
Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2Questions in fundamental physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

Hierarchy problem Strong CP

Why is the Higgs 
boson so light?

Why do neutrons have 
no dipole moment?
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3Questions in fundamental physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

See also: dark energy
See also: Where did all the anti-
particles go?  (Baryogengesis)
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Dark Matter Flavor puzzles

What is the extra 
gravitational matter?

Why do neutrinos 
have a mass?
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We have performed thousands of hypothesis tests & have no 
significant evidence for physics beyond the Standard Model
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5Questions in fundamental physics
Theoretical and experimental questions motivate a deep 

exploration of the fundamental structure of nature

We will need new tools to 
explore our data in new ways!

We have performed thousands of hypothesis tests & have no 
significant evidence for physics beyond the Standard Model



6New tools: detectors

Large Hadron Collider

Dark Matter 
with LZ

Dark matter/energy 
with LSST Fermilab neutrino experiments

+ others !
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7New tools: methodology

Material Simulations Theory Calculations

Advanced acceleratorsN-body simulations Supercomputers

+ others !

Image sources: Dark Sky Simulations collaboration, SLAC, NERSC, Fermilab Today / Geant4, Peskin and Schroeder 



Key challenge and opportunity: hypervariate phase space 
& hyper spectral data

8A hyper challenge

Methodology Detectors
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Image inspired by JHEP 02 (2009) 007

We detect these 
particles with 

O(100 M) 
readout channels

Not to scale!

Key challenge and opportunity: hypervariate phase space 
& hyper spectral data

Typical collision events 
at the LHC produce 
O(1000+) particles
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at the LHC produce 
O(1000+) particles



©Elephant Listening Project

Everyone is aware that there must 
be new physics, but maybe we 

need hypervariate vision to see it?

11Hypervariate vision with deep learning

However, recent advances 
have opened up a new way 
of looking at our data.  This 

hypervariate vision will lead 
to a deeper understanding 

of nature and perhaps 
surprises along the way…

We have been conducting 
“multivariate” analysis of 

collision events for many years



12Representing our data

Images

Graphs

Introduction
Jet Physics

Previous work
Proposed model

Experiments
Conclusions

Jet parse trees

kt

anti-kt

� Attempt to reverse the generative process

� Sequential recombination algorithms

� Cambridge-Aachen, kt , anti-kt

� Binary tree representation

� NLP methods for parse trees

Sequences

Fixed 
sets
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Introduction Jet Physics Previous work Proposed model Experiments Conclusions

Jet images

Single
W jet

Single
QCD jet
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Figure 31: A schematic diagram of the ways to represent jets and the natural NN architectures
that go with each representation. The deep sets image is from Ref. [548], the recurrent NN
image is from Ref. [541], the tree image is from Ref. [543], and the graph image is from
Ref. [545].

subjettiness observables ⌧ (�)
k

[228] to ‘span’ m-body phase space for su�ciently

many ⌧ (�)
k

’s [551]. The authors of Ref. [552, 553] proposed to extract analyt-

ically tractable observables from the ⌧ (�)
k

set by learning product observables

which approximate the full NNs. Another way to automate physically-inspired

learning was presented with the Lorentz layer [554] and Lorentz boost [555] net-

works, which encode Lorentz invariant feature extraction as the first layers to a

deep network acting directly on four-vectors.

Figure 31 provides an overview of the representations that have been used

to analyze jet substructure in the context of machine learning, along with the

NN architectures used for each representation.

3.1.2. Preprocessing and the Symmetries of Spacetime

The first step to process a full jet’s substructure is to preprocess them into the

proper format based on the machine learning architecture. Preprocessing steps

91

1709.04464, with images from 1810.05165; ATLAS, PUB-2017-003; 1711.02633; Henrion et al. MLPS @ NeurlPS 2017
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Theory of everything

Physics simulators
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Nature

Detector-level observables
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Data analysis in particle physics



14Data analysis in particle physics + ML

Theory of everything

Physics simulators

Detector-level observables

Pattern recognition

Nature

Detector-level observables

Pattern recognition

Experiment

Parameter 
estimation / 
unfolding

Data curation

Classification to 
enhance 
sensitivity

“signal” versus “background”

calibration 
clustering 
tracking 

noise mitigation 
particle identification 

…

Fast 
simulation / 

phase space
Online 

processing & 
quality control
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Theory of everything
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Pattern recognition
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This is where most machine learning is being applied.
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Nature
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Pattern recognition
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Readout
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This is where most machine learning is being applied.
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Nature

Detector-level observables

Pattern recognition

Experiment

Readout

Noise 
mitigation 

Calibration 

Pattern 
recognition 

Analysis 
Observables

This is where most machine learning is being applied.
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pp collisions at the LHC 
don’t happen one at a time!
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pp collisions at the LHC 
don’t happen one at a time!

Example: Removing Noise

the extra collisions are called pileup and 
add soft radiation on top of our events

this is akin to image 
de-noising - we can 

use ML for that!



⌘
�

b
ea
m

Leading vertex charged

Pileup charged

Total neutral

Leading vertex neutral
Inputs to NN | {z }

10 filters ⇥2

Figure 1: An illustration of the convolutional neural net architecture. The input is a three-

channel image: blue represents charged radiation from the leading vertex, green is charged

pileup radiation and red is the total neutral radiation. The resolution of the charged images is

higher than for the neutral one. These images are fed into a convolutional layer with several

filters whose value at each pixel is a function of a patch around that pixel location in the

input images. The output is an image combining the pixels of each filter to one output pixel.

– 5 –

…also a natural 
application of 

convolutional NNs!

Strange noise 
because we can 

measure ~2/3 of it 
(charged pileup)

Example: Removing Noise
Image: Journal of High Energy Physics 12 (2017) 51
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One of the critical goals of 
the LHC is to identify new, 

massive particles

Remember E = mc2:
(need lots of E to make new 

particles with a lot of m!)

We want to do this 
using all of the 

available information!
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O(100) x O(100) pixels = O(104) dimensions!

Think of an event as an image + convolution neural network
(state-of-the-art image processing tool)

Analyzing collider events with ML
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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Here Gaµ‹ is the QCD field strength, and ÂGaµ‹ = 1
2‘µ‹‡flGa

‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm

(Are there any experimental benefits of Rb2? It might be cleaner to just use
beta. Rb2 is also IRC unsafe –ijm)

Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]
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where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 7. Color flow for H � bb̄ and g � bb̄, the main irreducible QCD background to our signal.
The numbers 1 and 2 label different color lines.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H
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jets with a two-prong substructure using the double b-tag, standard tagging observables provide
minimal gains, and the primary difference between the two decays are their color flows, shown
in Fig. 6, with the Higgs being a color singlet, and the gluon a color octet. The gluon radiates
much more widely away from the dipole, as is clearly seen in the jet images in Fig. 5. ijm
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Having identified from the neural network that significant discrimination power can be
extracted from the jet, and building on the intuition from the jet images and our physical
understanding of the decay channels, that this information should be contained in the color
flow, we now show that this additional discrimination power can largely be extracted using a
simple observable to identify the color flow. A number of observables exist to probe the color
flow within a jet. Here we consider the recently introduced observable �3 [47]
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where � j
n is the n-jettiness observable [37, 38] with angular exponent j defined with the winner

takes all axes [68].
In Fig. 7 we show an SIC curve comparing the performance of the �3 observable with the

full neural network architecture. The full neural network sets an upper bound on the achievable
discrimination power, and we find that the majority of the improved discrimination power
identified by the neural network is reproduced by the simple �3 observable. This is promising
for immediate application to LHC searches. It also supports our intuition that the dominant
remaining information lies in the color flow. Since much effort has been given to two-prong
tagging, and relatively limited attention has been payed to the study of color flow, we believe
that variable such as �3 may be more widely applicable to improving jet substructure searches.
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Figure 6. Average jet images for the 100 most background like (top) and signal like (bottom) jets.
The jet images are weighted by the pT in the first column, the neutral pT in the second column, and
the charge multiplicity in the third column. Due to the di�erent color flows, the signal like (H æ bb̄)
jets have a more contained color flow pattern.

3.3.1 Jet Substructure

As emphasized earlier, the H æ bb̄ search is di�erent from other boosted hadronically decaying
massive boson studies because the application of double b-tagging already enforces a two-prong
topology. Therefore, two-prong tagging is not as useful. Studies to further optimize the event
selection with N2 confirm this expectation — little significance gain is possible using only this
state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
example, Fig. 6 shows the average of the 100 most signal-like and most background-like jets,
according to the neural network. The two-prong structure of both signal and background is
clear in all three channels. The main di�erence between gg æ bb̄ and H æ bb̄ is the orientation
of the radiation between and around the two prongs. As expected due to the di�erent color
structure, the radiation pattern around the two prongs is more spread out for the gluon
case. Figure 7 shows additional images that are split by their value of —3. It is clear from
the images that low —3 values (background-like) pick out subjets with a broader radiation
patterns compared with high —3 (signal-like) images. However, the top plot of Fig. 7 clearly
indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show
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state-of-the-art two-prong tagging technique (see also Ref. [37]). One of the attractive features
of jet images is that they can be directly inspected to visualize the information content. For
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indicates that —3 is not the same as the neural network, so there is additional information
to learn. Figure 8 tries to visualize the additional information. The distribution of —3 in the
signal is reweighted to be the same as the background so that —3 by itself is not useful for
discrimination. The average images for signal and background look very similar by eye, but
the di�erence of the average images reveals interesting structure. These structures still show

– 11 –

[2

PaddLQg La\eU CRQYROXWLRQaO La\eU PRROLQg

FXOO EYeQW IQfRUPaWLRQ

HLggV JeW

CRQYROXWLRQaO La\eU
PRROLQg

DeQVe La\eU

η

Ѯ 

PaddLQg La\eU

Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet

– 4 –

π/2 π 3π/2 2π
0

0.2

0.4

0.6

0.8

1

Rotation of image in ϕ

N
eu

ra
lN

et
w

o
rk

O
u

tp
u

t

Single Image example

Full-event CNN With Padding

Full-event CNN Without Padding

Figure 9. Left: A typical signal event image. Right: The output of the neural network on the left
image, after rotation in the „ direction by the given number of pixels.

4 High-pT Higgs for BSM Physics

Beyond the discovery of the H æ bb̄ decay, a major motivation for the study of boosted
H æ bb̄ final states in particular is that it allows one to study the structure of the gg æ H

process at high pT . While in the Standard Model this is primarily due to the contribution of
a virtual top quark loop, the total cross section ‡(gg æ H) is only sensitive to the low-energy
limit of this loop, in which it is extremely well approximated by a dimension-five operator
with no dependence on mt. At pT & 2mt, this is no longer true, as the physical momentum
running through the loop is comparable to mt, allowing potential new physics contributions
to the loop to be disentangled that are not observable for the total cross section by observing
the pT dependence. This general observation has been explored in Refs. [7–11]. In this section
we apply our machine learning techniques and illustrate how the improved significance for
H æ bb̄ translates to improved bounds on BSM physics.

We are interested in probing new physics in the gg æ H production loop that can be
modeled as dimension-6 operators. Following Ref. [7], the operators modifying gg æ H

production cross section are parameterized as
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‡fl its dual. After electroweak
breaking, the induced operators a�ecting the coupling of the Higgs boson to tops and gluons
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Figure 1. A schematic of the two-stream CNN used in this study. The first stream uses the full
event information, while the second stream uses the jet substructure information. More details on the
architecture are provided in the text.

activations, and stride length of 1. The first convolutional layer in each stream has 32 filters,
and the second convolutional layer in each stream has 64 filters. The dense layer at the
end of each stream has 300 neurons each. Finally, the two dense layers from each stream
are fully connected to an output layer of one neuron with sigmoid activation. In total this
gives 2.6 million trainable parameters in the network. We used the AdaDelta optimizer [94],
with binary cross entropy as our loss function, and used the relatively simple Early Stopping
method as a regularization technique, stopping when the significance improvement of the Higgs
measurement at pmin

T
= 450 GeV stopped improving (with a patience of 2 epochs). We arrived

at this final model after testing the performance (measured by the significance improvement
of the Higgs measurement at pmin

T
= 450 GeV) using di�erent optimizers (AdaDelta [94],

AdaGrad [95], Adam [96]), di�erent activation functions (mainly testing ReLU against leaky
ReLU), and regularization (dropout [97] vs. Early Stopping). Our training was performed
using the Keras [98] Python neural network library with Tensorflow [99] backend, on
Nvidia GeForce 1080 Ti GPUs.

2.2 Inputs and Preprocessing

The inputs to our neural network are jet images [56]. For each event, an image is created for
each stream: one image is the full event image and the other is the image of the hardest jet
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O(100) x O(100) pixels = O(104) dimensions!

Think of an event as an image + convolution neural network
(state-of-the-art image processing tool)
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Image: Journal of High Energy Physics 10 (2018) 101
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A growing toolkit called “generative models” are being 
developed to accelerate or augment simulations.



η
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Training NN’s is slow, 
but evaluation is fast

Physics-based 
simulations are 

often slow

What if we can learn to 
simulate with a NN?

35Generative models



36Deep Generative Models

Can we combine our physics-simulator with deep learning?

A generator is nothing other than a function 
that maps random numbers to structure.

Image: Physical Review Letters 120 (2018) 042003



37A deep learning solution: GANs
Generative Adversarial Networks (GAN):  
A two-network game where one maps noise to images 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator[I. Goodfellow et al., NIPS 2014]
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Simulators are a unique and powerful aspect of particle 
physics, but, they do not allow us to go “backwards” !!
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If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

The Inference Challenge
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Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

The Inference Challenge
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Challenge: measured is hyperspectral and true is 
hypervariate … p(meas. | true) is intractable !!

However: we have simulators that we can 
use to sample from p(meas. | true) 

→ Simulation-based (likelihood-free) inference !

If you know p(meas. | true), could do maximum likelihood, i.e.

true
unfolded = argmax p(measured | true)

The Inference Challenge

…an area of machine learning were particle 
physics is making a key contribution!
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.



44Reweighting

I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.
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I’ll briefly show you one solution to give you a 
sense of the power of likelihood-free inference.

The solution will be built on reweighting

Create weights w(x) = q(x)/p(x) so that when dataset 1 
is weighted by w, it is statistically identical to dataset 2.

What if we don’t (and can’t easily) know q and p?

Reweighting

dataset 1: sampled from p(x) 
dataset 2: sampled from q(x)



46Classification for reweighting

Solution: train a neural network to 
distinguish the two datasets!

Fact: Neutral networks learn to 
approximate the likelihood ratio = q(x)/p(x)

This turns the problem of density estimation 
(hard) into a problem of classification (easy)



Image: Linear Collider Detector Project

47Classification for reweighting

e- e+

Particularly useful for particle physics, where collisions may 
produce a variable # of particles which are interchangeable
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Anomaly detection 
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SUSY
Simple 

combinations of 
momenta, e.g. 

invariant masses

(well-motivated) theory-biased 
& low-dimensional observables

SUSY = Supersymmetry

?
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? SUSY

(well-motivated) theory-
biased & low-dimensional 

observables

SUSY = Supersymmetry

Can we relax model 
assumptions and explore high-
dimensional feature spaces?

Simple 
combinations of 
momenta, e.g. 

invariant masses

Current Search Paradigm
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?

Can we relax model 
assumptions and explore high-
dimensional feature spaces?

Simple 
combinations of 
momenta, e.g. 

invariant masses

Current Search Paradigm

What if we are not 
looking in the right place 
for the new phenomena?!



53What is the problem?

Why can’t I just pay some physicists to label events  
and then train a neural network using those labels?

Answer: this is not cats-versus-dogs … thanks to quantum 
mechanics it is not possible to know what happened.

Image credit: pixabay.com

http://pixabay.com


54Usual case: train with labels
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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, (2.6)
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An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed
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define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood
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(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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f1 pS + (1� f1) pB
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=
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f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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f1 pS + (1� f1) pB
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=
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f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood
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(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood
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(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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f1 pS + (1� f1) pB
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=
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f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:
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which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since
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= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.
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ratio LM1/M2
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define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.
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Figure 8. Left: mJJ distribution of dijet events (including injected signal, indicated by the filled
histogram) before and after applying jet substructure cuts using the NN classifier output for the
mJJ ' 3 TeV mass hypothesis. The dashed red lines indicate the fit to the data points outside of the
signal region, with the gray bands representing the fit uncertainties. The top dataset is the raw dijet
distribution with no cut applied, while the subsequent datasets have cuts applied at thresholds with
e�ciency of 10�1, 10�2, 2 ⇥ 10�3, and 2 ⇥ 10�4. Right: Local p0-values for a range of signal mass
hypotheses in the case that no signal has been injected (left), and in the case that a 3 TeV resonance
signal has been injected (right). The dashed lines correspond to the case where no substructure cut
is applied, and the various solid lines correspond to cuts on the classifier output with e�ciencies of
10�1, 10�2, and 2 ⇥ 10�3.

Figure 9. Events projected onto the 2D plane of the two jet masses. The classifiers are trained to
discriminate events in the signal region (left plot) from those in the sideband (second plot). The third
plot shows in red the 0.2% most signal-like events determined by the classifier trained in this way. The
rightmost plot shows in red the truth-level signal events.

signal region from those of the sideband, the 0.2% most signal-like events as determined by

the classifier are plotted in red in the third plot of Fig. 9, overlaid on top of the remaining

events in gray. The classifier has selected a population of events with mJ A ' 400 GeV and
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Deep learning has a great 
potential to enhance, 

accelerate, and 
empower discoveries in 

particle physics.

64Conclusions and outlook

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

This set of tools is growing 
in importance and no 

matter what you do, they 
will help you do it better.

Consider taking a statistics / statical learning / machine 
learning / applied statistics course(s)!



65How else to get involved?

ML and Science Forum, 
biweekly on Mondays at 11 AM

Physics Division ML meetings, 
weekly on Thursdays at 1 PM

(open to all)
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Example: two-jet search
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jet 2

y = many features of the two jets

mres = mass of 
two-jet system
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100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV
2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV
2000 3000 4000

mJJ / GeV

most 10% signal-region-like
most 1% signal-region-like

most 0.2% signal-region-like
no cut on NN

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV
2000 3000 4000

mJJ / GeV

100%

10%

1%
0.2%

0.02%

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0
3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

mres

mres

signal Pr
(d

at
a 

| b
ac

kg
ro

un
d)

LH
C

 s
im

ul
at

io
n



84…and when there is a signal?

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV
2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV
2000 3000 4000

mJJ / GeV

most 10% signal-region-like
most 1% signal-region-like

most 0.2% signal-region-like
no cut on NN

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV

100

101

102

103

104

105

E
ve

nt
s

/
10

0
G

eV

2000 3000 4000

mJJ / GeV
2000 3000 4000

mJJ / GeV

100%

10%

1%
0.2%

0.02%

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0
3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

2000 2500 3000 3500 4000

mJJ / GeV

10°1

100

101

102

103

104

105

106

E
ve

nt
s

/
10

0
G

eV

Signal
region

SidebandSideband

2500 3000 3500

10°12

10°10

10°8

10°6

10°4

10°2

100

p 0

3æ

4æ

5æ

6æ

7æ

3æ

4æ

5æ

6æ

7æ

mJJ / GeV

No signal

2500 3000 3500

10%

1%

0.2%

With signal

mres

mres

signal Pr
(d

at
a 

| b
ac

kg
ro

un
d)

LH
C

 s
im

ul
at

io
n



85…and when there is a signal?
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87What is the network learning?

Learns to find the signal !
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Figure 11. Truth-label ROC curves for taggers trained using CWoLa with varying number of signal
events, compared to those for a dedicated tagger trained on pure signal and background samples
(dashed black) and one trained to discriminate W and Z jets from QCD (dot-dashed black). The
CWoLa examples have B = 81341 in the signal region and S = (230, 352, 472, 697, 927).

the cuts. This illustrates that CWoLa hunting may find unexpected signals which are not

targeted by existing dedicated searches.

One final remark is about how one would use CWoLa hunting to set limits. In the form

described above, the CWoLa hunting approach is designed to find new signals in data without

any model assumptions. However, it is also possible to recast the lack of an excess as setting

limits on particular BSM models. Given a simulated sample for a particular model, it would

be possible to set limits on this model by mixing the simulation with the data and training

a series of classifiers as above and running toy experiments, re-estimating the background

each time. This is similar to the usual bump hunt, except that there is more computational

overhead because the background distribution is determined in part by the neural networks,

and the distribution in expected signal e�ciencies cannot be determined except by these toy

experiments.

5 Conclusions

We have presented a new anomaly detection technique for finding BSM physics signals directly

from data. The central assumption is that the signal is localized as a bump in one variable in

which the background is smooth, and that other features are available for additional discrim-

ination power. This allows us to identify potential signal-enhanced and signal-depleted event

samples with almost identical background characteristics on which a classifier can be trained

using the Classification Without Labels approach. In the case that a distinctive signal is

present, the trained classifier output becomes an e↵ective discriminant between signal events

– 18 –
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If you know what you are looking for, you should look for it.  If 
you don’t know, then CWoLa hunting may be able to catch it!



89Example: Unfolding
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FIG. 2. The unfolding results for six jet substructure observables, using Herwig 7.1.5 (“Data”/“Truth”) and Pythia 8.243
tune 26 (Sim./Gen.), unfolded with OmniFold and compared to IBU.OmniFold matches or exceeds the unfolding performance
of IBU on all of these observables. We emphasize that OmniFold is a single general unfolding procedure, whereas unfolding
with IBU must be done observable by observable. Statistical uncertainties are shown only in the ratio panel.

unfolded distribution of any observable using Eq. (5).
Hence, this procedure can be viewed as simultaneously
unfolding all observables.

Our study is based on proton-proton collisions gener-
ated at

p
s = 14 TeV with the default tune of Her-

wig 7.1.5 [33–35] and Tune 26 [36] of Pythia 8.243 [37–
39] in order to study a challenging setting where the “nat-
ural” and “synthetic” distributions are substantially dif-
ferent. As a proxy for detector e↵ects and a full detector
simulation, we use the Delphes 3.4.2 [40] fast simula-
tion of the CMS detector, which uses particle flow re-
construction. Jets with radius parameter R = 0.4 are
clustered using either all particle flow objects (detector-
level) or stable non-neutrino truth particles (particle-
level) with the anti-kT algorithm [41] implemented in
FastJet 3.3.2 [42, 43]. One of the simulations (Her-
wig) plays the role of “data”/“truth”, while the other
(Pythia) is used to derive the unfolding corrections. To
reduce acceptance e↵ects, the leading jets are studied
in events with a Z boson with transverse momentum
pZ

T > 200 GeV. After applying the selections, we obtain
approximately 1.6 million events from each generator.

Any suitable machine learning architecture can be used

for OmniFold. For this study, we use Particle Flow
Networks (PFNs) [44, 45] to process jets in their natu-
ral representation as sets of particles. Intuitively, PFNs
learn and processes a set of additive observables via

PFN({pi}M
i=1) = F

⇣PM
i=1 �(pi)

⌘
for an event with M

particles pi, where F and � are parameterized by fully-
connected networks. We specify the particles by their
transverse momentum pT , rapidity y, azimuthal angle
�, and particle identification code [46], restricted to the
experimentally-accessible information (PFN-Ex [44]) at
detector-level. To define separate models for Step 1 and
Step 2, we use the PFN architecture and training param-
eters of Ref. [44] with latent space dimension ` = 256,
implemented in the EnergyFlow Python package [47].
Neural networks are trained with Keras [48] and Tensor-
Flow [49] using the Adam [50] optimization algorithm.
The models are randomly initialized in the first iteration
and subsequently warm-started using the model from the
previous iteration. 20% of the events are reserved as a
validation set during training.

To investigate the unfolding performance, we consider
six widely-used jet substructure observables [51]. The
first four are jet mass m, constituent multiplicity M , the

Andreassen et al., 1911.09107

What if we could unfold all particles simultaneously?  
We could then compute observables (and their bins) 

AFTER doing the measurement (!)

…stick around for the second part of this 
session for more discussions on this point



90New search ideas

Supervision refers to the type of label 
information provided to the ML during training.

Unsupervised = no labels 
Weakly-supervised = noisy labels 
Semi-supervised = partial labels 

Supervised = full label information

These categories are not exact 
and the boundaries are not rigid!



91Solutions: Unsupervised

Typically, the goal of these methods is to look 
for events with low p(background)

Unsupervised = no labels

Farina, Nakai, Shih, 1808.08992; Heimel, Kasieczka, Plehn, Thompson, 1808.08979; + many more including the 
recent LHC Olympics (Kasieczka et al., 2101.08320) and Dark Machines (Aarrestad et al., 2105.14027) reports

One strategy (autoencoders) is to try to 
compress events and then uncompress 

them.  When x = uncompres(compress(x)), 
then x probably has low p(x).



92Solutions: Weakly-supervised

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels (CWoLa), events in a signal 
region are labeled “signal” and events in a sideband are 

labeled “background”.  These labels are “noisy” but a classifier 
trained with them can detect the presence of a signal.

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664 
+ many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)



93Solutions: Weakly-supervised

Typically, the goal of these methods is to look for events with 
high p(possibly signal-enriched)/p(possibly signal-depleted)

Weakly-supervised = noisy labels

e.g. Classification Without Labels (CWoLa), events in a signal 
region are labeled “signal” and events in a sideband are 

labeled “background”.  These labels are “noisy” but a classifier 
trained with them can detect the presence of a signal.

mjj

dN
/d

m
re

s

background

signal

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ���	
� �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ���	
� �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that
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Features for 
training CWoLa 

classifier + be careful to not pay a big trails factor

Metodiev, Nachman, Thaler, 1708.02949; Collins, Howe, Nachman, 1805.02664 
+ many more including the recent LHC Olympics (Kasieczka et al., 2101.08320)
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Typically, these methods use some signal 
simulations to build signal sensitivity

Semi-supervised = partial labels

S. Park, D. Rankin, S.-M. Udrescu, M. Yunus, P. Harris, 2011.03550 + many 
more including the recent LHC Olympics (Kasieczka et al., 2101.08320)

Quasi Anomalous 
Knowledge (QUAK)
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A generator is nothing other than a function 
that maps random numbers to structure.

Image: Paganini, Oliveira, Nachman, 1705.02355
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Finally the total energy is fed into Flow I (as a conditional label) as

log10 (Etot/10 GeV) 2 [�1, 1]. (4.4)

Working in log-space helped the flow to learn the distribution for small energies better. We

train Flow I with a batch size of 200 for 50 epochs using the ADAM [76] optimizer with an

initial learning rate of 4 · 10�5. We use a learning rate schedule that applies an additional

factor of 0.5 to the learning rate after the epochs [5, 10, 30, 40]. We use the model state of the

flow with the lowest test loss in the following.

4.2 Flow II: learning the shower shapes

504 dim.
Base dist.

...
MADE

BlockEi

Etot MADE

BlockEi

Etot MADE

BlockEi

Etot MADE

BlockEi

Etot

Normalizing Flow Bijector

GEANT4 data

pre
-

pro
ces

sing CaloFlow samples

post-processing

density estimation in training

shower generation

RQS RQSinv. RQSperm. RQSinv.

Figure 2. Schematic view of Flow II. Inversions (inv.) and permutations (perm.) are layer-wise.
Pre-processing (for training and density estimation) and post-processing (for sampling) are explained
in the main text; Ei is short for the set (E0, E1, E2).

The distribution of shower shapes, p2(~I|E0, E1, E2, Etot), is learned by a second NF

(“Flow II”) that acts on the full 288+144+72 dimensional space of all voxels and is conditioned

on Etot, as well as the Ei whose distribution was learned in Flow I. See fig. 2 for a detailed

schematic of Flow II and the second row of table 2 for the specifications of Flow II. In

between the MADE blocks, we alternate layer-wise order inversions and layer-wise order

permutations of the variables. Layer-wise in this context means that variables of calorimeter

layer 0 stay in the first 288 positions, variables of calorimeter layer 1 stay in the positions

289 to 432 and the variables of calorimeter layer 2 stay in the last 72 positions throughout

the permutation/inversion. We found that training with a dropout [77, 78] probability of 5%

enhances the performance.

For the training data, we transform the raw Geant4 calorimeter images in the following

ways.

1. We found it was essential to first apply uniform random noise in the range [0, 1] keV

to all voxels when called for training. The energy distribution of each voxel is sharply

peaked at zero, and without the noise regularization, the NF would expend all of its
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especially the performance increase in E2/Êtot compared to CaloGAN is remarkable.

• The third rows of figs. 10 – 12 show the layer (depth)- weighted total energy, ld =P2
k=0 kEk, on the left; the layer-weighted energy normalized to the total energy, sd =

ld/Êtot, in the center; and the standard deviation of sd, called shower depth width �sd ,

on the right. The quantity sd was called “shower depth” in [8]. In ld we see CaloFlow

better maps out the low-energy region compared to CaloGAN. Notice also how well

CaloFlow learns the sharp feature in �sd .

Figure 10. Distributions that are sensitive to Flow I for e
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.
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CaloFlow: Krause and Shih, 2106.05285
CaloGAN: Paganini, Oliveira, Nachman, 1705.02355 
not quite a fair comparison, but the state-of-the-art 
accuracy is highly non-trivial and very impressive!

GAN, Flow are NNs
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VEGAS-optimised and a NN-optimised phase space sampling (upper panes). In the middle panes,
Monte Carlo errors for both samples are compared. The lower panes show the mean event weights
per bin.
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Figure 5. The physics-based (‘real’) mass distributions compared with distributions from the template
method and the vanilla GAN in bins of jet pT (top row), ÷ (middle row), and N (bottom row). The
uncertainty in the ratio was calculated as the 1-sigma error assuming poisson distributions of events in
each bin. The error shown in the plots is the calculated statistical error. The corresponding plot in the
control region is qualitatively similar, but converges quicker.
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Figure 2: Posterior probabilities for the toy shower, gluon radiation only, {Dqq, Fqq, Cqq}. We
assume SM-like jets and show results for truth-sorting (left) and for kT -sorting (right).

with the majority of jets at the upper boundary. After that, any other parton can act as the
spectator. For this simple setup a jet reconstruction is not necessary, since we only simulate
a single shower, and we neither include hadronization nor detector e↵ects.

The network then analyses the set of outgoing momenta except for the initial spectator
momentum. The list of constituents includes up to F entries, and is zero-padded or cropped.
For our training data we scan the parameter space {Dij , Fij , Cij} with L = 2 and 3 dimen-
sions. For each parameter point we generate M probabilistic showers. To observe the correct
posterior contraction with the size of the test sample we train the network with variable M .
During the training we use batches of size N . The input to the summary network per batch
are N ⇥M ⇥ F 4-vectors. The output of the summary networks is mean-pooled over M and
has dimension S for each batch, plus the value of

p
M , so (S + 1) entries per batch, if the

posterior contraction is trained.

The distribution of the number of jets M over the N batches can be adapted to the
problem. We find that distributing the batches with 1/M is e↵ective to counter the compu-
tational e↵ort at high M . We will explicitly show that we retain enough high-M information
to guarantee the correct scaling of the error.

The cINN then provides a bijective mapping of the L-dimensional parameter space to
the latent space of the same dimension, again per batch. The latent space is forced into a
Gaussian noise form, so we can sample from it to compute the probability distribution for a
given set of Meval showers in model space. Values Meval not included in the training will lead
to unstable results, if

p
M was added to the summary network output. All parameters of the

network architecture and the hyperparameters are given in Tab. 1. For the cINN we combine
five coupling layers. The internal networks of the coupling layers, s1/2 and t1/2, are three
fully connected layers with ELU activation. The summary network is built out of six fully
connected layers with ReLU activation, ELU activation in the last layer, followed by average

8

Bieringer et al., 2012.09873

Coefficients of 
splitting 

functions with 
invertible NNs
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See also the LHC 
Olympics 2020

3

In particular we find that the KL divergence between
the latent space representation of an event and the prior
distribution is a consistently good classifier. However
there is a drawback. Because the optimisation goal of
the VAE is not aligned with the classification goal, the
training typically reaches a point after which the classi-
fication performance of the latent space metrics degrade.
This is highly correlated with a peak in the KL loss term,
and is likely due to an over-regularisation from this term
once the reconstruction loss becomes very small.5 Our
solution is to terminate the training at the epoch where
this KL loss is largest, and then use the latent space rep-
resentation of the events at this epoch for classification.

Classification results We consider 3 values of S/B 2

[10%, 1%, 0.1%] and for each train 20 models. The train-
ing for each model is terminated once the KL loss peaks
and the network at the epoch of largest KL loss is used
for classification. For robustness we ensemble the output
of the encoders in each of the 20 runs per S/B, using the
mean of the per-event KL divergence as the classifier.
The performance of such a classifier at S/B = 0.1% is
shown with a black line on Fig. 2, with the signal and
background distributions of the average per-event KL
shown in the inset plot. The uncertainty on the clas-
sification, indicated by the blue region around the ROC
curve, is estimated using the standard deviation of the
per-event KL divergences around the mean. We do not
show the results for larger S/B, however the only con-
siderable di↵erence is that the width of the blue band
narrows for larger S/B. Note that this classifier is able
to improve significance (S/

p
B) of the signal in the given

dataset by up to a factor of almost three. Since it does
not employ sidebands nor signal region scanning, it is free
from trials factors associated with such techniques.

Figure 2. ROC performance on the LHC Olympics test data
with S/B = 0.1%. See text for details.

5 This is also related to the choice of ↵ discussed previously.

Latent Space Characterisation VAEs are generative
models and from the latent space representation of the
data they learn a likelihood function parameterised by
the decoder. We can use this decoder to test how well
the VAE is encoding data in the latent space. One of
the unique features of the VAE set-up so far is the use
of the Adadelta optimiser, which is crucial for obtaining
good classification performance. However we find that
we actually obtain better reconstructions of the data by
re-training only the decoder using the Adam optimiser.
This makes sense, since the drawback of Adam in train-
ing the VAE is associated with the momentum feature
smoothing over outliers in the training data, in the gen-
eration step this is not an issue. Also, in the re-training
step contrary to the initial VAE training, we can now
train the decoder until approximate convergence (typi-
cally after few tens of epochs).

0 200 400 600 800 1000
mj1[GeV]

S/B = 0.1%

�1 0 1 2

mj1

(�2/�1)j1

(�3/�2)j1

mj2

(�2/�1)j2

(�3/�2)j2
background

signal

Figure 3. Input (outline) and reconstructed (filled) leading jet
mass distribution for both signal and background, with the
inset plot showing the di↵erence between medians of the input
and reconstructed distributions, normalized to the standard
deviations of the input distributions. See text for details.

The re-training of the decoder allows us to introduce an
additional mechanism to enhance the physical character-
isation of the latent space. We can explicitly embed the
invariant mass observable for each event as a direction in
latent space orthogonal to the 1D z direction, as depicted
on the lower scheme on Fig. 1. This is done by an addi-
tional sampling of mjj from a Gaussian distribution cen-
tred at the measured invariant mass of the di-jet event,
m̄ = mjj with a standard deviation of �m = 0.025⇥mjj ,
corresponding to an approximate 5% error on the invari-
ant mass observable. To make the invariant masses more
compatible with the z inputs in the decoder, they are
rescaled using the StandardScaler (along with the ap-
propriate rescaling of the sampling standard deviations).
Note that, since in the re-training step, the encoder is
frozen, the classifier remains agnostic to mjj . In Fig. 3
we plot the reconstruction of the leading jet mass for both
signal and background, while in the inset figure we plot
the di↵erence between the median of the reconstructed

Bortolato et al., 2103.06595

Extract features of 
signal with little input
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