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Probability and Statistics

"There are three kinds of lies: lies, damned lies, and statistics.”
— Mark Twain, allegedly after Benjamin Disraeli
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A Statistics Refresher

* Intro
* Definitions: results of the experiments

v Random variables, probability, PDFs

* Interpreting results
v Point estimators

v Max likelihood, least squares fits

* Hypothesis testing, confidence limits
* Systematics (time permitting)
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A Statistics Refresher

* Intro
* Definitions: results of the experiments

v Random variables, probability, PDFs

* Interpreting results
v Point estimators

v Max likelihood, least squares fits

* Hypothesis testing, confidence limits
* Systematics (time permitting)

Fell free to yell if you know this and it is boring. Yell louder if I should slow down
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Describing the Data

e Data: results of the measurements

0 In physics, we mostly deal with quantitative data, 1.e. set of numbers

80—

e Interpretation of the data: ? .’Zfﬁﬁfif??f?i—'?a”[ o
0 Range of values of a physical observable i 405_- o DB&WW—E
T Gn=(6.67430+0.00015)%10-11 m3*kg-1¥*s2 50 /(\

0 Consistency with an expectation 2°§‘ } |
&~ Did we discover a new effect ? E AN *

A Relationship between observables For e e e 17,3[3;;"5

%~ What 1s the underlying set of parameters that control the process ?

01/26/2022 YGK, Phys290E: Statistics



Example #1: Discovering Particles

m2(K+pi-)
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Example #1: Discovering Particles

m2(K+pi-) | How resonances are being produced ?

>250 |
| Dy— K*K-7-
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Example #1: Discovering Particles

Dalitz plot
4

- Dy— K+K-7

3

m2(K*r’) [GeV?]
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Uncertainty and Error

I ————
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Uncertainty and Error

* In physics, the words “uncertainty” and “error” are used
interchangeably to describe how far a particular measurement 1s
expected to deviate from the true value — typically

&> Use symbol o for the “error”

= Formal definition 1s probabilistic: 68% chance to find the experimental result within
+10 of the true value (frequentist interpretation)

&~ Though often interpreted as a range of possible true values (Bayesian interpretation)

&= We’ll come back to the differences between Bayesian and Frequentist statistical
approaches later

01/26/2022 YGK, Phys290E: Statistics



Uncertainty and Error

* How do we define what 1s typical ?

0 Underlying assumption: our experiment 1s one sample of a population of
similar measurements

& Derive the value of ¢ from the properties of the population

0 Implicit assumption: our experiment 1s mistake-free, 1.e. all similar
experiments would return similar results

I ————
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Precision vs Accuracy

A 7\
Al [ p(%0)d | ()|
c ‘.: --_‘__,.- :
Ll
.
d
C g W -
[ | | .":|. .‘|7 [ | | | “| '|
2 AN
* L ]

Precision http://anomaly.org/wade/blog/2006/01/accuracy and_precision.html

e Precision: spread of the data around the average value. Typically associated with statistical
uncertainty

e Accuracy: deviation of the average value from true value. (bias) Typically associated with
systematic uncertainty

e Bad data: “outliers”. Data inconsistent with distribution (e.g. mistakes)

01/26/2022 YGK, Phys290E: Statistics



Golden Rules

* When reporting results of a measurement, ALWAY S report its

uncertainty

0 And round off values to 1-2 digits of uncertainty:
&~ Rule of thumb: 1 digit if the last digit 1s > 4, 2 digits otherwise
Fx = 3.142+0.024
F y=3.1+£0.6
* Uncertainty can come from the spread in the data and/or precision of

the instrument
&~ “Half of last digit” rule of thumb

&= Statistically correct: Ginstrument = last digit/sqrt(12)

01/26/2022 YGK, Phys290E: Statistics
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‘ Probability: Definitions

* For numerical data, probabilistic description 1s often most convenient
(and quantitative)

 Let's define probability now

2 Formally, 1t 1s a quantity that defined by Kolmogorov axioms:

1. For every subset A in S, P(A) > 0;
2. For disjoint subsets (i.e., AN B =10), P(AUB) = P(A) 4+ P(B);
3. P(S)=1.

01/26/2022 YGK, Phys290E: Statistics
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Two Interpretations

* “Frequentist” interpretation:

2 Probability 1s a limiting frequency a given outcome 1s reported when experiments
are repeated an infinite number of times

&= Measurable parameters are represented by “estimators” with assigned confidence levels (CL).
CL measures a probability an estimator would fall in a certain range, given a true value of a

parameter. No probability 1s assigned to constants of nature.
* “Bayesian” interpretation:
2 More general: define probability as a degree of belief that a given statement 1s true

&= E.g. that the true value of parameter x 1s in interval [a,b]
= This 1s somewhat subjective, but follows how most humans think

01/26/2022 YGK, Phys290E: Statistics
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Frequentist Probability
* Defs:

0 Let §be set of all possible outcomes of a measurement

0 Any subset 4 with only one element (single outcome) 1s
elementary outcome

0 Define
P(A) = lim (# of occurrences of A in N trials)/N

N—c0

Assume outcomes are (in principle) repeatable
Confidence 1in a measurement grows with N

Jerzy Neyman

Frequentist statistics 1s appropriate (and often argued for) in
situations where measurements can be reproducibly repeated, so that
validity of approach can be tested (e.g. particle physics)

01/26/2022 YGK, Phys290E: Statistics
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Bayes Theorem
Conditional probability of A given B
P(ANB)
P(B)

Interpreted within Bayesian statistics as

P(A|B) =

The Reverend Thomas Bayes

P(theory|data) o< P(data|theory)P(theory) (1701-1761)
Posterior Likelihood Prior
probability (result of the measurement) probability

(initial prejudice)

e Allows one to interpret a single experiment as a measure of (subjective) probability that a given hypothesis is
correct (e.g. that some fundamental constant is in some range).

e Requires assigning some probability interpretation to prior knowledge. Often useful when nuisance
parameters (e.g. some parameters of the theory) have uncertainties, or when data are near a physical
boundary. Thus Bayesian Inference 1s becoming increasingly popular (even in particle physics).

e But there is an issue of subjectivity in assigning “priors”.

01/26/2022 YGK, Phys290E: Statistics
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Random Variables

 Random variable: a numerical outcome of a (repeatable)
measurement

* Characterized by a Probability Density Function
dP(x € |x,z + dx]) = f(x;0)dx

0 Depends on a set of parameters 0

&= C.. quantum mechanics

e Cumulative distribution (CDF):

cumulative
probability

Fla) = /_ ; F(x)da

L — e ——————

01/26/2022 YGK, Phys290E: Statistics
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Expectation Values

Expectation value of function u(x):
o

Elu(x)] = / u() f(z) da

— 00

Moments of a random variable x:
o0
an = Elx"] = / " f () dx n-th moment

— 00

@)
mp = El(x — ap)"] = / (x — a1)" f(z) do n-th central moment

— 00

Special moments:

0= Mean
- )

o? = V[z] = mg = ag — pu? Variance

01/26/2022 YGK, Phys290E: Statistics
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Common PDFs

Probability density function

Characteristic

; >0
20 (n/2)

Distribution f (variable; parameters) function ¢(u) Mean Variance o2
1/(b—a) a<zx<b ibu _ _iau b—a)?
Uniform f(z;a,b) = { ; atb (b—a)”
0 otherwise (b —a)iu 2 12

Binomial f(r; N,p) = N prgN " (q + pe*) N Np Npq

Y rl(N —r)!

r=0,1,2,....N; 0<p<1l; gqg=1-—p

v'te Y :

Poisson f(n;v) = — 3 n=0,1,2...; v>0 exp[v(e'™ —1)] v v
n!
1 .
Normal fzyp,0?) = Nor exp(—(z — p)?/202) exp(ipu — %02u2) L o2
(Gaussian) oV2m
—o00o < T <00 ; —o00 < U< 00 ; o>0

Multivariate flx; w, V) = - exp [iu -U — l’u,TV’u,] 7] Vi

K, V) = 2 j
Gaussian (2m)n/2 VIV

xexp [—5(x—p) 'V (z—p)
—00 < xj <o0; —oo< p; <oo; [V|>0
n/2—1_—z/2

X2 flzm) = =—F (1 — 2iu)~"/2 n m

YGK, Phys290E: Statistics
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Ex: Binomial Distribution

* Two outcomes of an experiment

0 E.g. Pass and Fail

&~ Define probability of Pass to be p
&~ Probability of Fail 1s g=1-p

* Draw N samples
* Define r to be the number of Passes (out of N)

* Key properties:

01/26/2022
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Example: Measure Efficiency

* Generate a sample of N events
* Apply selection; suppose npass €vents passed

e Estimate

01/26/2022 YGK, Phys290E: Statistics
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Example: Measure Efficiency

* Generate a sample of N events

* Apply selection; suppose npass €vents passed

e Estimate . Npass
N
V[TL ass] \/6(1 o é)
Y = A/ Ve :\/ b —
0-(6) \/ [6] N2 N
- What h h
o(e) 2 YIess [ € s OF =0 ?

01/26/2022 YGK, Phys290E: Statistics
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Central Limit Theorem

* Letxy, x2, ..., xn be independent random variables

&~ Each belongs to a distribution of with a well-defined mean <x;> and variance V[x;]

 Define . N

e Theorem: x 1s Gaussian-distributed with

f(x) 29(37; Ho s Ua:)

Mz = Z<x2>

1=1
N
1=1

01/26/2022 YGK, Phys290E: Statistics
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Central Limit Theorem

n=1 n=4
p(k) plk),
0.18/ 176 0.18
0.16 0.16
0.14 0.14
0.12 0.12 737648
0.10 0.10
0.08 0.08
0.05 0.05
0.04 0.04
0.02 0.02
0.00 723056 ¢ 0.00
n=2 n=>5
p(k) plk),
0.18 176 0.18
0.16 0.16
0.14 0.14 |
0.12 0.12 !
0.10 0.10 65 / 048
0.08 0.08
0.05 0.05
0.04 0.04
0.02 0.02
0.00 7 12 xk 000 5 1718 30k
n=3
p(k)
0.18
0.16
0.12
0.10
0.08

0.05
0.04
0.02
0.00

3 1011 18k
http://en.wikipedia.org/wiki/File:Dice_sum_central limit theorem.svg
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Cauchy (Breit-Wigner) PDF

1 1 g
T T, ) = -
f( y L0 ) - [1 N (m_ﬂm)Ql T [(1 - ;170)2 -+ ’\"2‘

TMath::BreitWigner(x.0.770,0.150)

IIIIIII Illll Ill]lllllllllll

A

IIIIIIIIIlIIIIlIIII|IIII|Illllllllllllllllll
llII|IIII|IIIl|lIII|IIII|IIllIIIII|IIII|IllI

% 02 04 06 08 1 12 14 16 18 2

Undefined variance
(central limit theorem does not apply)
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Inverse Sqrt Law
* Suppose x; are drawn from the same distribution with mean u, and
variance V[x]

* Mean of N samples 1 N
(x) = N Z L
1=1

follows Gaussian distribution:

flz)) =g({z); i, 0)

7 :% Z<$i> = [y

“Inverse sqrt law”

01/26/2022 YGK, Phys290E: Statistics
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Point Estimation

e Standard problem: set of values X, X,, ..., X, described by PDF

Typical goal: estimate the true value of one or more parameters
from the experimental data, and understand their uncertainties

 Point estimation: want to construct

f(.’l?) Ef/(xn;g\)

data parameter(s)
&~ Estimator of parameter 0

é — 9(.’171, LDy eeny .’En)

01/26/2022
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Estimator Properties

* Consistency
&~ Approaches true value asymptotically for infinite dataset
* Bias
&~ Difference wrt true value for finite dataset
* Efficiency
&~ Variance of the estimator (compared to others)
* Sufficiency

%~ Dependence on true value

* Robustness
&~ Sensitivity to bad data, e.g. outliers

* Others: physicality, tractable-ness, etc.
* No “ideal” recipe, what is best depends on the problem

01/26/2022 YGK, Phys290E: Statistics
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Basic Estimators

e Estimators for mean and variance
* Shape of the PDF (fitting):

0 Maximum likelihood
&= Most efficient, but may be biased
&= Goodness of fit is not readily available

0 Least Chisquared
&= ML for gaussian-distributed data
%~ Convenient for binned data, analytic solutions for linear functions
&~ Automatic goodness-of-fit measure
&~ Be careful of gaussian approximations (e.g. when Poisson becomes Gaussian)

01/26/2022 YGK, Phys290E: Statistics
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Mean and Variance from a Sample

Estimators: N
1
(equally weighted data) = ~ x; N>0
1=1
2 _ —0)? N>1
1=

Variances of these estimators:
2

Vi = % ie oli]=0/VN
[ = 5 (m - ¥=1)

- O [5-] — O / vV 2/N for Gaussian distribution of x and large N

01/26/2022 YGK, Phys290E: Statistics
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Sample Mean and Variance, Weighted

Estimators:
(unequally weighted data) H= Z w;x;, where Z w; =1 N>0
v i

p— N>1

The standard case 1s a collection of points with unequal error bars o:.
In this case, the most efficient estimatog would use

1/0:
v — 17
Zi 1/ g;
You can then show that the variance of the mean is
1 1

A

ol

Vi)

DNV B R

YGK, Phys290E: Statistics
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Maximum Likelithood Estimators

Define likelihood for N independent measurements Xx;:

N
L) =]] f(z;6) — max to determine estimators of 6
1=1

This leads to a system of (generally nonlinear) equations for parameters 0O:

Oln L
=0 =1....
aez 9 Z b 7n

Solutions of these equations (often done numerically) determine estimators 6 . Their
covariance matrix 1s given by

B 0%1n L
00,00, |5

(V" =

Maximum likelithood method has a nice property that (in the limit of infinite statistics) it produces unbiased
estimators with smallest possible variance. But beware of small statistics samples ! ML fits are implemented in
many statistical packages (ROOT, Python, MATLAB). Can be applied to binned or unbinned data

01/26/2022 YGK, Phys290E: Statistics
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Error Intervals From Likelithood Ratio

Li

.3

elihood scan

I LI B | L LI LI I | LI I | L L L I
I [ | | | | | I [

log(Likelihood) vs mean

& Max log(Likelihood)
®  True log{Likelihood)
1o band
26 band

-log(likelihood)
]

1/2 E .............
L1 l 11 1 1 1 1 1 1 l | I l | I - l 11
3 2 . 0.1 0.2 0.3 0.4

mean parameter

I ————
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Least Squares Estimators

For a set of Gaussian-distributed variables y;, define:

N
- — F(r::0 2
\2(8) = 2 L(8) + constamt =y Wi~ F17ii0))
i=1 9;

Estimators:

L(8) — max; = x~(6) — min

In particular, if the function F is linear in parameters 0, LS estimators are found by solving a system of linear
equations analytically:

F(x4;0) = Z(gjhj<33z’) > 0= (HTV_lH)_lHTV_ly = Dy
7=l .

Least-squares fits are typically done on binned data, and implemented in most statistical packages (SciPy,
ROOT, MATLAB, even Excel)

01/26/2022 YGK, Phys290E: Statistics
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Example: chi-squared p-values

One advantage of a y? fit 1s that the value of the minimum )? can be interpreted as a measure

of goodness-of-fit, iff errors on each data point are known, and the “noise” (distribution of data
around their expected values) are Gaussian

In the plot below, n= number of degrees of freedom = Ngata points - Nparameters

1.000 | T T T 7174
|
0.500F —_FN\I::::::::i\\ﬁ\\\\:;?\\\ ﬁ
0.200 .
n=1 2.3 4 6 8 15 \25)\ 40
0.100 —
1

0 \20\30 \s0 1
0.050 \\\\\\\\\\\ .
| 1 | | | | | il

\
|
2 3 45 7 10 20 304050 70 100
2
X

(M

T

/

T TTTTII]

0.020
0.010
0.005

p-value for test

o for confidence intervals

T lllllll|
1 111

0.002
0.001
1

For a “good fit”, expect y? to be close to number of degrees of freedom = Ndata points - Nparameters
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Confidence Limits

* Frequentist approach: confidence belts

&~ Define T
P(x1<x<m2;9)=1—a:/ f(z;0) dx
T

. | Do)

o Caveats: interval not unique.
o - . x,(6), 6,(x) -
Pl U —— —— = Problems near a physical boundary.
A O —— E Use centr.al intervals .(equal area
S — ' on both sides) or decide based on

— likelihood ratio (e.g. Feldman-
— i Cousins)
fffff — U x

Possible experimental values x

01/26/2022 YGK, Phys290E: Statistics
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Bayesian Approach

* Likelihood function + prior -> posterior for parameter

_ L(=]|6)7(0)
p(Olz) = [L(z|0)7(6) d6’

* Treat as PDF and integrate

1l —a= / p(6|x) df
v

lo

* Caveat: choice of prior

01/26/2022
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Example

Ben Hooberman'’s thesis (UC Berkeley Ph.D. 2009)

3 F T e T T - 3 F ]

(o] B (o] B

£ T = [

o3 1 fos8r 7

=R =R

0.6 4 osfF ]
0.4f 4 o04f ]
0.2 4 o02F ]
02~ =20 2 4 6 8 10 022270 2 4 6 8 10

BF(Y(3S) — et) (x10®) BF(Y(3S) — ut) (x109)

Figure 2.33: Likelihood as a function of the branching fractions BF (T (3S) — er) (left) and
BF(Y(3S) — pt) (right) [60]. The dotted red curve includes statistical uncertainties only, the
solid blue curve includes systematic uncertainties as well. The shaded green regions bounded by
the vertical lines indicate 90% of the area under the physical (BF > 0) regions of the likelihood
curves.

S
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Hypothesis Testing
* Setting a confidence interval 1s a special case of a general problem
of hypothesis testing
0 E.g. hypothesis 1s that x 1s within this interval
0 Or x belongs to a distribution

0 Hypothesis testing 1s a procedure for assigning a significance (confidence)
level to a test

&~ Generally involves computing quintiles of a distribution

MM? (GeV ?)
I ——
01/26/2022 YGK, Phys290E: Statistics
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Luck of the Draw
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Number of entries
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Example
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Number of entries
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100

80

60

40

20

Example
Background Sil%lnal
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True

False

-1.5 -1 -0.5
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Example
E, . Background Slﬁnal
-Z§ 100 (H 1) ( O)

True
False

60

40

20

1 1 I | 1 LHHA—H_A*] Il | p—|

-1.5 -1 -0.5 0 0.5
O

0

o= / f(z|signal)dz  Type-I error (signal efficiency=1-a.)

— O

3 = /+OO f(x|bke)da Type-II error (bkg misID=[3)

cut

01/26/2022 YGK, Phys290E: Statistics
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Example: Gaussian distribution

1 pu+o
20 /u—5

o~ @—m)2/20% g1 o (

f(x; U,0)
Q )
0.3173 lo
4.55 x1072 20
2.7 x1073 30
6.3x107° 4o
5.7x10~7 50
2.0x107? 60
o/2
| |
1 2 3

0
V2o

)

Q )
0.2 1.280
0.1 1.640
0.05 1.960
0.01 2.580
0.001 3.290
10— 3.890

01/26/2022
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Neyman-Pearson Lemma

» Want to choose a cut such that a & [3 are as small as possible ar the
same time

0 Or maximize efficiency and purity:
Feg=1-00— max
& [3—min so p= €sig Vsig . mAax
€bkeVbkg T+ €sig NVsig

* Neyman-Pearson Lemma:

0 Acceptance region giving the best rejection power (smallest [3) for a given a
1s defined by the region
f(x|Ho)

t:f@Hl)

01/26/2022 YGK, Phys290E: Statistics
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Example

Discriminants

—

Bagkground Efficiency
o ()

=
n

— 0Old Fisher

- NN 8 var, per Christophe

— Likelihood discriminant

0 0.2 0.4 0.6 0.8 1
Signal Efficiency

01/26/2022
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Single-var vs Multi-var Discriminants

* For a single variable, there 1s a 1-to-1 transtormation between Xcu
and o, and therefore t and Xcut

* Not so obvious for a multiple discriminating variables

0 N-P lemma says likelihood ratio 1s in theory the best discriminating variable

&~ Assuming likelihood ratio 1s computed correctly (e.g. with correlations)

0 In practice, other techniques are computationally easier to implement
&~ Machine learning !
& Fisher, Neural networks, Boosted Decision Trees, etc

&~ More to come

01/26/2022 YGK, Phys290E: Statistics
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Goodness of Fit

* Standard problem: does fit agree with data ?

0 Hy: data belong to a given distribution

* Chi-squared test

Ny — F(2)2
— Z (yz fQ(ZEZ )) — Ndof = Npoints - Nparameters

i—1 9, (for good fit)

* Or, for a correlated set of points

—

2= G- HTV G- f)

V <(y f ) (y f ) >(covar1ance matrix)

where

01/26/2022 YGK, Phys290E: Statistics
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Chi-squared Distribution

n/2—1_—z/2
f(z;n) = © c 2>
Y i
| 2n/2T(n/2)
i Chi-squared IF’P,F,,D,ﬁT,,‘_,, — |_Chi-squared PDF, n=5 |

1

10 — — T T T
ntries -
Entries 100
1 —
] Mean 0.304 10 Mean 4.997| 3
RMS  0.9084 RMS  3.151 .

Il[IIU.II Il[IIU.Il Il[llllll Il[lllll.l Illllllll

- [y
(=] <
& IS

< Illllml Illllml II[IITTll TTIT

104 S
111 | 11 1 | 111 | 11 1 I 111 | 11 1 I 111 | 11 | 11 1 | 111 : | L L 1 I L L 1 L | L 1 1 1 | 1 1 1 L I 1 1 L 1 :
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|_Chi- squared PDF n= 10 | | _Chi-squared PDF, n=100 |
m‘E”' ........................ "'—gl T T
F Entries 100 3 , = Entries 100 =
102 Mean 10 - 10° = Mean 100 =
3 RMS  4.472 3 10"E RMS 1414
107k - = 3
5 ] 109 E =
10° E 107 E =
. 1027§ E§
0 3 1091 =
10° —;l wasg %
E 10 =
167E|||||||||1|||||||||||||||||||||||||||||||||||||E 1643 T T T T T T ST R EE
o 5 10 15 2 25 30 35 40 45 50 0 50 100 150 zoo 250 300 350 400 450 500

I ————
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Example: chi-squared p-values

p-value for test

o for confidence intervals

| Illllll| | Illllll| /lll

1.000
0.500

0.200
0.100
0.050

0.020
0.010
0.005

0.002
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1

3.4 6 8

| 11111

|
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Kolmogorov-Smirnov Test

* Usetul for small number of events to avoid binning

0 2 only valid in Gaussian limit — many events/bin
 Form a cumulative distribution 2({x}) for each event in {x}
* Overlay CDF F(x) computed from PDF 1(x)

* Compute max deviation
d = max |X(x) — F(x)|VN
Test: d>c(a)— reject Ho

& |0.100.05 0.025 0.01/0.0050.001
c(cv)/1.22/1.36/1.48 |1.63/1.73 |1.95

01/26/2022
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Cumulative Probability
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K-S Test
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K-S Test with 2 Samples

* Can compare two CDF computed from two independent samples,
without prior knowledge of an underlying CDF

N1 N
d = max |X(x1) — X(x2) ‘\/N ];|_]2V
1 2

Cumulative Probability

01/26/2022
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Standard Problem

* We see a small peak on top of a background, and want to determine if we
have made a discovery

0 Need to evaluate significance of observation

* Standard recipe: evaluate likelihood ratio of two hypotheses
0 (a) signal 1s present on top of background

0 (b) signal 1s absent

%~ In other words, we want to know how likely it is for background B to fluctuate to observed
value S+B

&~ Practically, it means computing max likelihood (for S+B) and likelihood for S=0
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Caveats

* Often report answer 1n terms of “gaussian sigmas’:

S = v/2(log Limax — log Lo)

* But have to confirm (with toy MC) that this significance truly

corresponds to gaussian p-value
& Toy MC

* Another important 1ssue: trial factor, or “look elsewhere” effect
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Trial Factors

* If we do not know a-prior1 where the signal 1s, significance of any
peak 1s diluted by the number of independent windows we opened
0 Compute probability to observe a given fluctuation anywhere 1in the dataset

&~ Naively, multiply the p-value by the number of independent trials
&~ Better yet, estimate probability with toy Monte Carlo

I ————
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Example: Search for Peak with Unknown Mean

Y(2S)-OnPeak Scan

I

I IIIIII|

I

10

I IIIIII|

I

IIIIII|

Entries 1966
Mean -0.04883
RMS 1.036
x*/ ndf 35.82/31
Prob 0.2523

5 -4 -3

-2

-1

0

1

2 3 4 5
Sign(N ) *\ L e/l
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Example: Search for Peak with Unknown Mean

Probability

y

-
<

—— 2 prob with 2 d.f

Probabilit

..... %2 prob with 3 d.f
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Systematics: “Another Class of Errors”

* Statistical errors:
0 Spread in values one would see 1t the experiment were repeated multiple times

&= RMS of the estimator for an ensemble of experiments done under the same conditions
(e.g. numbers of events)

* But there 1s another source of uncertainty in results: systematics

. -—‘\\ 7\
Al et ((®) )
C s N/ /
C e N
U - -
r
a
C —— —
v \‘_ ’/’/ \._
(2] Hwon
. . 0/ /_,.'. . . -/ /’
— ", .
Precision
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Simple Example

+ Mass spectrometer = IR o
m- 9B e T 5 GG X s

o [ Al
Ol
2 V on
SOuUrce
- )

0 Stat error: resolution/sqrt(N)

- detector slits

¢ too lig
OO TN “a .
(N
to vacuum
.

pump o

3,. accelerator ¢
& Measure V,B for each run e e %‘ ‘
&~ Average fluctuations
0 Common errors do not average out
& Scale of B,V | ot kypion o+
&~ Radiusr §1oo- r
&~ Velocity selection §
%~ Energy loss (residual pressure) |
&~ Etc, etc. 78 80 82 84 86

Mass units
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Combination of Errors

* Normally, independent errors are added in quadrature

0 For 1nstance, 1if measurements of r,V,B are uncorrelated, then (to first order)

. o] 5]
V

m r B
0 This 1s fine for a single 10n

= But when we average (take more data), have to take into account the fact that errors on
r,V,B correlate measurements of mass for each ion
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Quadrature Sum

* Stat and syst errors are typically quoted separately in experimental papers
0 E.g.c=[0.9 £0.2 (stat.) £ 0.1 (syst.)] ft/nsec

0 It 1s understood that the first number scales with the number of events while
the second may not

&~ Splitting like this gives a feeling of how much a measurement could be improved with
more data

&~ It 1s also understood that stat and syst errors are uncorrelated (if this i1s not the case,
have to say so explicitly !)

&~ It 1s also understood that stat errors are uncorrelated between different experiments,
while syst errors could be correlated (modeling, bias)

I ————
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Classic Example (one of many)

ALEPH —d— 80.458+0.055
DELPHI —-— 80.404:0.074
L3 e — 80.376+0.077
OPAL ——=——  80.490+0.065
LEP preliminary —-— 80.447+0.042
DO = 80.483:+0.084

Tevatron Run-1 —s—  80.454:0.059

World average ~  —#— 80.450-+0.034
803 804 805 806 807
M,,[GeV]
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Combining Errors

* For one measurement with stat and syst errors, this 1s easy

0 Suppose we measure X;=<x;>+t0;xS
& Split into “random” and “systematic” parts
& x;=<x;>+xR+x5
& <xR>=<x5>=0, <(xR)?>=0;, <(x5)’>=S
&~ Total variance V[x;]=<x;2>-<x;>?2=< (xR+x5)?>= 0,;2+5?

&~ Syst and stat errors are combined 1n quadrature

I ————
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Systematic Errors and Fitting

» Use covariance matrix in y2:

—ZZ(I\ o,

F di=(y;i-yi)
&> Can apply the same recipe for ML fit (e.g. L~exp(-x2/2))

I ————
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Practical Implications

* In the full formalism, can still use 2/df test to determine the goodness of fit

&~ But this will not work unless correlations are taken into account

&~ For simplicity, if all stat errors are roughly equal and all systematic errors are common,
can do the fit with stat errors only (this will determine stat errors on parameters), then
propagate syst errors

* Limitations
2 More points do not improve the systematic error
0 Goodness of fit would not reveal unsuspected sources of systematics

&~ All points move together -- same goodness of fit
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