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Computer vision (CNS) Image processing + language

processing arXiv:1411.4555

- |A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.
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Data representation and tools =
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Data is a vector Data is an image or grid Data is a sequence
— multilayer perceptrons — Convolutional Neural Network — Recurrent Neural Network
(MLPs) (CNNs) (RNNs)
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Data representation and tools
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Data is a vector
— multilayer perceptrons

Data is an image or grid
— Convolutional Neural Network

(MLPs) (CNNs)
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e What is Neural Network (NN)?
e How to “train” a neural network?
e How to make a neural network remember?
o

Data is a sequence
— Recurrent Neural Network
(RNNs)
iz Y- Ys
Wi i Wh Wi A

by

N .ee

Wy Wy We

How does neural network simulate particle physics?
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Experimental data collected for different inputs.

L1 n
T2 A Complicated Y2 161/ e data v
: Physics System ; 16 . ‘
T, Un 14 4 .
- 12 -
®
A complicated physics system takes a input x and 1o .
produces an output y, and it is time consuming for 038 e
the system to calculate y. el BT
®
Now the task is to develop a ML model to “simulate” 00 02 04 06 08 10

the system. X
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ML model: f(x, w, b) — W _|_ b‘

18
16
In a matrix form

14
> 127 r, 1

ah W) 1

0.8 1 f(a:;w,b): . ) ><(w b)

e x, 1

00 02 04 06 08 10 Q: how would you estimate the weights (w) and bias (b)?
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e data i? ML model: f(aj, ’LU, b) YR —|— b‘
true i
--- fitted /
In a matrix form
I 1
I 1
fleswb)=1 . | x(w b)

x, 1

0o 02 o °e " Q: how would you estimate the weights (w) and bias (b)?

Linear Least squares.
In addition, it estimates uncertainties associated with the weights and biases! [code]
What is the loss function and how did we minimize the loss function?



https://github.com/xju2/learn_ml_in_a_hard_way/blob/master/Numpy/Fit%20A%20Line.ipynb
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In case of Least Squares method, the loss function is uniquely defined:

L= — flziw)? = [ly — flz; )|

n
1
Logloss = = [yilog®) + (1~ y)log (1 = 9]
i=0

However, in ML, the loss function takes various forms:
e Log-loss for binary classification
e |[-||*n, where n can be 1, 2, or other integers oL _ 0
e and whatnot ow

25" (yi — flzi;w)) - o =0

The minimum value of the loss L occurs when all gradient are zero.

If there are m (trainable) parameters in the model, an optimizer (optimization algorithm) needs to find a
set of parameters that simultaneously satisfy the m equations.



Backpropagation il
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Backpropagation is to use the “chain of rules” to calculate the
gradients of the loss function w.r.t trainable parameters in the NN.

=" (yi — flwi;w)* = |ly — fz;w)]|”
L= Z?:l (yi — Oi)z
0; = f(zs;w)

oL  OL Ho Model f has to be differentiable w.r.t its

9w do oOw parameters.

We rewrite this function as:
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The minimum value of the loss L occurs when all gradients of are zero.

The loss value decreases fastest if its parameters go in the direction of the negative gradient of the

loss function
wn—l—l = Wp — ’YVL y is the step size or learning rate.

/ Starting point

Local Minimum Saddle Point

l Value of weight

Point of convergence, i.e. V:z;':l v:em:‘[
where the cost function is =
at its minimum
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A optimizer defines how to update the trainable parameters so that the gradient of the
loss function w.r.t each trainable parameters is at minimum.

Adam: A method for stochastic optimization, arxiv:1412.6980. It is designed to minimize
averaged gradients (average over gradients of all trainable parameters)



https://arxiv.org/abs/1412.6980

Adam
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Require: «: Stepsize
Require: (31, 35 € [0,1): Exponential decay rates for the moment estimates
Require: f(0): Stochastic objective function with parameters 0

Require: 0y: Initial parameter vector
mg < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 0; not converged do

a: learning rate, 0.001

B,: decay rate of gradient, 0.9
B,: decay rate of squared
gradient, 0.999

t—t+1
g: < Vo fi(0;_1) (Get gradients w.r.t. stochastic objective at timestep t)
myg < P1-me—1+ (1 — B1) - g« (Update biased first moment estimate)

vy < B -1+ (1 — B3) - g2 (Update biased second raw moment estimate)

my < my /(1 — B%) (Compute bias-corrected first moment estimate)

vy < v /(1 — %) (Compute bias-corrected second raw moment estimate)

0; < 0;—1 — « - i/ (v/0¢ + €) (Update parameters)
end while
return 0; (Resulting parameters)
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training cost

MNIST Multilayer Neural Network + dropout

—— AdaGrad
— RMSProp
— SGDNesterov
AdaDelta
Adam

10"

i i i
0 50 100 150 200
iterations over entire dataset

Every effective in decreasing the training loss
when training for solve one type of problem,
e.g, train a NN to separate signal events S
from background events B.

However, if one keeps training the NN to
separate S from another background events
C. The performance of the NN on S over C will
increase, but that on S over B decreases.
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Catastrophic forgetting il

ql315|0]/N al@l * Synaptic metaplasticity in binarized neural
networks

One trains a NN to classify MNIST dataset for
the first 50 epochs;

Then keep training the same NN to classify
A e R FMNIST dataset

o Z

< gt CatastroPhlc ! \
Forgetting | \

60F \

wf L st The NN “forgets” its knowledge about MNIST.

20F

U R R (1 How to remedy this?

Epochs

A

Test Accuracies



https://www.nature.com/articles/s41467-021-22768-y
https://www.nature.com/articles/s41467-021-22768-y
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Catastrophic forgetting il

Test Accuracies (%)

9

3

Svnaptic metaplasticity in binarized neural
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e
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networks

Possible solutions:

e mix the two datasets in the training

o But when a new dataset comes in, one needs to mix
the new dataset with the old one and retrain the
model

e “Protect” important message from being
updated


https://www.nature.com/articles/s41467-021-22768-y
https://www.nature.com/articles/s41467-021-22768-y

Metaplasticity function reese
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The idea is to only update trainable parameters of small values through
the meta function, with m being hyperparameter.

fmeta (m7 ’U)) =1- ta,nh2 (m ) ’U))

L.OF -

— = (.0
w— = (.5
m=1.0 1

— = 1.35

=T -2 0 2 1
Hidden Weight "
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Start from the Adam algorithm to get a “normal” step size.
U= mt/(\/ﬁt —|—€)

Wpt1 = Wy — Y- U

if U-w, >0 (Uprescribesto
decrease |w|, use meta update)

Wp+1 = Wy _7°U'fmeta

else;
Wnpi1 =Wy — Y- U
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m=1.35
__100f g _Task 1 : : '
S 107
s 75
‘O
(4]
5 50 w— Task #1
8 v Task #2
<C w— Task #3
.:;; 2:) w— Task #4 a 5
L : sosw——PRSVNSS e td Hidden Weight
% 10 R0 120 160 200 240
Epochs h
. . . Task 2
Binarized neural network (whose weights and i , . i
o . 107F i
activations are constrained to +/- 1 for low [P

E 10°F

computational and memory cost) trained with 6 tasks § 10k

sequentially and obtained high accuracy for all tasks. 10!

—10 -5 0 10
Hidden Weight

Absolute weight values become larger
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Primary objectives are:

1. to sequentially train a NN to separate signal events from two or
three different background events to see if the metaplasticity
method work in realistic applications,

2. to compare with conventional way of training NNs, in which one
mixes the three backgrounds.
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Let Machine Learning Simulate Hadronic Interactions



Elementary particles
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Standard Model of Elementary Particles and Gravity

three generations of matter

interactions / force carriers

(fermions)
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Hadrons are particles that experience the
strong force.

Two types of Hadrons: mesons and
baryons.

A meson contains one quark and one
antiquark, like pions (mit), kaons (Kt)

A baryon contains three quarks; proton,
neutron...



Hadronic interaction B;:lmi

e Hadrons (T, K#, K. p.n, etc) traverse the detectors (H, C, Ar, Fe, Cu,
W, Pb, etc)

e Therefore we need to model hadronic interactions, hadron -
nucleus — anything, in our detector simulations

e Hadronic models are valid for limited combinations of particle
type, energy, target material

22



Hadronic Interactions from TeV to MeV
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String model

TeV hadron

Intra-nuclear cascade model

~GeV to
~100 MeV

~100 MeV
to “10 MeV  pre_equilibrium (Precompound)

yandn

"

~10 MeV to

thermal Equilibrium (Evaporation) models

23



Hadronic models
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At rest
absorption, u,
m, K[, anti-p

Radioactive
decay

High precision
neutron

Evagoration
Fermi breakup
Multifragment

Photon Ev

Pre-
compound

| Binary cascade

BERT Intranuclear cascade

f

1MeV 10MeV 100MeV 1GeV 10GeV 100 GeV 1TeV

Energy of incident particle

Each model contains many
tunable parameters.

Need to tune those model so
as to match experimental
data

24
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e Toreach current levels of performance, many hours were spent in tuning these hadronic
models

e Hard to speedup these models with multicore CPUs or GPUs
e Advantages of NN:

o Good portability, high parallelism, advanced tools for hyperparameter tuning
e Objective for NN:

o 1) Learn the distribution of the outgoing particle kinematics

o 2) Produce variable number of outputs

o 3) Directly trained to data

25



>

Experiment setup B;:'mi

Incoming hadron: pion, with a fixed energy of 25
GeV and direction of [0.6, 0.6, 0.529].

0.14 —
Material: H, 0.12—
0.10 —
Physics List: FTFP_BERT_ATL —

0.06 —

Generate 100,000 events for the study

0.04 —

0.02 —

About 14% chances pion and proton exchange
tiny amount of energy

10 0 12 5 15 0 175 20.0
num of particles
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Primary objectives are:

e For a given incoming hadron type and kinematics, simulate the

number of outgoing particles distribution

o One hadron type, different hadron kinematics
o Different hadron types, different hadron kinematics

Is it possible to have one ML model that simulates all hadron types
across all kinematic ranges?
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Generative Adversarial Networks (GAN) weee
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[type, 4 vector, noise] Number of outgoing
particles

Generator:

e is a Neural Network

e takes inputs about hadrons and random numbers sampled from
a distribution (aka noise)

e produces the number of outgoing particles ..

0.08

0.06

0.04

0.02 I I

0.00 1 1 1 1 1 -T 1 1
0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

num of particles

Once trained, the generator should produce the
same distribution as the Geant4 package does.

od 1 I I 1 I 1 |
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Discriminator in a GAN ol
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Generator — [type, 4
vector, # of outgoing
particles] 0 for inputs from Generator
Discriminator

G4 — [type, 4 vector, # of
outgoing particles]

Inputs from Geant4 are signal and those from “Generator” are
background

Discriminator:
e Is a Neural Network to perform a binary classification task
e |s to separate signal from background
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[type, 4 vector, noise] J_ Number of outgoing
particles

[type, 4 vector, # of

outgoing particles]

e The generator is trained so that “The score” is high.
e Inthe backpropagation stage, only trainable parameters in the
“generator” is updated.
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Let ML remember the past

e Write a customized optimizer to optimize a deep learning model for
separating signal events from different background events
e Compare with conventional algorithms

Let ML simulate physics

e |earn GANs.
e Construct and optimize a GAN for the simulation hadronic
interactions



