Machine Learning in Particle Physics

Benjamin Nachman

Lawrence Berkeley National Laboratory
bpnachman.com
bpnachman@lbl.gov
@ ${ }^{2}$ bpnachman bnachman

UC Berkeley Physics Physics 290E February 23, 2022

Questions in fundamental physics

Theoretical and experimental questions motivate a deep exploration of the fundamental structure of nature

Why is the Higgs boson so light?

Hierarchy problem

See also: quantum gravity

Why do neutrons have no dipole moment?

Strong CP

Reality

Questions in fundamental physics

Theoretical and experimental questions motivate a deep exploration of the fundamental structure of nature

What is the extra gravitational matter?

Dark Matter

See also: dark energy

Why do neutrinos have a mass?

Flavor puzzles

See also: Where did all the antiparticles go? (Baryogengesis)

Questions in fundamental physics

Theoretical and experimental questions motivate a deep exploration of the fundamental structure of nature

We have performed thousands of hypothesis tests \& have no significant evidence for physics beyond the Standard Model

Questions in fundamental physics

Theoretical and experimental questions motivate a deep exploration of the fundamental structure of nature

We have performed thousands of hypothesis tests \& have no significant evidence for physics beyond the Standard Model

> We will need new tools to explore our data in new ways!

New tools: detectors

Dark matter/energy with LSST

Large Hadron Collider

Dark Matter with LZ

Mu2e experiment

New tools: methodology

N -body simulations

Advanced accelerators

Material Simulations

Supercomputers

Theory Calculations

+ others !

A hyper challenge

Key challenge and opportunity: hypervariate phase space \& hyper spectral data

Methodology

Detectors

A hyper challenge

Key challenge and opportunity: hypervariate phase space \& hyper spectral data

Typical collision events at the LHC produce O(1000+) particles

A hyper challenge

Key challenge and opportunity: hypervariate phase space \& hyper spectral data

Typical collision events at the LHC produce O(1000+) particles

We detect these particles with O(100 M) readout channels

Hypervariate vision with deep learning

We have been conducting
"multivariate" analysis of collision events for many years

However, recent advances have opened up a new way of looking at our data. This hypervariate vision will lead to a deeper understanding of nature and perhaps surprises along the way...

Everyone is aware that there must be new physics, but maybe we need hypervariate vision to see it?

Representing our data

Data analysis in particle physics

Theory of everything \downarrow

Physics simulators
\downarrow
Detector-level observables \downarrow

Nature

\downarrow

Experiment
\downarrow
Detector-level observables
\downarrow
Pattern recognition

Data analysis in particle physics + ML

Detector-level observables Detector-level observables

\downarrow
 Pattern recognition

Classification to enhance sensitivity

calibration
clustering
tracking
noise mitigation

Data analysis in particle physics

Theory of everything \downarrow

Physics simulators
\downarrow
Detector-level observables \downarrow

Pattern recognition

Nature

\downarrow

Experiment
\downarrow
Detector-level observables
$\downarrow)$
Pattern recognition

This is where most machine learning is being applied.

Data analysis in particle physics

Analysis
Observables

Calibration

Pattern recognition

Noise mitigation

Readout

Nature

\downarrow
 Experiment
 \downarrow
 Detector-level observables

 Pattern recognition

This is where most machine learning is being applied.

Data analysis in particle physics

Analysis
Observables

Calibration

Pattern recognition

Noise mitigation

Readout

Nature

\downarrow
 Experiment
 \downarrow

Detector-level observables

Pattern recognition

This is where most machine learning is being applied.

Example: Removing Noise

Example: Removing Noise

pp collisions at the LHC don't happen one at a time!

Example: Removing Noise

pp collisions at the LHC don't happen one at a time!

the extra collisions are called pileup and add soft radiation on top of our events

Example: Removing Noise
pp collisions at the LHC don't happen one at a time!
the extra collisions are called pileup and add soft radiation on top of our events
this is akin to image de-noising -we can use ML for that!

Example: Removing Noise

Image: Journal of High Energy Physics 12 (2017) 51

Data analysis in particle physics

Analysis
Observables

Calibration

Pattern recognition

Noise mitigation

Readout

Nature

\downarrow
 Experiment
 \downarrow
 Detector-level observables

 Pattern recognition

This is where most machine learning is being applied.

Data analysis in particle physics

Analysis Observables

Calibration

Pattern recognition

Noise mitigation

Readout

Nature

\downarrow
 Experiment
 \downarrow
 Detector-level observables

 Pattern recognition

This is where most machine learning is being applied.

Analyzing collider events with ML

Think of an event as an image + convolution neural network $\mathrm{O}(100) \times \mathrm{O}(100)$ pixels $=\mathrm{O}\left(10^{4}\right)$ dimensions! (state-of-the-art image processing tool)

Analyzing collider events with ML

Think of an event as an image + convolution neural network
$\mathrm{O}(100) \times \mathrm{O}(100)$ pixels $=\mathrm{O}\left(10^{4}\right)$ dimensions! (state-of-the-art image processing tool)

Analyzing collider events with ML

Think of an event as an image + convolution neural network
$O(100) \times O(100)$ pixels $=O\left(10^{4}\right)$ dimensions! (state-of-the-art image processing tool)

Analyzing collider events with ML

Think of an event as an image + convolution neural network
$O(100) \times O(100)$ pixels $=O\left(10^{4}\right)$ dimensions! (state-of-the-art image processing tool)

Analyzing collider events with ML

Image: Journal of High Energy Physics 10 (2018) 101

Think of an event as an image + convolution neural network
$O(100) \times O(100)$ pixels $=O\left(10^{4}\right)$ dimensions! (state-of-the-art image processing tool)

Data analysis in particle physics

Theory of everything \downarrow

Physics simulators
\downarrow
Detector-level observables \downarrow

Nature

Experiment
\downarrow
Detector-level observables
\downarrow
Pattern recognition

Data analysis in particle physics

Theory of everything $\ddagger \downarrow$

Physics simulators
\downarrow
Detector-level observables \downarrow

Pattern recognition

Nature

\downarrow

Experiment
\downarrow
Detector-level observables
\downarrow
Pattern recognition

A growing toolkit called "generative models" are being developed to accelerate or augment simulations.

Generative models

Training NN's is slow, but evaluation is fast

Physics-based simulations are

Deep Generative Models

Can we combine our physics-simulator with deep learning?

A generator is nothing other than a function that maps random numbers to structure.

A deep learning solution: GANs

Generative Adversarial Networks (GAN):
A two-network game where one maps noise to images and one classifies images as fake or real.

Data analysis in particle physics

Theory of everything $\downarrow \quad$)
Physics simulators
\downarrow
Detector-level observables \downarrow
Pattern recognition

Nature

\downarrow

Experiment
\downarrow
Detector-level observables \downarrow

Pattern recognition

Simulators are a unique and powerful aspect of particle physics, but, they do not allow us to go "backwards" !!

The Inference Challenge

Want this
\downarrow

Measure this

The Inference Challenge

If you know p (meas. I true), could do maximum likelihood, i.e.

> unfolded = argmax p(measured I true)

The Inference Challenge

If you know p (meas. I true), could do maximum likelihood, i.e.

unfolded $=\operatorname{argmax} p$ (measured $/$ true)

Challenge: measured is hyperspectral and true is hypervariate ... p(meas. | true) is intractable !

The Inference Challenge

If you know p (meas. I true), could do maximum likelihood, i.e.

$$
\text { unfolded }=\underset{\text { true }}{\operatorname{argmax}} p \text { (measured } / \text { true) }
$$

Challenge: measured is hyperspectral and true is hypervariate ... p(meas. | true) is intractable!

However: we have simulators that we can use to sample from p (meas. | true)
\rightarrow Simulation-based (likelihood-free) inference!
...an area of machine learning were particle physics is making a key contribution!

I'll briefly show you one solution to give you a sense of the power of likelihood-free inference.

Reweighting

I'll briefly show you one solution to give you a sense of the power of likelihood-free inference.

The solution will be built on reweighting
dataset 1: sampled from $p(x)$ dataset 2: sampled from $\boldsymbol{q}(\boldsymbol{x})$

Create weights $\boldsymbol{w}(\boldsymbol{x})=\boldsymbol{q}(\boldsymbol{x}) / p(\boldsymbol{x})$ so that when dataset 1 is weighted by \boldsymbol{w}, it is statistically identical to dataset 2.

Reweighting

I'll briefly show you one solution to give you a sense of the power of likelihood-free inference.

The solution will be built on reweighting
dataset 1: sampled from $p(x)$ dataset 2: sampled from $\boldsymbol{q (x)}$

Create weights $\boldsymbol{w}(\boldsymbol{x})=\boldsymbol{q}(\boldsymbol{x}) / p(\boldsymbol{x})$ so that when dataset 1 is weighted by \boldsymbol{w}, it is statistically identical to dataset 2.

What if we don't (and can't easily) know \boldsymbol{q} and \boldsymbol{p} ?

Classification for reweighting

Fact: Neutral networks learn to approximate the likelihood ratio $=q(x) / p(x)$

Solution: train a neural network to distinguish the two datasets!

This turns the problem of density estimation (hard) into a problem of classification (easy)

Classification for reweighting

Particularly useful for particle physics, where collisions may produce a variable \# of particles which are interchangeable

Data analysis in fundamental physics

Theory of everything \downarrow

Physics simulators
\downarrow
Detector-level observables
$\stackrel{\downarrow}{\downarrow}$ Pattern recognition

Nature

\downarrow

Experiment
\downarrow
Detector-level observables
\downarrow
\longleftrightarrow Pattern recognition

Anomaly detection

Current Search Paradigm

(well-motivated) theory-biased
\& low-dimensional observables

Current Search Paradigm

Can we relax model assumptions and explore high-
 dimensional feature spaces?

Current Search Paradigm

What if we are not looking in the right place for the new phenomena?!

Can we relax model
assumptions and explore highdimensional feature spaces?

What is the problem?

Why can't I just pay some physicists to label events and then train a neural network using those labels?

Image credit: pixabay.com
Answer: this is not cats-versus-dogs ... thanks to quantum mechanics it is not possible to know what happened.

Usual case: train with labels

Usually, we train using simulations where we know which events are "signal" and which are "background".

(5)(5)(5)(5)(5)
 (ㄷ(ㅇ(ㅇ)(s) (5)(s)(s)(s)(s)

(B) (B)(B) (B) (B)
(B) (B) (B) (B) (B
(B)B(B)(B) B

(B) (B) (B) (B) B
 (B)(B)(B)BCB

No labels, no problem!

Can we still do machine learning when reality is like this?

(3)(B)(B)(B)(5)

(B)(B)(B)(B)
(B)(B)(B)(8)
(3)(B)(B)(B)
(8)(B)(B)(8)
(5)(B)(B)(B)
(we don't get to observe the color of the circles)

No labels, no problem!

One simple, but powerful idea: "weak supervision"

No labels, no problem!

Assumption: there is a feature that we know about where the background is smooth and the signal (if it exists) is localized.

No labels, no problem!

Assumption: there is a feature that we know about where the background is smooth and the signal (if it exists) is localized.

No labels, no problem!

We don't know where the signal is, but for a given hypothesis, we can make signal windows and sidebands.

No labels, no problem!

Potential of weak supervision

Necessary: when there is no anomaly, the procedure does not find an anomaly.

Potential of weak supervision

Overview: Particle physics and ML

Theory of everything Fast simulation /
phase space

Parameter estimation / unfolding

Physics simulators
\downarrow
Detector-level observables
$\stackrel{\downarrow}{\downarrow}$ Pattern recognition

Nature

\downarrow
 Experiment

Online processing \& $\downarrow)$ quality control

Detector-level observables

Classification to enhance sensitivity

Conclusions and outlook

Deep learning has a great potential to enhance, accelerate, and empower discoveries in particle physics.

This set of tools is growing in importance and no matter what you do, they will help you do it better.

Consider taking a statistics / statical learning / machine learning / applied statistics course(s)!

How else to get involved?

BERKELEY INSTITUTE
FOR DATA SCIENCE

ML and Science Forum, biweekly on Mondays at 11 AM

Physics Division ML meetings, weekly on Thursdays at 1 PM
(open to all)

Example: two-jet search

$y=$ many features of the two jets

Example: two-jet search

Example: two-jet search

- most 10% signal-region-like
most 1% signal-region-like

Example: two-jet search

- most 10% signal-region-like
most 1% signal-region-like

Example: two-jet search

- most 10% signal-region-like

Example: two-jet search

- most 10% signal-region-like

Example: two-jet search

—— most 10% signal-region-like

Example: two-jet search

- most 10% signal-region-like
most 1% signal-region-like

Example: two-jet search

- most 10% signal-region-like
most 1% signal-region-like

Example: two-jet search

- most 10% signal-region-like
most 1% signal-region-like

...and when there is a signal?

sidebands
standard parametric fit to background.

mres

-_ most 10% signal-region-like

- most 1% signal-region-like most 0.2% signal-region-like

...and when there is a signal?

...and when there is a signal?

-_ most 10% signal-region-like
most 1% signal-region-like

What is the network learning?

CWoLa hunting vs. Full Supervision

If you know what you are looking for, you should look for it. If you don't know, then CWoLa hunting may be able to catch it!

Example: Unfolding

What if we could unfold all particles simultaneously? We could then compute observables (and their bins) AFTER doing the measurement (!)

...stick around for the second part of this session for more discussions on this point

Andreassen et al., 1911.09107

New search ideas

Supervision refers to the type of label information provided to the ML during training.

Unsupervised = no labels
Weakly-supervised = noisy labels
Semi-supervised = partial labels
Supervised = full label information

These categories are not exact and the boundaries are not rigid!

Solutions: Unsupervised

Unsupervised = no labels

Typically, the goal of these methods is to look

 for events with low p(background)

One strategy (autoencoders) is to try to compress events and then uncompress them. When $x=$ uncompres (compress (x)), then x probably has low $p(x)$.

Solutions: Weakly-supervised

Weakly-supervised = noisy labels

Typically, the goal of these methods is to look for events with high p(possibly signal-enriched)/p(possibly signal-depleted)
e.g. Classification Without Labels (CWoLa), events in a signal region are labeled "signal" and events in a sideband are labeled "background". These labels are "noisy" but a classifier trained with them can detect the presence of a signal.

Solutions: Weakly-supervised

Typically, th high p (poss
e.g. Clas regior labeled " train

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664 + many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)

Solutions: Semi-supervised

Semi-supervised = partial labels

Typically, these methods use some signal simulations to build signal sensitivity

[^0] more including the recent LHC Olympics (Kasieczka et al., 2101.08320)

Deep Generative Models

A generator is nothing other than a function that maps random numbers to structure.

Deep Generative Models in HEP

Speeding up slow simulation

Generating
 Phase space

Estimating SM backgrounds

Measurements and Inference

BSM searches

Deep Generative Models in HEP

Speeding up slow simulation

Generating Phase space

Estimating SM backgrounds

Measurements and Inference

N.B. being comprehensive with citations would fill up the slide - please see my link to the Living Review at the end for a comprehensive list

BSM searches

Deep Generative Models in HEP

Speeding up slow simulation

Generating
 Phase space

Estimating SM backgrounds

Measurements and Inference

BSM searches

Deep Generative Models in HEP

Speeding up slow simulation

Generating Phase space

Estimating SM backgrounds

Measurements and Inference

Deep Generative Models in HEP

Speeding up slow simulation

Generating Phase space

Estimating SM backgrounds

Measurements and Inference

Deep Generative Models in HEP

Speeding up slow simulation

Generating Phase space

Estimating SM backgrounds

Measurements and Inference

BSM searches
N.B. being comprehensive with citations would fill up the slide - please see my link to the Living Review at the end for a comprehensive list

Deep Generative Models in HEP

Speeding up slow simulation

Generating Phase space

Estimating SM backgrounds

$$
\begin{aligned}
& \text { Measurements } \\
& \text { and Inference }
\end{aligned}
$$

Bieringer et al., 2012.09873

BSM searches

Deep Generative Models in HEP

Speeding up slow simulation

Generating Phase space

Estimating SM backgrounds

Extract features of

Bortolato et al., 2103.06595

[^0]: S. Park, D. Rankin, S.-M. Udrescu, M. Yunus, P. Harris, 2011.03550 + many

