a sample of simulated b
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From machine learning to deep learning

14

• What if, instead of using few layers with few neurons, we start building network with tens of layers and hundreds 
of neurons?


• This is usually what we call deep learning: there is no hard threshold, but when networks start to have more than 
a couple of layers then they are called deep neural networks. 5

FIG. 2: SparseSSNet’s architecture. Light blue boxes represent convolutional layers with stride two (decreasing
the spatial size) and an increased number of filters. Orange boxes represent convolutional operations. Dark blue

boxes represent transpose convolution with stride two (increasing the spatial size) and a decreased number of filters.
Yellow boxes are convolutional layers with stride one and decreased number of filters. The depth of the network is
defined as five since there are five downsampling operations. The spatial size is constant along the horizontal axis.

FIG. 3: An example of a simulated event projected on
the collection plane, taken from the training sample.
Multiple particles are generated at a specific location
and propagated throughout the detector to mimic a

neutrino interaction. In addition a higher energy muon
is simulated to mimic cosmic muons.

distribution. A random number N(= ⌃ni) of particles1

are generated at this location where N is the total num-2

ber of particles and ni is the number of particles from3

type i. N is drawn from a uniform distribution in the4

range of 1–6, whereas ni is drawn from a uniform dis-5

tribution in the ranges specified in Table I. The momen-6

tum vector direction of each particle is chosen from an7

isotropic distribution. Approximately 85% of the sample8

contains particles with kinetic energies (Ek) consistent9

with neutrino interactions within MicroBooNE. The en-10

ergy range (E) for this sample for each particle is shown11

in Table I. A smaller sample (⇡ 15%) is generated with12

a di↵erent configuration targeted at low energy interac-13

tions where particle identification becomes more di�cult.14

The momentum (P) range for each particle from the low15

energy (low E) sample is shown in Table I. The number16

of particles generated (N) and their multiplicity (ni) re-17

mains the same. Finally, a random number of muons in18

the multiplicity range of 5–10 and kinetic energy range19

of (5,000–20,000)MeV are generated in both samples to20

mimic cosmic rays.21

B. Training labels22

In the preparation of the samples, training labels are23

assigned to each pixel according to the particle contribut-24

ing to their intensity. A total of five di↵erent labels are25

used. For the training and test sets, a pixel can be a sum26

arXiv:2012.08513



STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER

Deep learning for neutrino experiments

15

• Neutrino experiments, in theory, represent the ideal candidate to port image-recognition concepts and 
techniques to particle physics.


• They produce event display where a trained human is usually able to distinguish the features: electron neutrino 
interaction, muon neutrino interaction, cosmic ray, etc. 





Find patterns

(vertices, tracks, showers)



Find patterns

(vertices, tracks, showers)



Find patterns

(vertices, tracks, showers)



Find patterns

(vertices, tracks, showers)



Find patterns

(vertices, tracks, showers)

Distinguish between muon 
tracks and proton tracks



Find patterns

(vertices, tracks, showers)

Distinguish between 

photon showers and electron showers


Distinguish between muon 
tracks and proton tracks



STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER

Deep learning for neutrino experiments

17

• Convolutional Neural Networks are usually used for image recognition tasks

• Let’s just the same CNN we used to do our first deep learning exercise: recognize MNIST handwritten digits!





High resolution, big image data

100 M to giga-pixels



High resolution, big image data

100 M to giga-pixels

Mostly empty, inactive 
pixels are the vast 

majority



High resolution, big image data

100 M to giga-pixels

Mostly empty, inactive 
pixels are the vast 

majority

Not so fast…





Small things matter

(inform direction and topology)



Small things matter

(inform direction and topology)

Color is important 

(both absolute value and gradient)









STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER

End-to-end reconstruction using ML

22

• The goal is to identify neutrino interactions in liquid argon. The reconstruction can be automated using ML by 
extracting physically meaningful, hierarchical features by chaining multiple ML models designed for each task.


• The input of the chain are 3D hits in the liquid argon, and the output is the full neutrino interaction, with each 
product  being tagged and reconstructed.

Input Output
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π
e-

p

p

Electron Neutrino 

interaction

π
e-

p

p



STEFANO ROBERTO SOLETI MACHINE LEARNING AND ARTIFICIAL INTELLIGENCE AT THE INTENSITY FRONTIER

4

FIG. 3. U-ResNet architecture diagram. Black arrows describe the direction of tensor data flow. Red arrows indicate concate-
nation operations to combine the output of convolution layers from the encoding path to the decoding path. The final output
has the same spatial dimension as the input with a depth of three, representing the background, track and shower probability
of each pixel.

4.8 ms in each event. Combined wire waveforms, aligned
by the digitization time, form 2D projected images of a
three-dimensional (3D) particle trajectory from a di↵er-
ent projection angle. The digitization time runs along
the vertical axis and the wires run along the horizontal
axis in event displays shown in this paper (e.g. Figure 1).

In this paper we focus on the analysis of image data
recorded by the collection plane, which has a size of 3,456
by 9,600 pixels. The spatial resolution of an image along
the wire axis is 3 mm per pixel. For the analysis, every
6 samples of a digitized waveform are summed together,
corresponding to an approximate spatial resolution along
the time axis of 3.3 mm. The resulting image dimension
is 3,456 by 1,600 pixels.

III. U-RESNET: TRACK/SHOWER
PIXEL-LEVEL SEPARATION NETWORK

In this study we use U-ResNet, a hybrid of the U-
Net [9] and residual network [10] (ResNet) design pat-
tern. U-ResNet takes a single-channel 512 by 512 pixel
image as input and outputs an image of the same spatial
dimension with 3 channels per pixel encoding a probabil-
ity from multinomial logistic regression, or softmax, for a
pixel being a background, track, or shower type. We use
U-Net as the base SSNet architecture design because of

its excellent performance in biomedical images [9] which
resemble those from LArTPCs where information den-
sity is sparse. We replace the convolution layers in the
original U-Net with ResNet modules. ResNet is a generic
CNN design pattern that was invented at the same time
as U-Net and enables the training of deep CNNs. In
our implementation, each ResNet module consists of two
convolution layers of 3-by-3 kernel size, where each con-
volution layer is followed by a batch normalization op-
eration [11] and a rectified-linear unit (ReLU) activation
function. The schematic U-ResNet design is shown in
Figure 3.

The U-ResNet architecture can be interpreted in
two separate sections. The first half of the network
takes an input image, a data tensor with a dimension
of (512,512,1), and repeatedly applies convolution and
down-sampling operations. At the end of the first sec-
tion, the data tensor has a dimension of (16,16,1024).
The goal of this section of the network is to learn a non-
linear, hierarchical representation of image features at
di↵erent scales. Since feature information is encoded in
a low spatial resolution tensor at the end of this section
of the network, it is referred to as an encoding path.

The second half of the U-ResNet takes the output of an
encoding path, a tensor with a dimension of (16,16,1024),
and repeatedly applies an up-sampling and convolution
operation. An up-sampling is performed by an operation

Pixel feature extraction

23

• Distinguish between different topologies (e.g. tracks and showers)

• Identify edge points (track start/end point, shower start)

• Supervised classification using simulated samples and a U-ResNet-likde network (encoder-decoder structure)

arXiv:1808.07269

19

FIG. 21. Neutrino event displays from CC⇡0 candidate detector data selected based on activity around the interaction vertex.
Left: input images to the network. Middle: track (yellow) and shower (cyan) physicist labels. Right: track (yellow) and shower
(cyan) labels predicted by the network.

19

FIG. 21. Neutrino event displays from CC⇡0 candidate detector data selected based on activity around the interaction vertex.
Left: input images to the network. Middle: track (yellow) and shower (cyan) physicist labels. Right: track (yellow) and shower
(cyan) labels predicted by the network.

Input Output
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Pixel clustering

24

• Graph NN called GrapPA (graph Particle Aggregator) 
employed to predict the adjacency matrix of EM shower 
fragments and identify the origin of the showers

arXiv:2007.01335

that semantic segmentation neural network can identify EM
voxels with a 99.4% voxel-wise accuracy [17]. A similarly
designed neural network has been shown to work on real
data from the MicroBooNE LArTPC detector [18]. The
exact effect of using the aforementioned algorithm on
the shower clustering accuracy will be addressed in a
separate paper studying the performance of the end-to-end
reconstruction chain.

B. Fragment clustering

A shower object encompasses all energy deposition
associated with a single primary4 electron or photon and
all its subsequent EM daughters. A shower fragment is
defined as a spatially dense subset of voxels of a shower
instance such that each voxel is in the Moore neighborhood
of at least one other voxel in the fragment, i.e., at least
“touches” it diagonally. As the ground truth5 fragments are
not known a priori, EM voxels are clustered using the
density based spatial clustering of applications with
noise (DBSCAN) algorithm [19] with a Euclidean distance

FIG. 2. Example image from the simulated LArTPC input
dataset. The colors correspond to the semantic type of the particle
that deposited the energy: “EM” stands for electromagnetic,
“track” for protons, pions and muons, “Michel” for muon decay
electrons, “Delta” for delta electrons and “LE” for low energy
scatters (low energy EM and nuclear activity). Axes values
represent voxel coordinates.

FIG. 3. Distribution of the number of particles, showers and
tracks in each image, originating from a common vertex (blue),
randomly scattered (orange) and combined (green).

FIG. 1. Architecture of the graph particle aggregator (GrapPA) for shower clustering and primary identification. The input set of
voxels associated with electromagnetic showers is passed through a density-based clustering algorithm that forms dense shower
fragments. Each fragment is encoded into a set of node features in a graph connected by arbitrary edges carrying edge features. Edge and
node features are updated through a series of message passing composed of edge and node updaters. The updated edge features are used
to constrain the connectivity graph and the updated node features to identify primaries.

4A primary electron or photon does not have an EM parent and
is neither a delta ray, a Michel electron nor a deexcitation photon.

5In the field of computer vision, ground truth refers to the data
labels, i.e., a predefined target for the reconstruction.

CLUSTERING OF ELECTROMAGNETIC SHOWERS AND … PHYS. REV. D 104, 072004 (2021)

072004-3

Target Prediction
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Particle clustering

25

• Grouping task, we can re-use GrapPA:

• Interaction = a group of particles that shared the same origin (i.e. neutrino interaction)

• Edge classification to identify an interaction

• Node classification for particle type ID

arXiv:2007.01335

Target Prediction
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 channel at MicroBooNE1e1p

26

• First analysis using deep learning methods in a LArTPC

• Results consistent with  analysis (more classical approach): “no excess”1eNp0π

3

FIG. 1: A typical selected data event from this analysis, showing time tick vs wire number from the TPC. a), the
pixel intensity images with annotation indicating the electron and proton. b), pixel labeling from the
Deep-Learning-based semantic segmentation algorithm, discussed in Sec. V.

used to identify events having one electromagnetic shower
and one proton track, forming a vertex with no gap be-
tween the two particles. Fig. 1 (a), shows an event display
of a data event selected by this analysis, with the electron
and proton annotated.

As described in Sec. IV, we use the unfolded median
of the MiniBooNE LEE result to rescale the ⌫e flux in
order to simulate the signal. This populates neutrino en-
ergies from 200–500MeV, referred to as the “LEE range,”
where CCQE interactions dominate. Using visible energy
and track angle relative to the beam direction (z-axis),
many kinematic quantities can be reconstructed that will
have specific correlations for well-reconstructed CCQE
events, but not for most background events, allowing
for a unique method of signal isolation. We use well-
reconstructed events with kinematics that satisfy two-
body scattering expectations as our operational defini-
tion for CCQE for this analysis.

In Sec. V, we present the reconstruction, with empha-
sis on how this analysis addresses application of DL to
reconstruction of LArTPC data. As seen in Fig. 1, the
TPC data are represented as two-dimensional images,
with wire number along the x axis and drift time along
the y axis. Each bin represents a “pixel,” where the in-
tensity is the integrated reconstructed charge waveform
over six time ticks after applying noise filtering [19] and
signal processing [20, 21]. The individual pixels of the im-
age can be “semantically segmented,” or labeled, using a
convolutional neural network (CNN) [22–24]. Semantic
segmentation is a well-known technique in the computer
vision community. Fig. 1 (b) demonstrates the applica-
tion of this algorithm, with pixels labeled as originating
from minimum ionizing particles (MIP), highly ionizing
particles (HIP), or as electromagnetic “showers.” This
algorithm is applied as the first step of the event recon-

struction. The results are passed into conventional algo-
rithms for vertex-finding, track reconstruction [25], and
shower clustering [26]. Lastly, we apply Multi-Particle
IDentification (MPID) [27], a second DL algorithm that
performs multiple-object classification on the whole in-
tensity image. This algorithm outputs scores indicat-
ing whether an image is consistent with containing one
or more electrons, protons, muons, pions, or photons.
MPID can be thought of as the complement of semantic
segmentation–in this case, neither individual nor groups
of pixels are labeled; instead holistic information on the
contents of the image are reported.

In Sec. VI, we explain signal and constraint-sample
selection and background rejection. We employ an en-
semble of boosted decision trees (BDTs) that test for
CCQE-consistent two-body-scattering kinematics. The
ensemble method trains multiple BDTs using the same
input variables, but with di↵erent sets of training events,
using the XGBoost [28] gradient-boosting algorithm. In
principle, each BDT is selecting for the same event qual-
ities, but in practice the scores are not identical due to
the individuality of each training sample. Taking the
average score, referred to as the “BDT score,” as the
selection variable reduces variance in the result. The en-
semble method is a new approach to BDTs in particle
physics, although it has been applied in other fields, in-
cluding medicine [29] and climate studies [30] because it
provides a very stable result. The combination of the
BDT ensemble and other data selection criteria results
in a 75% ⌫e CCQE purity in the “analysis energy range”
of 200–1200MeV.

Although the CCQE interaction is a well-understood
neutrino interaction [31] in the analysis energy range, the
uncertainties from the predicted cross section are, nev-
ertheless, ⇠ 15% [32, 33]. When combined with the ⌫e

arXiv:2110.14080
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each value of xLEE. We determine the confidence interval
on the LEE signal strength using the Feldman–Cousins
procedure [62].

We can also evaluate the analysis sensitivity in terms
of the confidence intervals that would be obtained if the
observation was the expectation under a given hypothe-
sis. In this case, we define the sensitivity based on the
��

2 for the Asimov data set of the hypothesis being con-
sidered. For H0 (xLEE = 0), the expected upper limit on
the LEE signal strength is 0.75 (0.98) at the 90% (2�,
or ⇠95%) confidence level. For H1 (xLEE = 1), the ex-
pected confidence interval for the LEE signal strength is
[0.53, 1.66] ([0.28, 2.67]) at the 1� (2�) confidence level.
The expected significance to rule out xLEE = 0 using this
method is 2.8�.

X. RESULTS

A total of 25 1e1p events are selected, while a total of
29.0± 1.9(sys)± 5.4(stat) (27.4± 3.8(sys)± 5.2(stat)) events
are predicted for the analysis range (200–1200MeV) with
(without) the 1µ1p constraint. Using the goodness-of-
fit test described in Sec. IXB, we find the p-value for
the comparison between the 1e1p observation and the
expected background prediction to be 0.014 (0.024) for
the prediction with (without) the 1µ1p constraint; this
indicates 2.5� (2.3�) tension with the prediction. This
and other goodness-of-fit test results are summarized in
Table II.

A primary result of this analysis is the selected ⌫e

energy distribution compared to the constrained predic-
tion. The observed data are compared to the constrained
prediction in Fig. 16, showing also the constrained sys-
tematic errors and the original pre-constraint prediction.
The reconstructed E⌫ distribution for the observed data
compared to the unconstrained prediction was shown in
Sec. VIA, partitioned by interaction type in Fig. 4 (a)
and by topology in Fig. 4 (b).

There is some tension between the data and the con-
strained background predictions in the E⌫ spectrum,
more so than in other kinematic variables as seen in
Figs. 17–19. In particular, the data are lower than the
prediction at low energy, which leads to a constraint on
the median MiniBooNE LEE, presented below, that is
somewhat better than the predicted sensitivity. We note
that similar features are seen when data are presented
as a function of EQE�`

⌫
, as shown in Fig. 17; thus the

features are not tied to the proton reconstruction. As de-
scribed in Sec. VIIC, the study of Michel electrons shows
good agreement between data and prediction within sta-
tistical uncertainty, so the deficit at low energy is unlikely
to arise from a systematic issue with low-energy electron
reconstruction.

In Figs. 17–19, we show distributions for Ee� , ✓e� ,
and the 1e1p BDT Ensemble average score. The set of
observed distributions are in agreement with prediction
as indicated by the �

2
CNP/dof (degrees of freedom) val-

FIG. 16: The final constrained prediction for ⌫e signal
and ⌫µ background events compared with the observed
data events in the analysis range
(200 < E⌫ < 1200MeV). The final prediction before the
constraint is shown by the black line, and the final
constrained systematic errors are shown by the gray
band. The �

2
CNP/dof is 25.28/10, corresponding to pval

= 0.014.

ues and corresponding p-values. Note that the p-values
are calculated using the same frequentist method as the
goodness-of-fit tests described in Sec. IXB. This also sup-
ports the claim that the low p-value of the E⌫ distribu-
tion is a statistical fluctuation and not a systematic is-
sue. Note that the predicted distributions for Figs. 17–19
do not apply the background fitting procedure described
in Sec. VIA 3 nor the constraint procedure described in
Sec. IXA. Both procedures were developed specifically
for the E⌫ distribution and not extended for these addi-
tional variables. However, the quantitative measures of
the data-to-simulation agreement are dominated by the
data statistical error and therefore the application of sim-
ilar methods would be expected to have only modest ef-
fects. Note also that Fig. 17 shows only 24 of the 25 data
events in our final selection; this is because the remaining
event reconstructs with E

QE�`

⌫
= 1200.2MeV, placing it

just above the upper plotting bound of 1200MeV.
We provide the 2D event displays of all 25 events se-

lected in the analysis range in Appendix A. An example
event is shown in Fig. 20. In the event displays, each
column shows the U , V and Y plane responses; on the
top row are the pixel intensity images, as described in
Sec. II, and on the bottom the SparseSSNet labeling.

A. Tests of the LEE Model

In this section, we provide the results of the other
statistical tests described in Sec. IXB, which elaborate
on the comparisons between the 1e1p data observation
and our two benchmark hypotheses: H0, the prediction
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FIG. 1: A typical selected data event from this analysis, showing time tick vs wire number from the TPC. a), the
pixel intensity images with annotation indicating the electron and proton. b), pixel labeling from the
Deep-Learning-based semantic segmentation algorithm, discussed in Sec. V.

used to identify events having one electromagnetic shower
and one proton track, forming a vertex with no gap be-
tween the two particles. Fig. 1 (a), shows an event display
of a data event selected by this analysis, with the electron
and proton annotated.

As described in Sec. IV, we use the unfolded median
of the MiniBooNE LEE result to rescale the ⌫e flux in
order to simulate the signal. This populates neutrino en-
ergies from 200–500MeV, referred to as the “LEE range,”
where CCQE interactions dominate. Using visible energy
and track angle relative to the beam direction (z-axis),
many kinematic quantities can be reconstructed that will
have specific correlations for well-reconstructed CCQE
events, but not for most background events, allowing
for a unique method of signal isolation. We use well-
reconstructed events with kinematics that satisfy two-
body scattering expectations as our operational defini-
tion for CCQE for this analysis.

In Sec. V, we present the reconstruction, with empha-
sis on how this analysis addresses application of DL to
reconstruction of LArTPC data. As seen in Fig. 1, the
TPC data are represented as two-dimensional images,
with wire number along the x axis and drift time along
the y axis. Each bin represents a “pixel,” where the in-
tensity is the integrated reconstructed charge waveform
over six time ticks after applying noise filtering [19] and
signal processing [20, 21]. The individual pixels of the im-
age can be “semantically segmented,” or labeled, using a
convolutional neural network (CNN) [22–24]. Semantic
segmentation is a well-known technique in the computer
vision community. Fig. 1 (b) demonstrates the applica-
tion of this algorithm, with pixels labeled as originating
from minimum ionizing particles (MIP), highly ionizing
particles (HIP), or as electromagnetic “showers.” This
algorithm is applied as the first step of the event recon-

struction. The results are passed into conventional algo-
rithms for vertex-finding, track reconstruction [25], and
shower clustering [26]. Lastly, we apply Multi-Particle
IDentification (MPID) [27], a second DL algorithm that
performs multiple-object classification on the whole in-
tensity image. This algorithm outputs scores indicat-
ing whether an image is consistent with containing one
or more electrons, protons, muons, pions, or photons.
MPID can be thought of as the complement of semantic
segmentation–in this case, neither individual nor groups
of pixels are labeled; instead holistic information on the
contents of the image are reported.

In Sec. VI, we explain signal and constraint-sample
selection and background rejection. We employ an en-
semble of boosted decision trees (BDTs) that test for
CCQE-consistent two-body-scattering kinematics. The
ensemble method trains multiple BDTs using the same
input variables, but with di↵erent sets of training events,
using the XGBoost [28] gradient-boosting algorithm. In
principle, each BDT is selecting for the same event qual-
ities, but in practice the scores are not identical due to
the individuality of each training sample. Taking the
average score, referred to as the “BDT score,” as the
selection variable reduces variance in the result. The en-
semble method is a new approach to BDTs in particle
physics, although it has been applied in other fields, in-
cluding medicine [29] and climate studies [30] because it
provides a very stable result. The combination of the
BDT ensemble and other data selection criteria results
in a 75% ⌫e CCQE purity in the “analysis energy range”
of 200–1200MeV.

Although the CCQE interaction is a well-understood
neutrino interaction [31] in the analysis energy range, the
uncertainties from the predicted cross section are, nev-
ertheless, ⇠ 15% [32, 33]. When combined with the ⌫e
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• The adoption of GPGPU algorithms can enable the implementation of a 
differentiable simulator, which means applying gradient-based 
methods to learning and control of physical systems.


• This technique requires computing the model derivatives at each step: 
can be easily implemented with popular ML packages such as PyTorch.


• Two main applications 

• automatic inference of the detector physics model parameters 

(calibration)

• automatic inference of the detector simulation input
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Technical implementation
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• The detector simulation software is implemented as a set of GPU 
algorithms that use Numba, a just-in-time compiler that allows to 
speed-up pure Python code both on CPU and on GPU, using CUDA 
libraries. 


• The CUDA platform lets you run your function (the kernel) in large 
number of threads, that run in parallel on the GPU and are organized 
in blocks. It comes with a natural C++ extension, but can be used also 
with other languages (Java, Fortran, Python).


• The advantage is that the CUDA hides the specific underlying 
architecture, and allows to compile the same code on different 
GPUs with automatic scalability.

https://numba.pydata.org
https://developer.nvidia.com/cuda-zone
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Implications for DUNE
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• End-to-end differentiable simulator for the DUNE liquid argon near detector has been used to make 
proof-of-principle studies

An example: drift velocity and lifetime

32

Loss surface in the drift velocity - lifetime plane 

followed by the gradient descent algorithm

• As an example, the gradient descent algorithm has been used to find the minimum of the loss 
surface in the (drift velocity; lifetime) plane. The loss is defined as the discrepancy between the pixels.

Courtesy of K. Terao (SLAC) 
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• Machine learning has gone from a niche field with limited applications to an all-encompassing term in 
~10 years.


• Particle physics has started using shallow learning (BDTs, low-depth NN trained with high-level 
variables) for a couple of decades. Virtually every modern analysis has one or more “machine-learning” 
component.


• Focus has shifted towards deep learning: use directly raw features (event displays) with large, 
complex networks, often O(10) of layers of with O(100) of neurons each. 


• Not only classification: deep learning is being used for fast simulations (GANs, VAEs), speed up fitting, 
anomaly searches (unsupervised learning).


• Differentiable simulator gaining traction: exploiting tools developed for deep learning (autodiff) to 
automize parameter estimation and make reconstruction tools detector-agnostic.

Summary and prospects
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