
Probability and Statistics

A refresher
Physics 290E, Spring 2022

"There are three kinds of lies: lies, damned lies, and statistics.”  
  – Mark Twain, allegedly after Benjamin Disraeli
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� Invariant mass distribution combining 2012 (35271 events) and 2011 (23788) 

9th July 2012 20 Richard Hawkings 

� Simple unweighted sum of events 
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cuts, before categorization  
� Fit to signal model at 126.5 

GeV+4th order Bernstein b/g model 
� Full results obtained by splitting 

data into 10 categories and fitting 
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• Intro
• Definitions: results of the experiments
✓ Random variables, probability, PDFs

• Interpreting results 
✓ Point estimators
✓ Max likelihood, least squares fits

• Hypothesis testing, confidence limits
• Systematics (time permitting)

A Statistics Refresher
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Fell free to yell if you know this and it is boring. Yell louder if I should slow down
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Describing the Data
• Data: results of the measurements
! In physics, we mostly deal with quantitative data, i.e. set of numbers

• Interpretation of the data:
! Range of values of a physical observable
" GN=(6.67430±0.00015)*10-11 m3*kg-1*s-2 

! Consistency with an expectation
"Did we discover a new effect ?

! Relationship between observables 
"What is the underlying set of parameters that control the process ? 
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Describing the Data

• Data: results of the measurements

• Physics: typically quantitative data 


• i.e. numbers

• Other fields deal with qualitative data


• Numbers are easier to handle 
mathematically; statistics will deal with 
quantitative measurements

• Discrete data, e.g. integers (counts)

• Continuous data, e.g. energies, 

momenta 

• Measure with some precision, set 

by the measuring apparatus or 
other external conditions

4

Why are there error 
bars on the data?
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Example #1: Discovering Particles
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Example #1: Discovering Particles
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Uncertainty and Error
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Uncertainty and Error
• In physics, the words “uncertainty” and “error” are used 

interchangeably to describe how far a particular measurement is 
expected to deviate from the true value — typically
" Use symbol 𝜎 for the “error”

" Formal definition is probabilistic: 68% chance to find the experimental result within 
±1𝜎 of the true value (frequentist interpretation)

" Though often interpreted as a range of possible true values (Bayesian interpretation)
" We’ll come back to the differences between Bayesian and Frequentist statistical 

approaches later

6

01/26/2022



YGK, Phys290E: Statistics

Uncertainty and Error
• How do we define what is typical ? 
! Underlying assumption: our experiment is one sample of a population of 

similar measurements
" Derive the value of 𝜎 from the properties of the population

!  Implicit assumption: our experiment is mistake-free, i.e. all similar 
experiments would return similar results
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Precision vs Accuracy
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http://anomaly.org/wade/blog/2006/01/accuracy_and_precision.html

• Precision: spread of the data around the average value. Typically associated with statistical 
uncertainty

• Accuracy: deviation of the average value from true value. (bias) Typically associated with 
systematic uncertainty 

• Bad data: “outliers”. Data inconsistent with distribution (e.g. mistakes)
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Golden Rules
• When reporting results of a measurement, ALWAYS report its 

uncertainty
!  And round off values to 1-2 digits of uncertainty:
"Rule of thumb: 1 digit if the last digit is > 4, 2 digits otherwise 
"x = 3.142±0.024
" y = 3.1±0.6

• Uncertainty can come from the spread in the data and/or precision of 
the instrument
" “Half of last digit” rule of thumb

"  Statistically correct: 𝜎instrument = last digit/sqrt(12)

9
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Probability: Definitions
• For numerical data, probabilistic description is often most convenient 

(and quantitative)
• Let’s define probability now
❑ Formally, it is a quantity that defined by Kolmogorov axioms:

1 39. Probability

39. Probability

Revised August 2019 by G. Cowan (RHUL).

39.1 General
[1–8] An abstract definition of probability can be given by considering a set S, called the sample

space, and possible subsets A, B, . . . , the interpretation of which is left open. The probability P is
a real-valued function defined by the following axioms due to Kolmogorov [9]:

1. For every subset A in S, P (A) Ø 0;
2. For disjoint subsets (i.e., A fl B = ÿ), P (A fi B) = P (A) + P (B);
3. P (S) = 1.

In addition, one defines the conditional probability P (A|B) (read as P of A given B) as

P (A|B) = P (A fl B)
P (B) . (39.1)

From this definition and using the fact that A fl B and B fl A are the same, one obtains Bayes’

theorem,

P (A|B) = P (B|A)P (A)
P (B) . (39.2)

From the three axioms of probability and the definition of conditional probability, one obtains the
law of total probability,

P (B) =
ÿ

i

P (B|Ai)P (Ai) , (39.3)

for any subset B and for disjoint Ai with fiiAi = S. This can be combined with Bayes’ theorem
(Eq. (39.2)) to give

P (A|B) = P (B|A)P (A)
q

i P (B|Ai)P (Ai)
, (39.4)

where the subset A could, for example, be one of the Ai.
The most commonly used interpretation of the elements of the sample space are outcomes of a

repeatable experiment. The probability P (A) is assigned a value equal to the limiting frequency of
occurrence of A. This interpretation forms the basis of frequentist statistics.

The elements of the sample space might also be interpreted as hypotheses, i.e., statements that
are either true or false, such as ‘The mass of the W boson lies between 80.3 and 80.5 GeV.’ Upon
repetition of a measurement, however, such statements are either always true or always false, i.e.,
the corresponding probabilities in the frequentist interpretation are either 0 or 1. Using subjective

probability, however, P (A) is interpreted as the degree of belief that the hypothesis A is true.
Subjective probability is used in Bayesian (as opposed to frequentist) statistics. Bayes’ theorem
can be written

P (theory|data) Ã P (data|theory)P (theory) , (39.5)

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of the experiment. Here
P (theory) is the prior probability for the theory, which reflects the experimenter’s degree of belief
before carrying out the measurement, and P (data|theory) is the probability to have gotten the data
actually obtained, given the theory, which is also called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior probability, which
may depend on previous measurements, theoretical prejudices, etc. Once this has been specified,

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)
1st June, 2020 8:30am
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• “Frequentist” interpretation:
❑ Probability is a limiting frequency a given outcome is reported when experiments 

are repeated an infinite number of times
☞ Measurable parameters are represented by “estimators” with assigned confidence levels (CL). 

CL measures a probability an estimator would fall in a certain range, given a true value of a 
parameter. No probability is assigned to constants of nature.  

•  “Bayesian” interpretation:
❑ More general: define probability as a degree of belief that a given statement is true 
☞ E.g. that the true value of parameter x is in interval [a,b]
☞ This is somewhat subjective, but follows how most humans think

Two Interpretations
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Frequentist Probability
• Defs:
! Let S be set of all possible outcomes of a measurement
! Any subset A with only one element (single outcome) is 

elementary outcome
! Define

12
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P(A) = lim (# of occurrences of A in N trials)/N
N→∞

Assume outcomes are (in principle) repeatable
Confidence in a measurement grows with N

Frequentist statistics is appropriate (and often argued for) in 
situations where measurements can be reproducibly repeated, so that 
validity of approach can be tested (e.g. particle physics)

John von Neumann

Jerzy Neyman
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Bayes Theorem
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Conditional probability of A given B

Interpreted within Bayesian statistics as

Posterior 
probability

Prior
probability

(initial prejudice)

Likelihood 
(result of the measurement)

• Allows one to interpret a single experiment as a measure of (subjective) probability that a given hypothesis is 
correct (e.g. that some fundamental constant is in some range). 

• Requires assigning some probability interpretation to prior knowledge. Often useful when nuisance 
parameters (e.g. some parameters of the theory) have uncertainties, or when data are near a physical 
boundary. Thus Bayesian Inference is becoming increasingly popular (even in particle physics). 
• But there is an issue of subjectivity in assigning “priors”. 

35. Probability 1

35. PROBABILITY

Revised September 2011 by G. Cowan (RHUL).

35.1. General [1–8]

An abstract definition of probability can be given by considering a set S, called the
sample space, and possible subsets A, B, . . . , the interpretation of which is left open.
The probability P is a real-valued function defined by the following axioms due to
Kolmogorov [9]:

1. For every subset A in S, P (A) ≥ 0;

2. For disjoint subsets (i.e., A ∩ B = ∅), P (A ∪ B) = P (A) + P (B);

3. P (S) = 1.

In addition, one defines the conditional probability P (A|B) (read P of A given B) as

P (A|B) =
P (A ∩ B)

P (B)
. (35.1)

From this definition and using the fact that A ∩ B and B ∩ A are the same, one obtains
Bayes’ theorem,

P (A|B) =
P (B|A)P (A)

P (B)
. (35.2)

From the three axioms of probability and the definition of conditional probability, one
obtains the law of total probability,

P (B) =
∑

i

P (B|Ai)P (Ai) , (35.3)

for any subset B and for disjoint Ai with ∪iAi = S. This can be combined with Bayes’
theorem (Eq. (35.2)) to give

P (A|B) =
P (B|A)P (A)

∑

i P (B|Ai)P (Ai)
, (35.4)

where the subset A could, for example, be one of the Ai.

The most commonly used interpretation of the subsets of the sample space are
outcomes of a repeatable experiment. The probability P (A) is assigned a value equal
to the limiting frequency of occurrence of A. This interpretation forms the basis of
frequentist statistics.

The subsets of the sample space can also be interpreted as hypotheses, i.e., statements
that are either true or false, such as ‘The mass of the W boson lies between 80.3 and 80.5
GeV.’ In the frequency interpretation, such statements are either always or never true,
i.e., the corresponding probabilities would be 0 or 1. Using subjective probability, however,
P (A) is interpreted as the degree of belief that the hypothesis A is true. Subjective
probability is used in Bayesian (as opposed to frequentist) statistics. Bayes’ theorem can
be written

P (theory|data) ∝ P (data|theory)P (theory) , (35.5)

J. Beringer et al.(PDG), PR D86, 010001 (2012) (http://pdg.lbl.gov)
June 18, 2012 16:20
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The Reverend Thomas Bayes
(1701-1761)



• Random variable: a numerical outcome of a (repeatable) 
measurement

• Characterized by a Probability Density Function

q Depends on a set of parameters θ  
F  C.f. quantum mechanics

• Cumulative distribution (CDF):
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Random Variables
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Probability: Random Variables and PDFs
• For a continuous variable, x, we define the probability density 

function (pdf)

• f(x; θ) ≡ probability that x lies between x and x+dx

• θ represent the parameters of the function


• Integrate to obtain the cumulative probability 

• Probability that x < a

• Discrete variables: replace integral with sum

• Expectation value

9
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Expectation Values
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Moments of a random variable x:

Expectation value of function u(x):

n-th moment

n-th central moment

2 35. Probability

where ‘theory’ represents some hypothesis and ‘data’ is the outcome of the experiment.
Here P (theory) is the prior probability for the theory, which reflects the experimenter’s
degree of belief before carrying out the measurement, and P (data|theory) is the
probability to have gotten the data actually obtained, given the theory, which is also
called the likelihood.

Bayesian statistics provides no fundamental rule for obtaining the prior probability,
which may depend on previous measurements, theoretical prejudices, etc. Once this has
been specified, however, Eq. (35.5) tells how the probability for the theory must be
modified in the light of the new data to give the posterior probability, P (theory|data). As
Eq. (35.5) is stated as a proportionality, the probability must be normalized by summing
(or integrating) over all possible hypotheses.

35.2. Random variables

A random variable is a numerical characteristic assigned to an element of the sample
space. In the frequency interpretation of probability, it corresponds to an outcome of
a repeatable experiment. Let x be a possible outcome of an observation. If x can take
on any value from a continuous range, we write f(x; θ)dx as the probability that the
measurement’s outcome lies between x and x + dx. The function f(x; θ) is called the
probability density function (p.d.f.), which may depend on one or more parameters θ. If x
can take on only discrete values (e.g., the non-negative integers), then f(x; θ) is itself a
probability.

The p.d.f. is always normalized to unit area (unit sum, if discrete). Both x and θ may
have multiple components and are then often written as vectors. If θ is unknown, we may
wish to estimate its value from a given set of measurements of x; this is a central topic of
statistics (see Sec. 36).

The cumulative distribution function F (a) is the probability that x ≤ a:

F (a) =

∫ a

−∞

f(x) dx . (35.6)

Here and below, if x is discrete-valued, the integral is replaced by a sum. The endpoint a
is expressly included in the integral or sum. Then 0 ≤ F (x) ≤ 1, F (x) is nondecreasing,
and P (a < x ≤ b) = F (b) − F (a). If x is discrete, F (x) is flat except at allowed values of
x, where it has discontinuous jumps equal to f(x).

Any function of random variables is itself a random variable, with (in general) a
different p.d.f. The expectation value of any function u(x) is

E[u(x)] =

∫

∞

−∞

u(x) f(x) dx , (35.7)

assuming the integral is finite. For u(x) and v(x), any two functions of x, E[u + v] =
E[u] + E[v]. For c and k constants, E[cu + k] = cE[u] + k.

The nth moment of a random variable x is

αn ≡ E[xn] =

∫

∞

−∞

xnf(x) dx , (35.8a)

June 18, 2012 16:20
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and the nth central moment of x (or moment about the mean, α1) is

mn ≡ E[(x − α1)
n] =

∫

∞

−∞

(x − α1)
nf(x) dx . (35.8b)

The most commonly used moments are the mean µ and variance σ2:

µ ≡ α1 , (35.9a)

σ2 ≡ V [x] ≡ m2 = α2 − µ2 . (35.9b)

The mean is the location of the “center of mass” of the p.d.f., and the variance is a
measure of the square of its width. Note that V [cx + k] = c2V [x]. It is often convenient
to use the standard deviation of x, σ, defined as the square root of the variance.

Any odd moment about the mean is a measure of the skewness of the p.d.f. The
simplest of these is the dimensionless coefficient of skewness γ1 = m3/σ3.

The fourth central moment m4 provides a convenient measure of the tails of a
distribution. For the Gaussian distribution (see Sec. 35.4), one has m4 = 3σ4. The
kurtosis is defined as γ2 = m4/σ4 − 3, i.e., it is zero for a Gaussian, positive for a
leptokurtic distribution with longer tails, and negative for a platykurtic distribution with
tails that die off more quickly than those of a Gaussian.

The quantile xα is the value of the random variable x at which the cumulative
distribution is equal to α. That is, the quantile is the inverse of the cumulative
distribution function, i.e., xα = F−1(α). An important special case is the median, xmed,
defined by F (xmed) = 1/2, i.e., half the probability lies above and half lies below xmed.
(More rigorously, xmed is a median if P (x ≥ xmed) ≥ 1/2 and P (x ≤ xmed) ≥ 1/2. If
only one value exists, it is called ‘the median.’)

Under a monotonic change of variable x → y(x), the quantiles of a distribution (and
hence also the median) obey yα = y(xα). In general the expectation value and mode
(most probable value) of a distribution do not, however, transform in this way.

Let x and y be two random variables with a joint p.d.f. f(x, y). The marginal p.d.f. of
x (the distribution of x with y unobserved) is

f1(x) =

∫

∞

−∞

f(x, y) dy , (35.10)

and similarly for the marginal p.d.f. f2(y). The conditional p.d.f. of y given fixed x (with
f1(x) &= 0) is defined by f3(y|x) = f(x, y)/f1(x), and similarly f4(x|y) = f(x, y)/f2(y).
From these, we immediately obtain Bayes’ theorem (see Eqs. (35.2) and (35.4)),

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)
∫

f3(y|x′)f1(x′) dx′
. (35.11)

The mean of x is

µx =

∫

∞

−∞

∫

∞

−∞

x f(x, y) dx dy =

∫

∞

−∞

x f1(x) dx , (35.12)
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Special moments:

Variance
Mean
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Under a monotonic change of variable x → y(x), the quantiles of a distribution (and
hence also the median) obey yα = y(xα). In general the expectation value and mode
(most probable value) of a distribution do not, however, transform in this way.

Let x and y be two random variables with a joint p.d.f. f(x, y). The marginal p.d.f. of
x (the distribution of x with y unobserved) is

f1(x) =

∫

∞

−∞

f(x, y) dy , (35.10)

and similarly for the marginal p.d.f. f2(y). The conditional p.d.f. of y given fixed x (with
f1(x) &= 0) is defined by f3(y|x) = f(x, y)/f1(x), and similarly f4(x|y) = f(x, y)/f2(y).
From these, we immediately obtain Bayes’ theorem (see Eqs. (35.2) and (35.4)),

f4(x|y) =
f3(y|x)f1(x)

f2(y)
=

f3(y|x)f1(x)
∫

f3(y|x′)f1(x′) dx′
. (35.11)

The mean of x is

µx =

∫

∞

−∞

∫

∞

−∞

x f(x, y) dx dy =

∫

∞

−∞

x f1(x) dx , (35.12)
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Common PDFs
16
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35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu
a + b

2
(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ,σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

− 1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)

−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1
1F1(α; α + β; iu)

α
α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1
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Ex: Binomial Distribution
• Two outcomes of an experiment
! E.g. Pass and Fail
" Define probability of Pass to be p
" Probability of Fail is q=1-p

• Draw N samples
• Define r to be the number of Passes (out of N)
• Key properties: 

17
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�r� = pN

V [r] = Npq = Np(1 � p)

Binomial Distribution
• Random process with two possible outcomes

• p=Prob of outcome #1, q= 1-p = Prob of outcome #2

• After n trials, prob of getting outcome #1 exactly k 

times is

12

f(k, p) =

✓
n

k

◆
pkqn�k

✓
n

k

◆
=

n!

k!(n� k)!
where

PDF
Cumulative 
Probability 

µ = np �2 = np(1� p)
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⇥(�̂) �=
�

npass

N
=

�
�̂

N

�̂ =
npass

N

Example: Measure Efficiency
• Generate a sample of N events
• Apply selection; suppose npass events passed
• Estimate

18
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⇥(�̂) =
�

V [�̂] =

�
V [npass]

N2
=

�
�̂(1� �̂)

N
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⇥(�̂) =
�

V [�̂] =

�
V [npass]

N2
=

�
�̂(1� �̂)

N

What happens when 
npass or nfail=0 ?
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Central Limit Theorem
• Let x1, x2, …, xN be independent random variables
" Each belongs to a distribution of with a well-defined mean <xi> and variance V[xi]

• Define

• Theorem: x is Gaussian-distributed with

19
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x � lim
N��

N�

i=1

xi

f(x) =g(x;µx,�x)

µx =
N�

i=1

�xi�

�2
x =

N�

i=1

V [xi]
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Central Limit Theorem
20
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http://en.wikipedia.org/wiki/File:Dice_sum_central_limit_theorem.svg
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Cauchy (Breit-Wigner) PDF
21
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Undefined variance
(central limit theorem does not apply)
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f(�x�) =g(�x�;µ,�)

µ =
1
N

N�

i=1

�xi� � µx

�2 =
1

N2

N�

i=1

V [xi] �
V [x]
N

�x� =
1
N

N�

i=1

xi

�(�x�) =

�
V [x])

N

Inverse Sqrt Law
• Suppose xi are drawn from the same distribution with mean μx and 

variance V[x]
• Mean of N samples

22
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follows Gaussian distribution:

→

“Inverse sqrt law”
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Point Estimation
• Standard problem: set of values x1, x2, …, xn described by PDF

• Point estimation: want to construct

F Estimator of parameter θ    

23
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data parameter(s)

Typical goal: estimate the true value of one or more parameters 
from the experimental data, and understand their uncertainties
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Estimator Properties
• Consistency
F Approaches true value asymptotically for infinite dataset

• Bias
F Difference wrt true value for finite dataset

• Efficiency
F Variance of the estimator (compared to others)

• Sufficiency
F Dependence on true value

• Robustness
F Sensitivity to bad data, e.g. outliers

• Others: physicality, tractable-ness, etc.
• No “ideal” recipe, what is best depends on the problem

24
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Basic Estimators
• Estimators for mean and variance 
• Shape of the PDF (fitting):
q Maximum likelihood
F Most efficient, but may be biased
F Goodness of fit is not readily available 

q Least Chisquared
F ML for gaussian-distributed data
F Convenient for binned data, analytic solutions for linear functions
F Automatic goodness-of-fit measure
F Be careful of gaussian approximations (e.g. when Poisson becomes Gaussian)

25
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V [µ̂] =
�2

N
� [µ̂] = �/

�
N

� [�̂] = �/
�

2N

Mean and Variance from a Sample
26
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N>0

N>1

Variances of these estimators:

Estimators:

for Gaussian distribution of x and large N

36. Statistics 3

is a measure of an estimator’s quality which combines bias and variance.

(d) Robustness is the property of being insensitive to departures from assumptions in the
p.d.f., e.g., owing to uncertainties in the distribution’s tails.

Simultaneously optimizing for all the measures of estimator quality described above
can lead to conflicting requirements. For example, there is in general a trade-off between
bias and variance. For some common estimators, the properties above are known exactly.
More generally, it is possible to evaluate them by Monte Carlo simulation. Note that they
will often depend on the unknown θ.

36.1.1. Estimators for mean, variance and median :

Suppose we have a set of N independent measurements, xi, assumed to be unbiased
measurements of the same unknown quantity µ with a common, but unknown, variance
σ2. Then

µ̂ =
1

N

N∑

i=1

xi (36.4)

σ̂2 =
1

N − 1

N∑

i=1

(xi − µ̂)2 (36.5)

are unbiased estimators of µ and σ2. The variance of µ̂ is σ2/N and the variance of σ̂2 is

V
[
σ̂2

]
=

1

N

(
m4 −

N − 3

N − 1
σ4

)
, (36.6)

where m4 is the 4th central moment of x. For Gaussian distributed xi, this becomes
2σ4/(N − 1) for any N ≥ 2, and for large N , the standard deviation of σ̂ (the “error of
the error”) is σ/

√
2N . Again, if the xi are Gaussian, µ̂ is an efficient estimator for µ, and

the estimators µ̂ and σ̂2 are uncorrelated. Otherwise the arithmetic mean (36.4) is not
necessarily the most efficient estimator; this is discussed further in Sec. 8.7 of Ref. 4.

If σ2 is known, it does not improve the estimate µ̂, as can be seen from Eq. (36.4);
however, if µ is known, substitute it for µ̂ in Eq. (36.5) and replace N − 1 by N to obtain
an estimator of σ2 still with zero bias but smaller variance. If the xi have different,
known variances σ2

i , then the weighted average

µ̂ =
1

w

N∑

i=1

wixi (36.7)

is an unbiased estimator for µ with a smaller variance than an unweighted average; here
wi = 1/σ2

i and w =
∑

i wi. The standard deviation of µ̂ is 1/
√

w.

As an estimator for the median xmed, one can use the value x̂med such that half the
xi are below and half above (the sample median). If the sample median lies between
two observed values, it is set by convention halfway between them. If the p.d.f. of x
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(equally weighted data)
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Sample Mean and Variance, Weighted 
27
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N>0

N>1

Estimators:
(unequally weighted data) µ̂ =

�

i

wixi, where
�

i

wi � 1

The standard case is a collection of points with unequal error bars 𝜎i. 
In this case, the most efficient estimator would use  

�̂2 =
�

i wi(xi � µ̂)2

1�
�

i w2
i

You can then show that the variance of the mean is

wi =
1/�2

i�
i 1/�2

i

V [µ̂] =
1�

i 1/�2
i

i.e. �[µ̂] =
1��
i 1/�2

i
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Maximum Likelihood Estimators
28
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Define likelihood for N independent measurements xi:

! max to determine estimators of θ 

This leads to a system of (generally nonlinear) equations for parameters θ:

Solutions of these equations (often done numerically) determine estimators     . Their 
covariance matrix is given by 

16!

Maximum Likelihood Estimators 
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Define likelihood for N independent measurements xi:!

4 33. Statistics

33.1.2. The method of maximum likelihood :
Suppose we have a set of N measured quantities x = (x1, . . . , xN ) described by a joint

p.d.f. f(x; θ), where θ = (θ1, . . . , θn) is set of n parameters whose values are unknown.
The likelihood function is given by the p.d.f. evaluated with the data x, but viewed as a
function of the parameters, i.e., L(θ) = f(x; θ). If the measurements xi are statistically
independent and each follow the p.d.f. f(x; θ), then the joint p.d.f. for x factorizes and
the likelihood function is

L(θ) =
N∏

i=1

f(xi; θ) . (33.8)

The method of maximum likelihood takes the estimators θ̂ to be those values of θ that
maximize L(θ).

Note that the likelihood function is not a p.d.f. for the parameters θ; in frequentist
statistics this is not defined. In Bayesian statistics, one can obtain from the likelihood
the posterior p.d.f. for θ, but this requires multiplying by a prior p.d.f. (see Sec. 33.3.1).

It is usually easier to work with lnL, and since both are maximized for the same
parameter values θ, the maximum likelihood (ML) estimators can be found by solving
the likelihood equations,

∂ ln L

∂θi
= 0 , i = 1, . . . , n . (33.9)

Often the solution must be found numerically. Maximum likelihood estimators are
important because they are approximately unbiased and efficient for large data samples,
under quite general conditions, and the method has a wide range of applicability.

In evaluating the likelihood function, it is important that any normalization factors in
the p.d.f. that involve θ be included. However, we will only be interested in the maximum
of L and in ratios of L at different values of the parameters; hence any multiplicative
factors that do not involve the parameters that we want to estimate may be dropped,
including factors that depend on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the ML estimators θ̂ transform
to η(θ̂). That is, the ML solution is invariant under change of parameter. However, other
properties of ML estimators, in particular the bias, are not invariant under change of
parameter.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set of ML estimators
can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (33.10)

For finite samples, however, Eq. (33.10) can result in an underestimate of the variances.
In the large sample limit (or in a linear model with Gaussian errors), L has a Gaussian
form and lnL is (hyper)parabolic. In this case, it can be seen that a numerically
equivalent way of determining s-standard-deviation errors is from the contour given by
the θ′ such that

ln L(θ′) = ln Lmax − s2/2 , (33.11)
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Define likelihood for N independent measurements xi:!
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33.1.2. The method of maximum likelihood :
Suppose we have a set of N measured quantities x = (x1, . . . , xN ) described by a joint

p.d.f. f(x; θ), where θ = (θ1, . . . , θn) is set of n parameters whose values are unknown.
The likelihood function is given by the p.d.f. evaluated with the data x, but viewed as a
function of the parameters, i.e., L(θ) = f(x; θ). If the measurements xi are statistically
independent and each follow the p.d.f. f(x; θ), then the joint p.d.f. for x factorizes and
the likelihood function is

L(θ) =
N∏

i=1

f(xi; θ) . (33.8)

The method of maximum likelihood takes the estimators θ̂ to be those values of θ that
maximize L(θ).

Note that the likelihood function is not a p.d.f. for the parameters θ; in frequentist
statistics this is not defined. In Bayesian statistics, one can obtain from the likelihood
the posterior p.d.f. for θ, but this requires multiplying by a prior p.d.f. (see Sec. 33.3.1).

It is usually easier to work with lnL, and since both are maximized for the same
parameter values θ, the maximum likelihood (ML) estimators can be found by solving
the likelihood equations,

∂ ln L

∂θi
= 0 , i = 1, . . . , n . (33.9)

Often the solution must be found numerically. Maximum likelihood estimators are
important because they are approximately unbiased and efficient for large data samples,
under quite general conditions, and the method has a wide range of applicability.

In evaluating the likelihood function, it is important that any normalization factors in
the p.d.f. that involve θ be included. However, we will only be interested in the maximum
of L and in ratios of L at different values of the parameters; hence any multiplicative
factors that do not involve the parameters that we want to estimate may be dropped,
including factors that depend on the data but not on θ.

Under a one-to-one change of parameters from θ to η, the ML estimators θ̂ transform
to η(θ̂). That is, the ML solution is invariant under change of parameter. However, other
properties of ML estimators, in particular the bias, are not invariant under change of
parameter.

The inverse V −1 of the covariance matrix Vij = cov[θ̂i, θ̂j ] for a set of ML estimators
can be estimated by using

(V̂ −1)ij = − ∂2 lnL

∂θi∂θj

∣∣∣∣
θ̂

. (33.10)

For finite samples, however, Eq. (33.10) can result in an underestimate of the variances.
In the large sample limit (or in a linear model with Gaussian errors), L has a Gaussian
form and lnL is (hyper)parabolic. In this case, it can be seen that a numerically
equivalent way of determining s-standard-deviation errors is from the contour given by
the θ′ such that

ln L(θ′) = ln Lmax − s2/2 , (33.11)
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33.1.2. The method of maximum likelihood :
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Maximum likelihood method has a nice property that (in the limit of infinite statistics) it produces unbiased 
estimators with smallest possible variance. But beware of small statistics samples ! ML fits are implemented in 
many statistical packages (ROOT, Python, MATLAB). Can be applied to binned or unbinned data
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where ln Lmax is the value of lnL at the solution point (compare with Eq. (33.56)). The
extreme limits of this contour on the θi axis give an approximate s-standard-deviation
confidence interval for θi (see Section 33.3.2.4).

In the case where the size n of the data sample x1, . . . , xn is small, the unbinned
maximum likelihood method, i.e., use of equation (33.8), is preferred since binning can
only result in a loss of information, and hence larger statistical errors for the parameter
estimates. The sample size n can be regarded as fixed, or the user can choose to treat
it as a Poisson-distributed variable; this latter option is sometimes called “extended
maximum likelihood” (see, e.g., [6–8]) .

If the sample is large, it can be convenient to bin the values in a histogram, so
that one obtains a vector of data n = (n1, . . . , nN ) with expectation values ν = E[n]
and probabilities f(n; ν). Then one may maximize the likelihood function based on the
contents of the bins (so i labels bins). This is equivalent to maximizing the likelihood
ratio λ(θ) = f(n; ν(θ))/f(n; n), or to minimizing the equivalent quantity −2 lnλ(θ). For
independent Poisson distributed ni this is [9]

−2 lnλ(θ) = 2
N∑

i=1

[
νi(θ) − ni + ni ln

ni

νi(θ)

]
, (33.12)

where for bins with ni = 0, the last term in (33.12) is zero. The expression (33.12)
without the terms νi − ni also gives −2 lnλ(θ) for multinomially distributed ni, i.e.,
when the total number of entries is regarded as fixed. In the limit of zero bin width,
maximizing (33.12) is equivalent to maximizing the unbinned likelihood function (33.8).

A benefit of binning is that it allows for a goodness-of-fit test (see Sec. 33.2.2).
According to Wilks’ theorem, for sufficiently large νi and providing certain regularity
conditions are met, the minimum of −2 lnλ as defined by Eq. (33.12) follows a χ2

distribution (see, e.g., Ref. [3]). If there are N bins and m fitted parameters, then the
number of degrees of freedom for the χ2 distribution is N − m if the data are treated as
Poisson-distributed, and N − m − 1 if the ni are multinomially distributed.

Suppose the ni are Poisson-distributed and the overall normalization νtot =
∑

i νi is
taken as an adjustable parameter, so that νi = νtotpi(θ), where the probability to be in
the ith bin, pi(θ), does not depend on νtot. Then by minimizing Eq. (33.12), one obtains
that the area under the fitted function is equal to the sum of the histogram contents,
i.e.,

∑
i νi =

∑
i ni. This is not the case for parameter estimation methods based on a

least-squares procedure with traditional weights (see, e.g., Ref. [8]).

33.1.3. The method of least squares :
The method of least squares (LS) coincides with the method of maximum likelihood in

the following special case. Consider a set of N independent measurements yi at known
points xi. The measurement yi is assumed to be Gaussian distributed with mean F (xi; θ)
and known variance σ2

i . The goal is to construct estimators for the unknown parameters
θ. The likelihood function contains the sum of squares

χ2(θ) = −2 lnL(θ) + constant =
N∑

i=1

(yi − F (xi; θ))2

σ2
i

. (33.13)
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Or, for correlated variables!
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The set of parameters θ which maximize L is the same as those which minimize χ2.
The minimum of Equation (33.13) defines the least-squares estimators θ̂ for the more

general case where the yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix Vij = cov[yi, yj ], then
the LS estimators are determined by the minimum of

χ2(θ) = (y − F (θ))T V −1(y − F (θ)) , (33.14)

where y = (y1, . . . , yN ) is the vector of measurements, F (θ) is the corresponding vector
of predicted values (understood as a column vector in (33.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases, one further restricts the problem to the situation where
F (xi; θ) is a linear function of the parameters, i.e.,

F (xi; θ) =
m∑

j=1

θjhj(xi) . (33.15)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1, or Legendre
polynomials. We require m < N and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system of m
linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its derivatives with
respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (33.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (33.17)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1
2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=
N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (33.18)

The LS estimators can also be found from the expression

θ̂ = Ug , (33.19)

where the vector g is defined by

gi =
N∑

j,k=1

yjhi(xk)(V −1)jk . (33.20)
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where ln Lmax is the value of lnL at the solution point (compare with Eq. (33.56)). The
extreme limits of this contour on the θi axis give an approximate s-standard-deviation
confidence interval for θi (see Section 33.3.2.4).

In the case where the size n of the data sample x1, . . . , xn is small, the unbinned
maximum likelihood method, i.e., use of equation (33.8), is preferred since binning can
only result in a loss of information, and hence larger statistical errors for the parameter
estimates. The sample size n can be regarded as fixed, or the user can choose to treat
it as a Poisson-distributed variable; this latter option is sometimes called “extended
maximum likelihood” (see, e.g., [6–8]) .

If the sample is large, it can be convenient to bin the values in a histogram, so
that one obtains a vector of data n = (n1, . . . , nN ) with expectation values ν = E[n]
and probabilities f(n; ν). Then one may maximize the likelihood function based on the
contents of the bins (so i labels bins). This is equivalent to maximizing the likelihood
ratio λ(θ) = f(n; ν(θ))/f(n; n), or to minimizing the equivalent quantity −2 lnλ(θ). For
independent Poisson distributed ni this is [9]

−2 lnλ(θ) = 2
N∑

i=1

[
νi(θ) − ni + ni ln

ni

νi(θ)

]
, (33.12)

where for bins with ni = 0, the last term in (33.12) is zero. The expression (33.12)
without the terms νi − ni also gives −2 lnλ(θ) for multinomially distributed ni, i.e.,
when the total number of entries is regarded as fixed. In the limit of zero bin width,
maximizing (33.12) is equivalent to maximizing the unbinned likelihood function (33.8).

A benefit of binning is that it allows for a goodness-of-fit test (see Sec. 33.2.2).
According to Wilks’ theorem, for sufficiently large νi and providing certain regularity
conditions are met, the minimum of −2 lnλ as defined by Eq. (33.12) follows a χ2

distribution (see, e.g., Ref. [3]). If there are N bins and m fitted parameters, then the
number of degrees of freedom for the χ2 distribution is N − m if the data are treated as
Poisson-distributed, and N − m − 1 if the ni are multinomially distributed.

Suppose the ni are Poisson-distributed and the overall normalization νtot =
∑

i νi is
taken as an adjustable parameter, so that νi = νtotpi(θ), where the probability to be in
the ith bin, pi(θ), does not depend on νtot. Then by minimizing Eq. (33.12), one obtains
that the area under the fitted function is equal to the sum of the histogram contents,
i.e.,

∑
i νi =

∑
i ni. This is not the case for parameter estimation methods based on a

least-squares procedure with traditional weights (see, e.g., Ref. [8]).

33.1.3. The method of least squares :
The method of least squares (LS) coincides with the method of maximum likelihood in

the following special case. Consider a set of N independent measurements yi at known
points xi. The measurement yi is assumed to be Gaussian distributed with mean F (xi; θ)
and known variance σ2

i . The goal is to construct estimators for the unknown parameters
θ. The likelihood function contains the sum of squares

χ2(θ) = −2 lnL(θ) + constant =
N∑

i=1

(yi − F (xi; θ))2

σ2
i

. (33.13)

July 30, 2010 14:36

For a set of Gaussian-distributed variables yi, define:!

L(�)� max;� ⇥2(�)� min

Or, for correlated variables!
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The set of parameters θ which maximize L is the same as those which minimize χ2.
The minimum of Equation (33.13) defines the least-squares estimators θ̂ for the more

general case where the yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix Vij = cov[yi, yj ], then
the LS estimators are determined by the minimum of

χ2(θ) = (y − F (θ))T V −1(y − F (θ)) , (33.14)

where y = (y1, . . . , yN ) is the vector of measurements, F (θ) is the corresponding vector
of predicted values (understood as a column vector in (33.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases, one further restricts the problem to the situation where
F (xi; θ) is a linear function of the parameters, i.e.,

F (xi; θ) =
m∑

j=1

θjhj(xi) . (33.15)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1, or Legendre
polynomials. We require m < N and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system of m
linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its derivatives with
respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (33.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (33.17)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1
2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=
N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (33.18)

The LS estimators can also be found from the expression

θ̂ = Ug , (33.19)

where the vector g is defined by

gi =
N∑

j,k=1

yjhi(xk)(V −1)jk . (33.20)
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Estimators:!

In particular, if the function F is linear in parameters !, LS estimators are found 
by solving a system of linear equations analytically:!

6 33. Statistics

The set of parameters θ which maximize L is the same as those which minimize χ2.
The minimum of Equation (33.13) defines the least-squares estimators θ̂ for the more

general case where the yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix Vij = cov[yi, yj ], then
the LS estimators are determined by the minimum of

χ2(θ) = (y − F (θ))T V −1(y − F (θ)) , (33.14)

where y = (y1, . . . , yN ) is the vector of measurements, F (θ) is the corresponding vector
of predicted values (understood as a column vector in (33.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases, one further restricts the problem to the situation where
F (xi; θ) is a linear function of the parameters, i.e.,

F (xi; θ) =
m∑

j=1

θjhj(xi) . (33.15)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1, or Legendre
polynomials. We require m < N and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system of m
linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its derivatives with
respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (33.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (33.17)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1
2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=
N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (33.18)

The LS estimators can also be found from the expression

θ̂ = Ug , (33.19)

where the vector g is defined by

gi =
N∑

j,k=1

yjhi(xk)(V −1)jk . (33.20)

July 30, 2010 14:36

6 33. Statistics

The set of parameters θ which maximize L is the same as those which minimize χ2.
The minimum of Equation (33.13) defines the least-squares estimators θ̂ for the more

general case where the yi are not Gaussian distributed as long as they are independent.
If they are not independent but rather have a covariance matrix Vij = cov[yi, yj ], then
the LS estimators are determined by the minimum of

χ2(θ) = (y − F (θ))T V −1(y − F (θ)) , (33.14)

where y = (y1, . . . , yN ) is the vector of measurements, F (θ) is the corresponding vector
of predicted values (understood as a column vector in (33.14)), and the superscript T
denotes transposed (i.e., row) vector.

In many practical cases, one further restricts the problem to the situation where
F (xi; θ) is a linear function of the parameters, i.e.,

F (xi; θ) =
m∑

j=1

θjhj(xi) . (33.15)

Here the hj(x) are m linearly independent functions, e.g., 1, x, x2, . . . , xm−1, or Legendre
polynomials. We require m < N and at least m of the xi must be distinct.

Minimizing χ2 in this case with m parameters reduces to solving a system of m
linear equations. Defining Hij = hj(xi) and minimizing χ2 by setting its derivatives with
respect to the θi equal to zero gives the LS estimators,

θ̂ = (HT V −1H)−1HT V −1y ≡ Dy . (33.16)

The covariance matrix for the estimators Uij = cov[θ̂i, θ̂j ] is given by

U = DV DT = (HT V −1H)−1 , (33.17)

or equivalently, its inverse U−1 can be found from

(U−1)ij =
1
2

∂2χ2

∂θi∂θj

∣∣∣∣
θ=θ̂

=
N∑

k,l=1

hi(xk)(V −1)klhj(xl) . (33.18)

The LS estimators can also be found from the expression

θ̂ = Ug , (33.19)

where the vector g is defined by

gi =
N∑

j,k=1

yjhi(xk)(V −1)jk . (33.20)

July 30, 2010 14:36

Least-squares fits are typically done on binned data, and implemented in 
most statistical packages (ROOT, MATLAB, even Excel)!
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Example: chi-squared p-values
31
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One advantage of a 𝝌2 fit is that the value of the minimum 𝝌2 can be interpreted as a measure 
of goodness-of-fit, iff errors on each data point are known, and the “noise” (distribution of data 
around their expected values) are Gaussian

In the plot below, n= number of degrees of freedom = Ndata points - Nparameters 

For a “good fit”, expect 𝝌2 to be close to number of degrees of freedom = Ndata points - Nparameters 
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Confidence Limits
• Frequentist approach: confidence belts
F Define

32

01/26/2022

x0

Caveats: interval not unique. 
Problems near a physical boundary. 
Use central intervals (equal area
on both sides) or decide based on 
likelihood ratio (e.g. Feldman-
Cousins)
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Bayesian Approach
• Likelihood function + prior -> posterior for parameter

• Treat as PDF and integrate

• Caveat: choice of prior

33
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Example
34
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31!

Example 

09/15/2011 YGK, Phys129 

Table 2.9: Summary of the results of the likelihood scan [60]. Displayed are the 90% confidence
level upper limits, most probable values, and negative and positive asymmetric errors.

UL MPV
) ( ) 5.0 2.2 -1.8 +1.9
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)-610×) (τ e→(3S) ϒBF(
-4 -2 0 2 4 6 8 10

Li
ke

lih
oo

d

0

0.2

0.4

0.6

0.8

1

)-610×) (τ e→(3S) ϒBF(
-4 -2 0 2 4 6 8 10

Li
ke

lih
oo

d

0

0.2

0.4

0.6

0.8

1

)-610×) (τµ →(3S) ϒBF(
-4 -2 0 2 4 6 8 10

Li
ke

lih
oo

d

0

0.2

0.4

0.6

0.8

1

)-610×) (τµ →(3S) ϒBF(
-4 -2 0 2 4 6 8 10

Li
ke

lih
oo

d

0

0.2

0.4

0.6

0.8

1

Figure 2.33: Likelihood as a function of the branching fractions (left) and
(right) [60]. The dotted red curve includes statistical uncertainties only, the

solid blue curve includes systematic uncertainties as well. The shaded green regions bounded by
the vertical lines indicate 90% of the area under the physical ( ) regions of the likelihood
curves.

2.13 Constraints on New Physics

The search for the charged lepton-flavor violating decays and

finds no evidence for a signal. The observed signal yields are used to place the following 90%

confidence level upper limits on the decay branching fractions: and

. These results represent the first upper limit on

and a factor of better than 4 improvement in .

The derived branching fraction upper limits can be used to place constraints on new

80

Ben Hooberman’s thesis!(UC Berkeley Ph.D. 2009)
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Hypothesis Testing
• Setting a confidence interval is a special case of a general problem 

of hypothesis testing
q E.g. hypothesis is that x is within this interval
q Or x belongs to a distribution 
q Hypothesis testing is a procedure for assigning a significance (confidence) 

level to a test
F Generally involves computing quintiles of a distribution
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Figure 29: Fit to the 2.4 fb−1 sample for mA0 = 6.683 GeV. (a,c): projections onto m2
X and (b,d): pro-

jection onto cos θ∗γ . Plots (c)-(d) were made with a cut on the likelihood ratio Lsig/Ltot > 0.5, evaluated
with the PDF in the orthogonal variable. The data points are in black (statistical errors only). Solid blue
line represents the total PDF, solid red line shows the signal PDF, and the dashed black like represents the
continuum background.

6.2 A Bump

Fig. 26 indicates some excess of events near mA0 = 6.5 GeV. A closer look at that region finds
a significant bump at the mass mA0 = 6.683 ± 0.025 GeV (obtained from a fit with floated
mA0). The yield returned by the fit is Nsig = 57 ± 13, which corresponds to the branching ratio
B(Υ (3S) → γA0)×B(A0 → invisible) = (20±5)×10−6 (statistical errors only). Taken at face
value, i.e. by evaluating the log-likelihood ratio

√

2 ln(Lmax/L0), the significance of the excess
is 5.1σ (here, naturally, Lmax is the maximum likelihood with the floated signal, and L0 is the
likelihood for the fit with the signal yield fixed at zero). Fig. 29 shows the projections from the
fit for the fixedmA0 = 6.683 GeV.
To investigate this peak further, we have looked at the distribution of m2

X in the off-Υ (3S)
and off-Υ (2S) data, as well as in a sample of 1.30 fb−1 of Run7 on-Υ (2S) data. The spectrum
near m2

X = 45 GeV2 is shown in Fig. 30. There does appear to be a visible excess of events
in the on-Υ (3S) data compared to the off-resonance data, but this excess is not shared by the

29
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Luck of the Draw
36
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Fisher Discriminant
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(H1)
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True
False

� =
� xcut

��
f(x|signal)dx

� =
� +�

xcut

f(x|bkg)dx

Type-I error (signal efficiency=1-α)

Type-II error (bkg misID=β)

Signal 
(H0)

Background 
(H1)
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Example: Gaussian distribution
38
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47!

Example: Gaussian distribution 

09/15/2011 YGK, Phys129 

22 33. Statistics

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Figure 33.4: Illustration of a symmetric 90% confidence interval (unshaded) for
a measurement of a single quantity with Gaussian errors. Integrated probabilities,
defined by α, are as shown.

Table 33.1: Area of the tails α outside ±δ from the mean of a Gaussian
distribution.

α δ α δ

0.3173 1σ 0.2 1.28σ

4.55 ×10−2 2σ 0.1 1.64σ

2.7 ×10−3 3σ 0.05 1.96σ

6.3×10−5 4σ 0.01 2.58σ

5.7×10−7 5σ 0.001 3.29σ

2.0×10−9 6σ 10−4 3.89σ

The relation (33.53) can be re-expressed using the cumulative distribution function for
the χ2 distribution as

α = 1 − F (χ2; n) , (33.54)

for χ2 = (δ/σ)2 and n = 1 degree of freedom. This can be obtained from Fig. 33.1 on the
n = 1 curve or by using the CERNLIB routine PROB or the ROOT function TMath::Prob.

For multivariate measurements of, say, n parameter estimates θ̂ = (θ̂1, . . . , θ̂n), one
requires the full covariance matrix Vij = cov[θ̂i, θ̂j ], which can be estimated as described
in Sections 33.1.2 and 33.1.3. Under fairly general conditions with the methods of
maximum-likelihood or least-squares in the large sample limit, the estimators will be
distributed according to a multivariate Gaussian centered about the true (unknown)
values θ, and furthermore, the likelihood function itself takes on a Gaussian shape.

The standard error ellipse for the pair (θ̂i, θ̂j) is shown in Fig. 33.5, corresponding
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33.3.2.3. Profile likelihood and treatment of nuisance parameters:
As mentioned in Section 33.3.1, one may have a model containing parameters that

must be determined from data, but which are not of any interest in the final result
(nuisance parameters). Suppose the likelihood L(θ, ν) depends on parameters of interest
θ and nuisance parameters ν. The nuisance parameters can be effectively removed from
the problem by constructing the profile likelihood, defined by

Lp(θ) = L(θ, ̂̂ν(θ)) , (33.51)

where ̂̂ν(θ) is given by the ν that maximizes the likelihood for fixed θ. The profile
likelihood may then be used to construct tests of or intervals for the parameters of
interest. This is in contrast to the integrated likelihood (33.28) used in the Bayesian
approach. For example, one may construct the profile likelihood ratio,

λp(θ) =
Lp(θ)
L(θ̂, ν̂)

, (33.52)

where θ̂ and ν̂ are the ML estimators. The ratio λp can be used in place of the likelihood
ratio (33.49) for inference about θ. The resulting intervals for the parameters of interest
are not guaranteed to have the exact coverage probability for all values of the nuisance
parameters, but in cases of practical interest the approximation is found to be very good.
Further discussion on use of the profile likelihood can be found in, e.g., Refs.[33,34] and
other contributions to the PHYSTAT conferences [14].

33.3.2.4. Gaussian distributed measurements:
An important example of constructing a confidence interval is when the data consists

of a single random variable x that follows a Gaussian distribution; this is often the case
when x represents an estimator for a parameter and one has a sufficiently large data
sample. If there is more than one parameter being estimated, the multivariate Gaussian
is used. For the univariate case with known σ,

1 − α =
1√
2πσ

∫ µ+δ

µ−δ
e−(x−µ)2/2σ2

dx = erf
(

δ√
2 σ

)
(33.53)

is the probability that the measured value x will fall within ±δ of the true value µ. From
the symmetry of the Gaussian with respect to x and µ, this is also the probability for
the interval x ± δ to include µ. Fig. 33.4 shows a δ = 1.64σ confidence interval unshaded.
The choice δ = σ gives an interval called the standard error which has 1 − α = 68.27% if
σ is known. Values of α for other frequently used choices of δ are given in Table 33.1.

We can set a one-sided (upper or lower) limit by excluding above x + δ (or below
x − δ). The values of α for such limits are half the values in Table 33.1.
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t =
f(x|H0)
f(x|H1)

> C(�)

Neyman-Pearson Lemma
• Want to choose a cut such that α & β are as small as possible at the 

same time 
! Or maximize efficiency and purity:
"ε=1-α→ max
"β→min so 

• Neyman-Pearson Lemma:
! Acceptance region giving the best rejection power (smallest β) for a given α 

is defined by the region

39

01/26/2022

p =
�sigNsig

�bkgNbkg + �sigNsig
� max
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Example
40
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05/16/2012 YGK, Phys290E: MVA

Another Example (BaBar)
40

I.Osipenkov

04/19/2006 Likelihood discriminant

Cut Efficiencies

better
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Single-var vs Multi-var Discriminants
• For a single variable, there is a 1-to-1 transformation between xcut 

and α, and therefore t and xcut   
• Not so obvious for a multiple discriminating variables
! N-P lemma says likelihood ratio is in theory the best discriminating variable
" Assuming likelihood ratio is computed correctly (e.g. with correlations)

! In practice, other techniques are computationally easier to implement
" Machine learning ! 
" Fisher, Neural networks, Boosted Decision Trees, etc
" More to come

41
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Vij = �(y � f)i(y � f)j�

Goodness of Fit
• Standard problem: does fit agree with data ?
! H0: data belong to a given distribution

• Chi-squared test

• Or, for a correlated set of points

42
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⇥2 =
N�

i=1

(yi � f(xi))2

�2
i

�2 = (⇥y � ⇥f)T V �1(⇥y � ⇥f)
where

(covariance matrix)

→ Ndof = NPoints - Nparameters

(for good fit)
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Chi-squared Distribution
43
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35. Probability 9

Table 35.1. Some common probability density functions, with corresponding characteristic functions and

means and variances. In the Table, Γ(k) is the gamma function, equal to (k − 1)! when k is an integer;

1F1 is the confluent hypergeometric function of the 1st kind [11].

Probability density function Characteristic

Distribution f (variable; parameters) function φ(u) Mean Variance σ2

Uniform f(x;a, b) =

{

1/(b − a) a ≤ x ≤ b

0 otherwise

eibu − eiau

(b − a)iu
a + b

2
(b − a)2

12

Binomial f(r;N, p) =
N !

r!(N − r)!
prqN−r (q + peiu)N Np Npq

r = 0, 1, 2, . . . , N ; 0 ≤ p ≤ 1 ; q = 1 − p

Poisson f(n; ν) =
νne−ν

n!
; n = 0, 1, 2, . . . ; ν > 0 exp[ν(eiu − 1)] ν ν

Normal
(Gaussian)

f(x; µ,σ2) =
1

σ
√

2π
exp(−(x − µ)2/2σ2) exp(iµu − 1

2σ2u2) µ σ2

−∞ < x < ∞ ; −∞ < µ < ∞ ; σ > 0

Multivariate
Gaussian

f(x;µ, V ) =
1

(2π)n/2
√

|V |
exp

[

iµ · u − 1
2uT V u

]

µ Vjk

× exp
[

− 1
2 (x − µ)T V −1(x − µ)

]

−∞ < xj < ∞; − ∞ < µj < ∞; |V | > 0

χ2 f(z;n) =
zn/2−1e−z/2

2n/2Γ(n/2)
; z ≥ 0 (1 − 2iu)−n/2 n 2n

Student’s t f(t;n) =
1√
nπ

Γ[(n + 1)/2]

Γ(n/2)

(

1 +
t2

n

)

−(n+1)/2

—
0

for n > 1

n/(n − 2)

for n > 2

−∞ < t < ∞ ; n not required to be integer

Gamma f(x; λ, k) =
xk−1λke−λx

Γ(k)
; 0 ≤ x < ∞ ; (1 − iu/λ)−k k/λ k/λ2

k not required to be integer

Beta f(x; α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1
1F1(α; α + β; iu)

α
α + β

αβ

(α + β)2(α + β + 1)
0 ≤ x ≤ 1
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Example: chi-squared p-values
44
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Chi-squared p-values
45
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16 36. Statistics
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32%
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Figure 36.2: The ‘reduced’ χ2, equal to χ2/n, for n degrees of freedom. The
curves show as a function of n the χ2/n that corresponds to a given p-value.

36.2.3. Bayesian model selection :

In Bayesian statistics, all of one’s knowledge about a model is contained in its posterior
probability, which one obtains using Bayes’ theorem (36.24). Thus one could reject a
hypothesis H if its posterior probability P (H|x) is sufficiently small. The difficulty here
is that P (H|x) is proportional to the prior probability P (H), and there will not be a
consensus about the prior probabilities for the existence of new phenomena. Nevertheless
one can construct a quantity called the Bayes factor (described below), which can be
used to quantify the degree to which the data prefer one hypothesis over another, and is
independent of their prior probabilities.

Consider two models (hypotheses), Hi and Hj , described by vectors of parameters θi
and θj , respectively. Some of the components will be common to both models and others
may be distinct. The full prior probability for each model can be written in the form

π(Hi, θi) = P (Hi)π(θi|Hi) , (36.38)

Here P (Hi) is the overall prior probability for Hi, and π(θi|Hi) is the normalized p.d.f. of
its parameters. For each model, the posterior probability is found using Bayes’ theorem,

P (Hi|x) =

∫
L(x|θi, Hi)P (Hi)π(θi|Hi) dθi

P (x)
, (36.39)

where the integration is carried out over the internal parameters θi of the model. The

June 18, 2012 16:20
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Kolmogorov-Smirnov Test
• Useful for small number of events to avoid binning 
! χ2 only valid in Gaussian limit → many events/bin

• Form a cumulative distribution Σ({x}) for each event in {x}
• Overlay CDF F(x) computed from PDF f(x)
• Compute max deviation

46
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d ⇥ max |�(x)� F (x)|
⇤

N

Test: d>c(α)→ reject H0
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K-S Test
47
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D=d/sqrt(N)
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K-S Test with 2 Samples
• Can compare two CDF computed from two independent samples, 

without prior knowledge of an underlying CDF
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d ⇥ max |�(x1)� �(x2)|
�

N1N2

N1 + N2
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Standard Problem
• We see a small peak on top of a background, and want to determine if we 

have made a discovery
!  Need to evaluate significance of observation

• Standard recipe: evaluate likelihood ratio of two hypotheses
! (a) signal is present on top of background
! (b) signal is absent
"  In other words, we want to know how likely it is for background B to fluctuate to observed 

value S+B
"  Practically, it means computing max likelihood (for S+B) and likelihood for S=0

49
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Caveats
• Often report answer in terms of “gaussian sigmas”:

• But have to confirm (with toy MC) that this significance truly 
corresponds to gaussian p-value
" Toy MC

• Another important issue: trial factor, or “look elsewhere” effect

50
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49!

•  Often report answer in terms of “gaussian 
sigmas”:!

•  But have to confirm (with toy MC) that this 
significance truly corresponds to gaussian p-
value!
"  Toy MC!

•  Another important issue: trial factor, or “look 
elsewhere” effect!

Caveats 

09/15/2011 YGK, Phys129 

S =
�

2(logLmax � logL0)
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Trial Factors
• If we do not know a-priori where the signal is, significance of any 

peak is diluted by the number of independent windows we opened
! Compute probability to observe a given fluctuation anywhere in the dataset
" Naively, multiply the p-value by the number of independent trials
" Better yet, estimate probability with toy Monte Carlo

51
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Example: Search for Peak with Unknown Mean
52
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Example 

09/15/2011 YGK, Phys129 

Entries  1966
Mean   -0.04883
RMS     1.036

 / ndf 2!  35.82 / 31
Prob   0.2523

0/LmaxL) * sigsign(N
-5 -4 -3 -2 -1 0 1 2 3 4 5

1

10

210

Entries  1966
Mean   -0.04883
RMS     1.036

 / ndf 2!  35.82 / 31
Prob   0.2523

Y(2S)-OnPeak Scan

(a)

Entries  1966
Mean   -0.08188
RMS      1.06

 / ndf 2!  62.63 / 32
Prob   0.0009612

)0/Lmax2log(L) * sigsign(N
-5 -4 -3 -2 -1 0 1 2 3 4 5

1

10

210

Entries  1966
Mean   -0.08188
RMS      1.06

 / ndf 2!  62.63 / 32
Prob   0.0009612

Y(3S)-OnPeak Scan

(b)

Figure 59: Distribution of the log-likelihood variable S (statistical uncertainties only) for the
fits to (a) the Run7 Υ (2S)-OnPeak dataset and (b) the Run7 Υ (3S)-OnPeak dataset. The
blue curve is the normal distribution fit with fixed µ = 0 and σ = 1, which shows reasonable
χ2/df.

The central values of the fits and the upper limits on the branching fractions B(Υ (2S) →
γA0) × B(A0 → µ+µ−) and B(Υ (3S) → γA0) × B(A0 → µ+µ−) as a function of mass are
shown in Fig. 63-71 and Fig. 67-75, respectively.
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Example: Search for Peak with Unknown Mean
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53!

Example 

09/15/2011 YGK, Phys129 
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Figure 48: Probability to observe a background fluctuation with a given signal significance S ≡ ∆χ2

(plotted on the horizonal axis) anywhere in the range mA0 ≤ 6 GeV.

8 Systematics

The following systematic uncertainties need to be accounted for:

• IFR veto efficiency for the fixed e+e− → γγ component of the fit in the High-Energy
region is the dominant systematic uncertainty. We use the relative uncertainty of 42%, as
described in Section 5.2.

• PDF systematics. In addition to PDF uncertainties determined by Monte Carlo statistics,
the differences between the data and Monte Carlo are evaluated using the control e+e− →
γγ sample (see below).

• Fit Bias is determined from the Toy Monte Carlo studies, and is negligible (Section 7).

• Selection efficiency, determined from the Monte Carlo samples (see Fig. 9 and Fig. 11).
To account for the spread in the values of the Monte Carlo efficiency (likely due to the
oversampling of the background frames), we assign an efficiency uncertainty of 2%.

• Gamma reconstruction efficiency is provided by the neutrals group. At this point, no update
is planned for the Summer 2008. We use a conservative 2% estimate for systematics.

• Trigger systematics is evaluated using a sample of events selected by DigiFL3Prescale
(prescaled L3 pass-thru events)( see below).
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Systematics: “Another Class of Errors”
• Statistical errors:
q Spread in values one would see if the experiment were repeated multiple times
F RMS of the estimator for an ensemble of experiments done under the same conditions 

(e.g. numbers of events)
• But there is another source of uncertainty in results: systematics

54
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Simple Example
• Mass spectrometer

q  Stat error: resolution/sqrt(N)
FMeasure V,B for each run
FAverage fluctuations

q Common errors do not average out
F Scale of B,V
F Radius r
F Velocity selection
F Energy loss (residual pressure)
F Etc, etc.
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Combination of Errors

• Normally, independent errors are added in quadrature
q  For instance, if measurements of r,V,B are uncorrelated, then (to first order)

q This is fine for a single ion
F But when we average (take more data), have to take into account the fact that errors on 

r,V,B correlate measurements of mass for each ion
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Quadrature Sum
• Stat and syst errors are typically quoted separately in experimental papers
q  E.g. c=[0.9 ± 0.2 (stat.) ± 0.1 (syst.)] ft/nsec
q It is understood that the first number scales with the number of events while 

the second may not
F Splitting like this gives a feeling of how much a measurement could be improved with 

more data
F It is also understood that stat and syst errors are uncorrelated (if this is not the case, 

have to say so explicitly !)
F It is also understood that stat errors are uncorrelated between different experiments, 

while syst errors could be correlated (modeling, bias)
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Classic Example (one of many)
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Combining Errors
• For one measurement with stat and syst errors, this is easy
q Suppose we measure x1=<x1>±σ1±S
F Split into “random” and “systematic” parts
F x1=<x1>+xR+xS

F <xR>=<xS>=0, <(xR)2>=σ1, <(xS)2>=S

F Total variance V[x1]=<x12>-<x1>2=< (xR+xS)2>= σ12+S2 
F Syst and stat errors are combined in quadrature
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Systematic Errors and Fitting
• Use covariance matrix in χ2:

F di=(yi-yifit)

F Can apply the same recipe for ML fit (e.g. L~exp(-χ2/2))
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Practical Implications
• In the full formalism, can still use χ2/df test to determine the goodness of fit
F But this will not work unless correlations are taken into account
F For simplicity, if all stat errors are roughly equal and all systematic errors are common, 

can do the fit with stat errors only (this will determine stat errors on parameters), then 
propagate syst errors

• Limitations
q  More points do not improve the systematic error
q Goodness of fit would not reveal unsuspected sources of systematics
F All points move together -- same goodness of fit
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