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M Y  B A C K G R O U N D

● Grad school: Stanford, EXO (neutrinoless DBD)

● Now a Chamberlain postdoc at LBL

● Lead LUX/LZ dark matter experiments’ ML groups

● ML is relatively new in rare event searches!

○ Lots of room for exploration

○ ...also lots of suspicion of ML “black box”

● My nefarious agenda:

○ Make our (physicists’) own ML 

techniques/apps

○ Emphasize interpretability, reliability, 

quantified uncertainties

○ Find a common language for 

problems/solutions across collaborations 

to maximize ML benefits 

Actual LUX detector
(museum at SURF 
in Lead, South 
Dakota)

LUX 
(data-taking 2013-2016)

(Scott 
for scale)

F E B R U A R Y  9 ,  2 0 2 2 2
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O U T L I N E

1. Dark matter and direct detection

2. The LUX and LZ dark matter experiments

3. Quick intro to machine learning

4. Improved DM analysis with 

physics-oriented machine learning

5. ML resources + tutorial overview

F E B R U A R Y  9 ,  2 0 2 2 3
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D A R K  M A T T E R

• Detected through gravitational effects

• Particle properties remain unknown!

• Range of candidate particle properties is staggering

F E B R U A R Y  9 ,  2 0 2 2 4

Planck Collab. Astron. Astrophys. 594 (2016) A13 

With Dark Matter Without Dark Matter

Science Magazine
10.1126/science.aaa0980
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Source: Quanta magazine

Wave-like
properties

Single particle-like
properties
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D A R K  M A T T E R  D E T E C T I O N  S T R A T E G I E S

SM SM

DMDM

Direct detection
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LUX

LZ
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P R O B I N G  D M  W I T H  D I R E C T  D E T E C T I O N

Credit: Tim Tait (blog)

[6, 7]

[1, 2, 3, 4]

[5]

LUX publications:
[2] WIMPs PhysRevLett.118.021303
[3] Mirror DM PhysRevD.101.012003
[4] Sub-GeV DM PhysRevLett.122.131301 

[5] Axion-like particles PhysRevLett.118.261301
[6] EFT (2013) PhysRevD.103.122005
[7] EFT (2014-2016) PhysRevD.104.062005

[1] Figure from LZ. PhysRevD.101.052002

Disfavored

https://faculty.sites.uci.edu/tait/2018/10/03/a-new-era-in-the-quest-for-dark-matter/
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T H E  F U T U R E  O F  D I R E C T  D E T E C T I O N

• Ultimate goal: detect DM or 

reach neutrino floor/fog 

• Xe detectors leading the 

way for WIMP dark matter

• Simply increasing detector 

size likely insufficient!

• Must continue innovating 

from both detector design 

and data analysis angles

F E B R U A R Y  9 ,  2 0 2 2 8

Gaitskell et. al. (200828T2113) 
Snowmass LOI

Solar neutrino limit
(approximate)

LZ (projected)
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T H E  L U X  A N D  L Z  D A R K             
M AT T E R  E X P E R I M E N T S
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E X P E R I M E N T S  A T  S U R F

• LUX and LZ are in Lead, SD

• Roughly 1 mile underground 

at the Sanford Underground 

Research Facility (SURF)

• Site of the Homestake gold 

mine, then the Homestake 

neutrino experiment 

(first to detect solar neutrinos)

F E B R U A R Y  9 ,  2 0 2 2 10

@lzdarkmatter

https://lz.lbl.gov/

https://lz.lbl.gov/
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L U X  A N D  L Z

F E B R U A R Y  9 ,  2 0 2 2 11

@lzdarkmatter

LZ
(first results coming this year)

LUX 
(data-taking 2013-2016)

https://lz.lbl.gov/

https://lz.lbl.gov/
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D A T A  I N  L U X  A N D  L Z

● Raw data: waveform per PMT

● Typical reconstructed info 

(for each scatter):

○ S1 (prompt scintillation) total area

○ S2 (ionization signal) total area

○ X, Y position (from S2 PMT hit pattern)

○ Z (from Δt between S1 and S2)

● Weighted sum of S1, S2 gives E

● S1/S2 ratio implies recoil type

● NR is signal-like

● ER is background-like

F E B R U A R Y  9 ,  2 0 2 2 14

S1

S2
E

field
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T R A I N I N G  
Y O U R  M A C H I N E

F E B R U A R Y  9 ,  2 0 2 2 15

This could be you!
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W H A T  I S  M A C H I N E  L E A R N I N G ?

Function

Fitting

Pattern

Recognition

Machine

Learning

Artificial

Intelligence

Applied statistics
(with varying levels of PR)

16F E B R U A R Y  9 ,  2 0 2 2
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W H A T  I S  M A C H I N E  L E A R N I N G ?

Reinforcement

• Teach drones to fly
• Master Go

Action

Model

World
Input

Unsupervised

Dimensionality
Reduction

Clustering

Inputs Model

Netflix 
reccom.Personality

traits (psych)

Supervised

Classification Regression

Inputs + 
labels

Model New labels

New inputs

Cat or not?
Expected

house price

17F E B R U A R Y  9 ,  2 0 2 2
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W H A T  I S  M L  G O O D  F O R ?

• When is it (most) useful?

• Information-rich contexts (high dimensionality/many variables)

• Complex or hard-to-model relationships between variables

• Computationally-expensive problems

• Can use for more than just improved classification, i.e. cuts to remove backgrounds

• Speed up computation (e.g. costly sims requirements)

• Save manpower (e.g. avoid hand-tuning non-ML algorithms to find all edge cases)

• Supplement traditional methods/extend simplified physical pictures by teaching you 

what information is valuable or not (NOT just a black box) 

F E B R U A R Y  9 ,  2 0 2 2 18
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M L  P A R A D I G M S

F E B R U A R Y  9 ,  2 0 2 2 19

Shallow learning

• Around for decades

• Common algorithms: 
BDTs, NNs, SVMs

• Inputs: a few high-level “engineered” features (e.g. 
S1 and S2 areas, positions)

• Tunable parameters: Tens to hundreds

• Training: often manageable on a laptop in a few 
seconds to a few hrs

Deep learning

• Use has ballooned since ~2010

• Common algorithms: typically some flavor of NN 
(e.g. CNN, RNN)

• Inputs: many raw features (e.g. 2D image of PMT hit 
pattern; 1D time-series waveform)

• Tunable parameters: Thousands to millions

• Training: <1 hr to many days or longer on dedicated 
GPU nodes (e.g. Google research)

• Architecture must find clever ways to make training 
feasible given # of params 
(e.g. regularization, weight-sharing)

• Higher complexity -> potentially more sensitive to 
quirks in training dataset – if MC, have to trust more
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S U P E R V I S E D  L E A R N I N G  F L O W C H A R T

• How to be a good teacher:

• Most important: provide maximum 

info (choose inputs wisely) 

• Semi-important: choose algorithm 

intelligently 

• Less important: “hyperparameters” 

(architecture) 

• Training set: often most of the work! 

• Validations and systematics: afterward 

– very problem-dependent

F E B R U A R Y  9 ,  2 0 2 2 20

Define the problem 
(labeled examples, objective function)

Choose algorithms/hyperparameters

Train!

Measure performance, analyze

Apply trained algorithm to data
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O V E R V I E W  O F  A  F E W  P O P U L A R  
A L G O R I T H M S :  B D T

F E B R U A R Y  9 ,  2 0 2 2 21

Source: A Visual Introduction to Machine Learning

Single decision tree example
(is home in SF or NY?):

• BDT (boosted decision tree) is a weighted sum of many decision trees

• Nice visualization of how a BDT cut looks here

http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
http://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
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O V E R V I E W  O F  A  F E W  P O P U L A R  
A L G O R I T H M S :  N N

• Fully-connected neural network (NN)

aka multi-layer perceptron (MLP)

aka artificial neural network (ANN)

• Actually the most general case:

• Other fancier NN algorithms find ways to 

simplify/speed up training by reducing 

the effective number of params (weights)

F E B R U A R Y  9 ,  2 0 2 2 22

Source: AstroML website

https://www.astroml.org/book_figures/chapter9/fig_neural_network.html
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Source: NVIDIA

O V E R V I E W  O F  A  F E W  P O P U L A R  
A L G O R I T H M S :  C N N

• Convolutional neural network

• Assumes translational symmetry

• Weights are learned for 
specific feature maps
(rather than each node)

• Good for processing images
on a regular square grid

• Typically 2D but can also do 1D version 
(e.g. for time series)

• 3D can be tricky to optimize, but possible

• See also: graph neural network (GNN) – useful 
for data with irregular relationships (e.g. images 
not on a regular grid); very flexible, can be 
harder to train

F E B R U A R Y  9 ,  2 0 2 2 23

https://developer.nvidia.com/discover/convolutional-neural-network
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Source: Christopher Olah’s blog

O V E R V I E W  O F  A  F E W  P O P U L A R  
A L G O R I T H M S :  R N N

• Recurrent neural network

• Network structure is repeated

multiple times in sequence

• Each prior network gives context from

the previous element

• Useful for sequences of unknown length

• Commonly used for natural language 

processing (e.g. understanding text on 

the internet; completing words in a 

sequence)

F E B R U A R Y  9 ,  2 0 2 2 24

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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O V E R V I E W  O F  A  F E W  P O P U L A R  
A L G O R I T H M S :  U N S U P E R V I S E D

F E B R U A R Y  9 ,  2 0 2 2 25

Source: Towards Data Science

Autoencoder

GMM

Source: scikit-learn

• Dimensionality reduction

• t-Distributed Stochastic Neighbor Embedding (t-SNE) 

• Uniform manifold approximation and projection (UMAP)

• Autoencoder (technically supervised)

• Clustering:

• Gaussian mixture model 
(GMM)

• Density-based spatial clustering
of applications with noise
(DBSCAN)

• Anomaly finding:

• Autoencoder (again)

• Isolation forest

https://towardsdatascience.com/data-anonymization-with-autoencoders-75d076bcbea6
https://scikit-learn.org/stable/modules/mixture.html
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H E U R I S T I C S  F O R  N N T R A I N I N G

● Generally, training is sped up by having more hidden layers rather than more nodes/layer

● Regularization is often necessary for good deep learning:

○ Adjust the objective function to penalize large weights

○ Add dropout layers

● ReLU or similar is a good default activation function

● Adam or similar is a good default optimizer (smart gradient descent)

● Don’t sweat details of architecture too much 

○ If it really matters, do hyperparameter optimization if possible

F E B R U A R Y  9 ,  2 0 2 2 26
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H O W  C A N  M A C H I N E  
L E A R N I N G  H E L P  U S  F I N D  
D A R K  M AT T E R ?

F E B R U A R Y  9 ,  2 0 2 2 27
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D A R K  M A T T E R  +  M L :  
A  U N I Q U E  C H A L L E N G E

• DM analysis is esp. sensitive to mismodeling: at most a few candidate signals

• Collider physics, neutrino detection have pioneered use of ML in physics

• Value in collaboration across experiments (c.f. DANCE-ML 2020* workshop)

• ML growing in DM + Neutrinoless ββ decay†

• Examples of improvements from ML for DM:

• Extending physics reach

• Fast and flexible analysis

• Better understanding of data 

F E B R U A R Y  9 ,  2 0 2 2 28

*https://indico.physics.lbl.gov/indico/event/DANCE_ML_2020
† Machine Learning in the Search for New Fundamental Physics, 

G. Karagiorgi, G. Kasieczka, S.K., B. Nachman, D. Shih, 
Invited review at Nature Reviews Physics [arXiv 2112.03769]
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C H A R G E - O N LY  A N A LY S I S

• Goal: extend range of DM models we can explore through lower energy threshold

• Challenge: low-energy events only have the 2nd (larger) flash of light (“S2”) – depth unknown

• …but backgrounds from wires at the top and bottom are significant! Can’t remove w/o depth

F E B R U A R Y  9 ,  2 0 2 2 29

E X T E N D I N G  P H Y S I C S  R E A C H

Backgrounds at edges dominate

DepthPhys. Rev. D 104 012011 
[arXiv 2011.09602]

(Plot from 
events with S1)

Joint work w/
K. C. Oliver-Mallory
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D A T A - D R I V E N  T R A I N I N G

• Can we use the shape of S2 pulses to tag 

events from the grid wires?

• Cannot trust simulations of S2 pulse shapes 

near grid wires! Too tricky to accurately model 

all processes (strongly-varying field, electron 

diffusion, etc.)

• Solution: use real data from events with S1 

and S2 as a training set; S1 gives location tag, 

but ML model uses only S2 shape info

F E B R U A R Y  9 ,  2 0 2 2 30

S2s from the center (a-c, black) are symmetric; 
S2s from the grids (d-e, blue) are stretched out 
due to uneven electric field close to wires.

E X T E N D I N G  P H Y S I C S  R E A C H
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R E S U LT S
• Train a boosted decision tree to distinguish grid events from bulk

• BDT cut reduces the observed event rate by ∼4x while retaining ~60% signal efficiency

• No DM observed → set a limit; sensitivity of search improved by 2-7x over a simple 

Poisson counting analysis, depending on true ratio of backgrounds (unknown)

F E B R U A R Y  9 ,  2 0 2 2 31

E X T E N D I N G  P H Y S I C S  R E A C H

ML bkg reduction



P H Y S  2 9 0 E

I M P R O V E D  F I T T I N G  W /  M L

• Traditional approach:

• Create models of backgrounds, DM signal (PDFs)

• Use PDFs to create a likelihood function, fit model to data

• Generating PDFs, calculating limits intractable >3-4D

• Must assume independence of variables, 

e.g. {r, z, 𝜙}  {S1, S2}

• Instead, use NN to compress all info into 1D:

• Improved speed

• Important correlations preserved

• Allows additional inputs

F E B R U A R Y  9 ,  2 0 2 2 32

F A S T  A N D  F L E X I B L E  A N A L Y S I S

Backgrounds
Signal

Joint work w/
N. Carrara

New!
arXiv 2201.05734, 

Submitted to Phys. Rev. D 



P H Y S  2 9 0 E

T R A I N I N G  P E R F O R M A N C E

F E B R U A R Y  9 ,  2 0 2 2 33

F A S T  A N D  F L E X I B L E  A N A L Y S I S

Tritium calibration
(bkg-like)

Neutron calibration
(signal-like)

No gap = 
optimal training

• Ensure information is preserved using mutual information (MI) on full space vs 1D output

• Confirm that Monte Carlo (MC) sims faithfully represent real data using calibration sources
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L I M I T  R E S U LT S

• Compare to published result using 

same inputs {r, z, S1, S2}

• Reproduces limit almost exactly

• Limit generation runs much faster 

• Dedicated test indicates 

35x improvement in speed

• Important for exploring a 

broader range of models

• e.g. EFT searches w/ 15 

operators x 24 different masses 

= 360 hypothesis tests

• Enables more complex analysis

F E B R U A R Y  9 ,  2 0 2 2 34

F A S T  A N D  F L E X I B L E  A N A L Y S I S
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F L E X I B I L I T Y  I N  A N A LY S I S

F E B R U A R Y  9 ,  2 0 2 2 35

F A S T  A N D  F L E X I B L E  A N A L Y S I S

• Relevant correlations are captured 

and utilized:

• Equal limits established 

when using {r, z, S1raw, S2raw} 

• Scales well with more inputs:

• S1 pulse shape variable easily added

• No significant penalty in analysis (CPU) 

or coding (human) time
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A N O M A LY  F I N D I N G  I N  L Z

• Early stages of LZ focused on understanding detector

• Before sims are calibrated to match data 

→ unsupervised learning ideal

• Use dimensionality reduction (UMAP) 

+ clustering (DBSCAN):

• Quickly ID problematic populations

• Assist in understanding physical 

origins and removal techniques

F E B R U A R Y  9 ,  2 0 2 2 36

B E T T E R  U N D E R S T A N D I N G  O F  D A T A

Joint work w/
M. Arthurs,
C. Amarasinghe

PRELIMINARY
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A N O M A L I E S :  R E C O N S T R U C T I O N

F E B R U A R Y  9 ,  2 0 2 2 37

• Simulated data

• Fix long rise time 

in reconstruction

After fix

B E T T E R  U N D E R S T A N D I N G  O F  D A T A
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A N O M A L I E S :  D E T E C T O R  E F F E C T S

F E B R U A R Y  9 ,  2 0 2 2 38

• Real commissioning data

• Abnormally-small S2s

• Normal-looking pulses

B E T T E R  U N D E R S T A N D I N G  O F  D A T A

PRELIMINARY

PRELIMINARY
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A N O M A L I E S :  D E T E C T O R  E F F E C T S

F E B R U A R Y  9 ,  2 0 2 2 39

• Real commissioning data

• Ratio of top-to-bottom PMT arrays is 

flagged as important for this cluster

S1 top-bottom
asymmetry

S2 top-bottom
asymmetry

… less important
features

B E T T E R  U N D E R S T A N D I N G  O F  D A T A

PRELIMINARYPRELIMINARY
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S2 TBA

S
1

 T
B

A
A N O M A L I E S :  D E T E C T O R  E F F E C T S

F E B R U A R Y  9 ,  2 0 2 2 40

• Real commissioning data

• Cut in S1 TBA vs S2 TBA efficiently removes 

• Helped identify physical origin: 

above-anode gas events

B E T T E R  U N D E R S T A N D I N G  O F  D A T A

PRELIMINARY

PRELIMINARY
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T H E  F U T U R E  O F  M L  F O R  P A R T I C L E  P H Y S I C S

● Physics-inspired architectures:

○ Enforcing known symmetries in the network, e.g. energy 

conservation (energy flow networks)

○ Interpretability: reverse-engineering deep learning insights

● Build your own network (LEGO for ML):

○ Combine layers (e.g. combine CNN w/ high-level inputs)

○ Add multiple learners (e.g. pivoting)

○ Custom objective functions (e.g. to account for systematics)

● Techniques for moving away from simulation dependence:

○ Pivoting (sims only; reduce reliance on uncertain quantities)

○ Domain adversarial training (part sims, part data) 

○ Training using impure or unlabeled data from calibrations 

(fully data-driven)

F E B R U A R Y  9 ,  2 0 2 2 41

https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/2010.11998
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/abs/1907.11674
https://arxiv.org/pdf/1611.01046.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/13/11/P11020
http://arxiv.org/abs/1801.10158
http://link.springer.com/10.1007/JHEP10(2017)174
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.99.014038
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M L  R E S O U R C E S

• Hitchhiker’s Guide to ML for physicists (list of annotated links: tutorials, blogs, courses)

• Status of ML research in particle physics

• Living review of particle physics (lots of links to papers, attempts to stay updated) 

• Recent review of ML in particle physics: Machine Learning in the Search for New Fundamental 

Physics [arXiv link] – see section on rare event searches

• DANCE-ML 2020 workshop on ML in DM and neutrino physics

• Includes tutorials and presentations

• My general-purpose tutorial (Jupyter notebook, covers most major steps of a ML analysis)

• Indico page here

• Local group for ML work in particle physics at LBL (must be affiliated w/ LBL)

• Slack link, mailing list, webpage
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https://docs.google.com/document/d/19vKwVMaQJJonohDpj3M-2K-HUh1fOn1BWhd3fRZ-GvA/edit#heading=h.63j4klk308f3
https://github.com/iml-wg/HEPML-LivingReview/blob/master/README.md
https://arxiv.org/abs/2112.03769
https://github.com/swkravitz/dance-ml-2020-tutorial
https://indico.physics.lbl.gov/indico/event/DANCE_ML_2020
https://join.slack.com/t/lblhepml/signup
mailto:hep-ml@lbl.gov
https://www.physics.lbl.gov/machinelearning/

