


MY BACKGROUND

e Grad school: Stanford, EXO (neutrinoless DBD)
e Now a Chamberlain postdoc at LBL
e lead LUX/LZ dark matter experiments’ ML groups
e MLisrelatively new in rare event searches!
o Lots of room for exploration
o ..also lots of suspicion of ML “black box”
e My nefarious agenda:
o Make our (physicists’) own ML
techniques/apps
o Emphasize interpretability, reliability,
quantified uncertainties
o Find a common language for
problems/solutions across collaborations

to maximize ML benefits
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OUTLINE

Dark matter and direct detection
The LUX and LZ dark matter experiments

Quick intro to machine learning

> W o=

Improved DM analysis with
physics-oriented machine learning

5. ML resources + tutorial overview
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The multiple components that compose our universe
Current composition (as the fractions evolve with time)

Science Magazine
10.1126/science.aaa0980

DARK MATTER

Dark matter

25%
« Detected through gravitational effects

Dark energy

' . ' Neutri
« Particle properties remain unknown! 69% gased " N

\ Photons l
Black holesl

« Range of candidate particle properties is staggering
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Planck Collab. Astron. Astrophys. 594 (2016) A13
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SOUI’CGI Quanta magazine 10-21 Mass, in electron volts (eV)

ULTRALIGHT
DARK MATTER

Mass range

~1to ~30
solar masses

PRIMORDIAL
BLACK HOLES

Mass range
~10-22 eV to ~1076 eV

Experiments

LIGO/Virgo
Experiments 8
10-12
CASPEr, MAGIS-100
WIMPs
Mass range
~1 GeV to ~1 TeV
Wave'like Experiments
: 10 10% XENONNT
roperties -
p p PandaX-4T,
LZ, CRESST, DAMA,
COSINE-100
10-¢ 1012
3D\ AXIONS SUB-GeaV
0

S50 ) Mass range \ ‘ DARK MATTER
~10-% eV to ~10-3 eV & / Mass range
Experiments ~1 keV to ~1 GeV

ADMX, MADMAX,
QUAX, CAPP-8TB

Experiments
SENSEI, TESSERACT

Single particle-like
properties



DARK MATTER DETECTION STRATEGIES

uonoNpPoId
Indirect detection
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PROBING DM WITH DIRECT DETECTION

Light bosons

Dark Matter

Credit: Tim Tait (blog)
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Neutrinos

[

Super-

symmetry

Weak Scale

Simplified

Other
Particle

Models

Self-
interacting

10_42 T T

& 1078

1074

1,2,3,4]

Extra-
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107
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WIMPzilla
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10 100 1000
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LUX publications:

[2] WIMPs PhysRevlLett.118.021303

[3] Mirror DM PhysRevD.101.012003

[4] Sub-GeV DM PhysRevlett.122.131301

[1] Figure from LZ. PhysRevD.101.052002

[5] Axion-like particles PhysRevlett.118.261301
[6] EFT (2013) PhysRevD.103.122005
[7] EFT (2014-2016) PhysRevD.104.062005
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https://faculty.sites.uci.edu/tait/2018/10/03/a-new-era-in-the-quest-for-dark-matter/

THE FUTURE OF DIRECT DETECTION

Dark Matter Searches: Past, Present & Future
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n @ ’ @I|zdarkmatter

EXPERIMENTS AT SURF "o

e LlUX and LZ are in Lead, SD

* Roughly 1 mile underground
at the Sanford Underground
Research Facility (SURF)

« Site of the Homestake gold
mine, then the Homestake
neutrino experiment
(first to detect solar neutrinos)

PHYS 290E FEBRUARY 9, 2022 10


https://lz.lbl.gov/

@I|zdarkmatter
fIOK 4
LUX AND LZ https://Iz.lbl.gov/

g -
T
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https://lz.lbl.gov/

LUX-ZEPLIN
(LZ)







DATA IN LUX AND LZ

e Raw data: waveform per PMT
e Typical reconstructed info
(for each scatter):

, ' ‘ S2
o S1 (prompt scintillation) total area ‘%’
o S2 (ionization signal) total area '

- : ' | Electrons (4 Outgoing
o X, Y position (from S2 PMT hit pattern) T e Particle Drift time
. : = indicates depth

o Z (from At between S1 and S2)
e Weighted sum of S1,S2 gives E
e S1/S2 ratio implies recoil type Incoming

Particle

[ S1

e NRissignal-like
e ERis background-like
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‘ﬁhis could be you!




WHAT IS MACHINE LEARNING?

\ Applled statistics
/ (with varying levels of PR)

Machine
Learning

PHYS 290E FEBRUARY 9, 2022 16



WHAT IS MACHINE LEARNING
Supervised &= —|__ce ol Unsupervised
" =

Inputs =m Model

Dimensionality Clustering
Reduction

Inputs + == Modelm New labels
labels

New inputs
Classification

Regression Netflix

reccom.

Personality

Expected traits (psych)

house price

Patton
Action =» \World B
Input

George C. Scott, Karl Malden, Michael Bates, Edward Binns
« Teach drones to fly Lowrls o

Franklin J. Schaffner

° M a Ste r G O Classic Movies, Classic Dramas, Classic War Movies

V) MYLIST ) (&) RATE THIS TITLE

PHYS 290E
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WHAT IS ML GOOD FOR?

 When is it (most) useful?
* Information-rich contexts (high dimensionality/many variables)
« Complex or hard-to-model relationships between variables

« Computationally-expensive problems

« Can use for more than just improved classification, i.e. cuts to remove backgrounds
« Speed up computation (e.g. costly sims requirements)
« Save manpower (e.g. avoid hand-tuning non-ML algorithms to find all edge cases)

« Supplement traditional methods/extend simplified physical pictures by teaching you
what information is valuable or not (NOT just a black box)

PHYS 290E FEBRUARY 9, 2022 18




ML PARADIGMS

Shallow learning

* Around for decades

« Common algorithms:
BDTs, NNs, SVMs

* Inputs: a few high-level “engineered” features (e.g.
S1and S2 areas, positions)

» Tunable parameters: Tens to hundreds

« Training: often manageable on a laptop in a few
seconds to a few hrs

PHYS 290E

Deep learning

Use has ballooned since ~2010

Common algorithms: typically some flavor of NN
(e.g. CNN, RNN)

Inputs: many raw features (e.g. 2D image of PMT hit
pattern; 1D time-series waveform)

Tunable parameters: Thousands to millions

Training: <1 hr to many days or longer on dedicated
GPU nodes (e.g. Google research)

Architecture must find clever ways to make training
feasible given # of params
(e.g. regularization, weight-sharing)

Higher complexity -> potentially more sensitive to
quirks in training dataset - if MC, have to trust more

FEBRUARY 9, 2022 19




SUPERVISED LEARNING FLOWCHART

- How to be a good teacher: Define the problem
(labeled examples, objective function)

* Most important: provide maximum

info (choose inputs wisely) ﬂ,
+ Semi-important: choose algorithm ‘Choose algorithms/hyperparameters ‘
intelligently ﬁ
"hyperparameters” ‘ Train! ‘
(architecture) ﬁ

. o« . . |
Training set: often most of the work! ‘ Measure performance, analyze

* Validations and systematics: afterward ﬁ
- very problem-dependent

‘Apply trained algorithm to data ‘

20
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OVERVIEW OF A FEW POPULAR
ALGORITHMS: BDT

Single decision tree example
(is home in SF or NY?): |

..., .
lmlu..-../ T~ h

/ o \
iIJ.J. JJ"m .
year built price per sqft
P / ~
¢ ¢ O

Source: A Visual Introduction to Machine Learning

« BDT (boosted decision tree) is a weighted sum of many decision trees

e Nice visualization of how a BDT cut looks here

PHYS 290E FEBRUARY 9, 2022 21



http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

OVERVIEW OF A FEW POPULAR
ALGORITHMS: NN

* Fully-connected neural network (NN) put Layer Hidden Layer Output Layer
aka multi-layer perceptron (MLP) a; = [(EX wyri +5) o= g(XM, wya; + by)

aka artificial neural network (ANN)

 Actually the most general case:

« Other fancier NN algorithms find ways to
simplify/speed up training by reducing
the effective number of params (weights)

Source: AstroML website

FEBRUARY 9, 2022 22

PHYS 290E



https://www.astroml.org/book_figures/chapter9/fig_neural_network.html

OVERVIEW OF A FEW POPULAR
ALGORITHMS: CNN

« Convolutional neural network = —— — — — — — — — — -\
« Assumes translational symmetry \ i S ’wmsemps ‘ A
« Weights are learned for \ Rx0 N - bg‘téul\
specific feature maps \ --
(rather than each node) \

« Good for processing images
on a regular square grid

 Typically 2D but can also do 1D version

. . '.. \
(e.g.fortimeseries) N\ __ __ __ __ ____ com taon _ TN
« 3D can be tricky to optimize, but possible feature extraction classification
 See also: graph neural network (GNN) - useful Source: NVIDIA

for data with irregular relationships (e.g. images
not on a regular grid); very flexible, can be
harder to train

PHYS 290E
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https://developer.nvidia.com/discover/convolutional-neural-network

OVERVIEW OF A FEW POPULAR
ALGORITHMS: RNN

 Recurrent neural network
* Network structure is repeated (? @ (? ?
multiple times in sequence L> A - A A— A — A
« Each prior network gives context from (mg é') é; é (xg

the previous element
An unrolled recurrent neural network.

« Useful for sequences of unknown length

Source: Christopher Olah'’s blog
« Commonly used for natural language

processing (e.g. understanding text on
the internet; completing words in a
sequence)

PHYS 290E FEBRUARY 9, 2022 24



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

OVERVIEW OF A FEW POPULAR
ALGORITHMS: UNSUPERVISED

. . . . Input AUtoenCOder Output
« Dimensionality reduction .

* t-Distributed Stochastic Neighbor Embedding (t-SNE)
» Uniform manifold approximation and projection (UMAP)
» Autoencoder (technically supervised)

- 4.6

« Autoencoder (again)

~10 4 2.2

 Clustering: GMM
® Gaussian mixture model 4o Negative log-likelihood predicted by a GMM
(GMM) [T 10000 Source: Towards Data Science
: : . 307 - 464.2
* Density-based spatial clustering
. . . . 1 215.4
of applications with noise 20 000
(DBSCAN)
—21.5
« Anomaly finding: o] 100

- 1.0

e |solation forest

_20 T T T T . .
—20 ~10 0 10 20 30 Source: scikit-learn
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https://towardsdatascience.com/data-anonymization-with-autoencoders-75d076bcbea6
https://scikit-learn.org/stable/modules/mixture.html

HEURISTICS FOR NN TRAINING

e Generally, training is sped up by having more hidden layers rather than more nodes/layer
e Regularization is often necessary for good deep learning:
o Adjust the objective function to penalize large weights
o Add dropout layers
e RelU orsimilaris a good default activation function
e Adam orsimilaris a good default optimizer (smart gradient descent)
e Don't sweat details of architecture too much
o It it really matters, do hyperparameter optimization if possible
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HOW CAN MACHINE
LEARNING HELP US FIND

PHYS 290E FEBRUARY 9, 2022 27



DARK MATTER + ML:
A UNIQUE CHALLENGE

« DM analysis is esp. sensitive to mismodeling: at most a few candidate signals
Collider physics, neutrino detection have pioneered use of ML in physics
Value in collaboration across experiments (c.f. DANCE-ML 2020* workshop)
ML growing in DM + Neutrinoless BB decay’
Examples of improvements from ML for DM:

 Extending physics reach
* Fast and flexible analysis
* Better understanding of data

*https://indico.physics.Ibl.gov/indico/event/DANCE_ML_2020
TMachine Learning in the Search for New Fundamental Physics,

G. Karagiorgi, G. Kasieczka, S.K., B. Nachman, D. Shih,

Invited review at Nature Reviews Physics [arXiv 2112.03769]




EXTENDING PHYSICS REACH O A

CHARGE-ONLY ANALYSIS | O

« Goal: extend range of DM models we can explore through lower energy threshold
« Challenge: low-energy events only have the 2" (larger) flash of light (“S2") - depth unknown

* ...but backgrounds from wires at the top and bottom are significant! Can’t remove w/o depth

Time
A

' S2

Backgrounds at edges dominate

Events

Joint work w/

K. C. Oliver-Mallory (Plot from Drif time

. indicates depth
events with S1) [0 P

. S1

Phys. Rev. D 104 012011
[arXiv 2011.09602]
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EXTENDING PHYSICS REACH O A

DATA-DRIVEN TRAINING | O

« Can we use the shape of S2 pulses to tag

events from the grid wires?

« Cannot trust simulations of S2 pulse shapes J
near grid wires! Too tricky to accurately model 77—

||||||||||||||||||||||||

all processes (strongly-varying field, electron HS

1S
diffusion, etc.) (d) (e)
e Solution: use real data from events with S1 *
5
(f)

and S2 as a training set; S1 gives location tag,

but ML model uses only S2 shape info sosen

------------------------

02— 2 50—+ +—
1S 1S
S2s from the center (a-c, black) are symmetric;
S2s from the grids (d-e, blue) are stretched out
due to uneven electric field close to wires.
PHYS 290E
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EXTENDING PHYSICS REACH O A

RESULTS 1)

* Train a boosted decision tree to distinguish grid events from bulk
« BDT cut reduces the observed event rate by ~4x while retaining ~60% signal efficiency

* No DM observed = set a limit; sensitivity of search improved by 2-7x over a simple
Poisson counting analysis, depending on true ratio of backgrounds (unknown)

- 10
» _—'| - — = Analysis Threshold = 3.5 Electrons B
10 m | Before Electrode Background Cut B
I | - After Electrode Background Cut i
| —f— After All Cuts 5 B
5 | — 3.5 GeV DM (90% C.L.) g -
*8' — 6 GeV DM (90% C.L.) (T i —
5 10724 — 16 GeV DM (90% C.L.) S A4
= < — Poisson (Gate)
g 0 - = Poisson (Cathode)
2 A o
2 | . S
5 11k + | ML bkg reduction = L 4+
> 10_3 | I A 4 —_
I I L 1 E
| 1
| —+ —+-
I L ]
104 | I| 1 | | | | | ‘ | | | | \I | | | | | \ \ \ \ | 1 | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L 1 | | | | |
0 10 20 30 40 50 0 10 20 30 40 S0
Detected Electrons Detected Electrons
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FAST AND FLEXIBLE ANALYSIS O A\

IMPROVED FITTING W/ ML I

* Traditional approach: . _New!
arXiv 2201.05734,
« Create models of backgrounds, DM signal (PDFs) Submitted to Phys. Rev. D
 Use PDFs to create a likelihood function, fit model to data Joint work w/
N. Carrara

Generating PDFs, calculating limits intractable >3-4D

5.00

Must assume independence of variables, 4751
e.g.{r, z, p} ®{S1, 52}

)

=
o
i

[ ]
-
¥
3]

Instead, use NN to compress all info into 1D:

* Improved speed

log(S2 [photons detected]

 Important correlations preserved @® Backgrounds

® i
 Allows additional inputs 3.25\ Signal

0 20 40 60 80 100 120 140
S1 [photons detected]
PHYS 290E
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FAST AND FLEXIBLE ANALYSIS O A\

TRAINING PERFORMANCE U

* Ensure information is preserved using mutual information (MI) on full space vs 1D output

« Confirm that Monte Carlo (MC) sims faithfully represent real data using calibration sources

F=‘~ —-I-- inputs 12 - ™ [——1 DD data
\\ -+- NN output Bl [ DD mc T
0.95 . [ CH3T data |,
\\ 104 1 CH3T mc
A Y
0.90- hN No gap = > 4 Tritium calibration
. .. © .
) Y optimal training = (bkg-like)
= 0.851 % s
AN g ° : :
c Neutron calibration
0.801 RN o . .
N O 4 (signal-like)
\\n:\
0.751 RO 2]
XONDP IR DR DRSO LSS 000 02 0.4 06 08 1.0
> NN output

WIMP Mass (GeV)
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FAST AND FLEXIBLE ANALYSIS O A\

LIMIT RESULTS | O

« Compare to published result using . e e e
same inputs {I’, Z, S1 , 82} 107394 II = NN analysis, observed limit
11 == Original analysis, median expectation
. o 10-40 1 —— XENON1T 2018
Reproduces limit almost exactly < | o dax4t 2001
. . —41 | +1o expectation
e Limit generation runs much faster = 107
= |
& |
: : : 107424
« Dedicated test indicates 5 |
@ ]
35x improvement in speed S 10%;
— ]
* Important for exploring a L 1074
broader range of models = 10-45]
* e.g. EFT searchesw/ 15 10-46
operators x 24 different masses |
. N1 I 12 I . 1n3
= 360 hypothesis tests 10 10 10

Mass (GeV)
« Enables more complex analysis
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FAST AND FLEXIBLE ANALYSIS

AN ﬂ\

FLEXIBILITY IN ANALYSIS | O

* Relevant correlations are captured
and utilized:

* Equal limits established
when using{r, z, ST, S22}
 Scales well with more inputs:
* S1 pulse shape variable easily added
« No significant penalty in analysis (CPU)

Limit ratio

1.8 — Raw [/ Corrected observed limit
== Raw / Corrected expectation
+*1o/ median

1.6

0.6
or coding (human) time | , |
10! 102 103
Mass (GeV)
Analysis Workspace creation (hr) MC generation (hr) Hypothesis testing (hr) NN training (hr) Total (hr)
Original EFT search 2.7 39.0 8.8 - 50.5
NN case 2.4e-3 1.0e-2 0.81 0.64 A6
NN speedup 1100 x 3900 x 11x - ( 35x )
. ——

PHYS 290E
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BETTER UNDERSTANDING OF DATA

ANOMALY FINDING IN LZ

* Early stages of LZ focused on understanding detector

° Before sims are Calibrated 1O match data UMAP (n_neighbors = 10 & min_dist = 0.001) space DBSCAN clustering
- unsupervised learning ideal . |
150 Joint work w/
» Use dimensionality reduction (UMAP) M. Arthurs,
+ clustering (DBSCAN): . C. Amarasinghe
» Quickly ID problematic populations g M
 Assist in understanding physical 5

5.0

origins and removal techniques

25

0.0

-5 0 5
umap-one

PHYS 290E
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BETTER UNDERSTANDING OF DATA

ANOMALIES: RECONSTRUCTION

tSNE (perp =100 & niter =2000) space DBSCAN clustering Single Scatters tSNE labeling

* Simulated data ez - SN "'"",'-’:';'.";-!.'a?,:,’,
* Fix long rise time
in reconstruction f;j ‘l %
L ' oy . 9
7 7 g
+ —_
/;/ 2
e g '
//
_ 7~ tSNE-one ST
‘/ . ¢ R iC
o Afterfix
ge o)
- -
= g
2 ) :
S S
© ©
time time
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BETTER UNDERSTANDING OF DATA

72
-
O
LU
Ll
Ll
LU
o
O
-
O
LU
-
LU
o

ANOMALIES

0.001) space DBSCAN clustering

10 &min _dist

4
S
9
-
D
o
<,
ln\_
-]

PRELIMINARY

17.5

PRELIMINARY

0.0

5

0

-5

umap-one

* Real commissioning data

(zS)oLBo
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BETTER UNDERSTANDING OF DATA

S1 tOp'bOttom 15.0

0201 asymmetry
g “ 10.0
3 o1s S2 top-bottom - .
- asymmetry :
—'E, 5.0
g 0.10 - 25
E

0.05 1 . IeSS ImpO rtant - ’ umap—ones

features - ---- > « Real commissioning data

s2tba
sltba

* Ratio of top-to-bottom PMT arrays is

s2PulseArea
dT ns
slpf2to5us
totSEArea

slpf30to100ns

w
=]
(=1
-
y-1
e
=4
§
2
-
w
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slpLength9505
s1pf200to500ns
slpLength2510
slpf100to200ns
s2pLength1005
s2pLength5025
s2pLength7550
s2pLength2510
slpf300nstolus

s2pf50to100ns
s2pLength9075
s2pLength9590
slpLength9590
s2pLength9505

flagged as important for this cluster
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BETTER UNDERSTANDING OF DATA

ANOMALIES: DETECTOR EFFECTS

S1TBA

-5 0 5
. umap-one,

* Real commissioning data

« Cutin S1TBA vs S2 TBA efficiently removes

« Helped identify physical origin:
above-anode gas events
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THE FUTURE OF ML FOR PARTICLE PHYSICS

e Physics-inspired architectures:
o Enforcing known symmetries in the network, e.g. energy

conservation (energy flow networks)
o Interpretability: reverse-engineering deep learning insights
e Build your own network (LEGO for ML):
o Combine layers (e.g. combine CNN w/ high-level inputs)

o Add multiple learners (e.g. pivoting)
o Custom objective functions (e.g. to account for systematics)

e Techniques for moving away from simulation dependence:
o  Pivoting (sims only; reduce reliance on uncertain quantities)

o Domain adversarial training (part sims, part data)
o Training using impure or unlabeled data from calibrations

(fully data-driven)



https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2010.11998
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/abs/1907.11674
https://arxiv.org/pdf/1611.01046.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11020
http://arxiv.org/abs/1801.10158
http://link.springer.com/10.1007/JHEP10(2017)174
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.014038

ML RESOURCES

Hitchhiker's Guide to ML for physicists (list of annotated links: tutorials, blogs, courses)

Status of ML research in particle physics

» Living review of particle physics (lots of links to papers, attempts to stay updated)

» Recent review of ML in particle physics: Machine Learning in the Search for New Fundamental

Physics [arXiv link] - see section on rare event searches

DANCE-ML 2020 workshop on ML in DM and neutrino physics
* Includes tutorials and presentations

« My general-purpose tutorial (Jupyter notebook, covers most major steps of a ML analysis)

* Indico page here

Local group for ML work in particle physics at LBL (must be affiliated w/ LBL)

 Slack link, mailing list, webpage
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https://docs.google.com/document/d/19vKwVMaQJJonohDpj3M-2K-HUh1fOn1BWhd3fRZ-GvA/edit#heading=h.63j4klk308f3
https://github.com/iml-wg/HEPML-LivingReview/blob/master/README.md
https://arxiv.org/abs/2112.03769
https://github.com/swkravitz/dance-ml-2020-tutorial
https://indico.physics.lbl.gov/indico/event/DANCE_ML_2020
https://join.slack.com/t/lblhepml/signup
mailto:hep-ml@lbl.gov
https://www.physics.lbl.gov/machinelearning/

