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* HEP = biased towards my interested, collider experiments and jets...
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Glossary

Tagger: Classifier used to identify an object.
ie: b-tagger identifies a jet as containing a b-hadron or not

Fake: Object of class x tagged as class y

Signal: What you are looking for
aka the needle

Background: What you want to reduce
aka the haystack

irreducible = cannot be reduced because it looks exactly like the signal

signal

background

Search for the dogduck
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Machine Learning Quick Start

BDT or NN or ... trained parameters

input
 ie: jets in an event

output
 ie: likelihood event 
       contains h→bb
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Uses of Machine Learning in HEP

Classification (Supervised)
does this event contain a Higgs boson or QCD background?

Classification (Unsupervised)
does this event look like new physics?

Regression
value of a funtion without a (simple) analytical form

Event Generation
generate new events without the need for complicated simulation

and constantly growing...

CAT DOG

CAT NOT CAT

photon in
  nature

photon in
 calorimeter

Mean: 3.6
Stddev: 1.8
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Object/Event Classification

The classical use of ML in High Energy Physics…
NN on reconstructed secondary 
vertices to identify b-jets

FTAG-2018-01

ANN for identifying VBF h→bb
events from QCD

HIGG-2019-04

BDT used for observation of 
single top quark production

arXiV:0903.0850

NN classifies jets as W, Z, H, t, b, 
light and categories in event are 
counted for vector-like quarks 
search B2G-18-005

NN for identifying taus BDT for identifying W vs top jets

JETM-2018-03

TAU-20-001

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/FTAG-2018-01/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HIGG-2019-04/
https://arxiv.org/abs/0903.0850
https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-18-005
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-03/
http://cms-results.web.cern.ch/cms-results/public-results/publications/TAU-20-001/


March 26, 2019MoriondQCD 20196

What are boosted objects?

X

A hadronically decaying particle W
   at rest can be reconstructed
      using two anti-KT R=0.4 jets.

X
pT

Δθ~2mX/pT

But if W is boosted, then
   anti-kT R=0.4 will not be able to
      resolve two separate jets.

Solution: reconstruct a single large-R jet and look at
 the radiation pattern of the constituents (substructure).

● Invariant mass of constituents?
● How many hard prongs?
● How many b-tagged track jets?

WW
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Some Jet Moments

` `

W QCD Top
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Multivariate Classification With ML
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“Cut-Based” Classification



September 22, 2021Particle Physics10

Multivariate Classification
Neural network or BDT also 
allows to draw curly boundaries!
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Architecture

The Classifier
NN or BDT...

1 if light jet, 0 otherwise

1 if W jet, 0 otherwise

1 if top jet, 0 otherwise

“one hot encoding”
truth label of W jet = (0, 1, 0)
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Results of ATLAS Classifier
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How to Choose Class?

In most ML tutorials, you will see:

In HEP, we often cut on discriminator variable:
● Tight cut → very pure sample

● Low on statistics
● Used for measurements

● Loose cut → many signal events
● Good for searches

● Chosen value is part of analysis optimization
● Sometimes only few calibrated cuts allowed

Tag as WTag as W

Tag as not W
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Receiver Operating Characteristic (ROC) Curve

Line made by varying
discriminant cut

Q: Which of the curves has 
the best performance?
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Receiver Operating Characteristic (ROC) Curve

Better!
More rejection for
  given efficiency
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Jet Images

Calorimeter ≈ an image
● x,y = ϕ, η
● color = energy deposition

● Image classification is a key

part of ML in industry
● Can a NN learn the calculation

of “jet moments” from images?
● And can it calculate jet moments

we didn’t think of?

1511.05190

https://arxiv.org/abs/1511.05190
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Convolutional Neural Networks

CNN’s are a great architecture for processing images
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Result of Jet Images
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Calibrating a Classifier

● Classifier is a black box… no idea what it is learning.
● Training is (mostly) done on simulated events.

● What if our simulation is wrong? NN can be sensitive to random corners…

● Calibration: ensure same efficiency in MC as in data
1)Run classifier on data that is pure in signal via selection

2)Run classifier on MC (pure in signal)

3)Scale Factor = correction to MC = ϵdata/ϵMC 

4)Repeat on background sample second SF

Example of pure b-jet sample

Any jets in a dileptonic 
ttbar event will be b-jets

THIS IS THE HARDEST PART TO PUT A 
NEW CLASSIFIER INTO PRODUCTION!!!
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Important Classifier Figures

● Thoughts?
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Important Classifier Figures

● Plot your input variables
● Teaches you what is important. Even better if you include correlations

● ROC curves are great way to compare classifiers
● Great overview of the performance. Not just a single point.

● Always include a simple cut-based for comparison
● If your NN does not outperform cut-based, then don’t use it (Keep It Simple).
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Anomaly Searches

Given collision events, find ones that you can’t exaplain.

● Supervised: train on background and signal
● Most powerful, but model dependent. Not anomaly search.

● Weakly Supervised: train with imperfectly labeled data
● Hard to tell if “anomaly” is new physics or bad modeling

● Unsupervised: no simulation as input to training
● The “holy grail” of ML in collider experiments

arXiv:1902.02634

dedicated
 supervised

not targeted
 supervised

unsupervised
  (CWoLa)

https://arxiv.org/abs/1902.02634
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Auto Encoders

Learn to encode and decode your data to a representation

Important figure of merit (loss function)

If trained on class of x If not trained on class of x

????? question
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Auto Encoders

Learn to encode and decode your data to a representation

Important figure of merit (loss function)

If trained on class of x If not trained on class of x
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Searching for New Physics with Deep Autoencoders*

● Proposed for a (weakly) supervised jet substructure search
● Input to the autoencoder is a jet image
● Three architectures tried

● Principal Component Analysis
● Deep Neural Network
● Convolutional Neural Network

● Two approaches to training
● Weakly supervised: train on simulated background
● Unsupervised: train on (simulated) background with signal injected

arXiv:1808.08992

* Marco Farina, Yuichiro Nakai, David Shih

https://arxiv.org/abs/1808.08992https://arxiv.org/abs/1808.08992


September 22, 2021Particle Physics26

Reconstruction Error

(training) (training)
(different modeling of background)
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Performance

signal = top jets signal = gluino
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Be Careful of Black Boxes

Typical analysis flow:
1)Reduce background (ie: classifier)

2)Estimate remaining background

You need to make sure that 1) 
does not make 2) harder.

ie: do not sculpting of background!Often modeled by a 
“smooth function”
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Unsupervised Method

Training dataset is contaminated with top sample
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Unsupervised Method

Training dataset is contaminated with top sample
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Regression

Estimate quantity given properties.

● Example: calibrated jet energy given calorimeter measurements
● ML gives opportunity to handle correlations
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Calibrating Jets

This is what enters 
our detector.
“the truth”

This is what our 
detector sees.
“reconstructed”

Calibration:
reconstructed energy = true energy on 
average

Why is this hard?
● Calorimeter response not gaussian
● Calorimeter response not fully known
● Different jets respond differently

● Depends on jet content (ie: b- vs light jet)

Calibration depends on many 
variables. NN is a convenient way 
to account for their correlation.
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Numerical Inversion

● Learning to predict pT
true given pT

reco does not close
● Due to assumptions on learning sample (ie: pT

true distribution)

● Numerical inversion to the rescue:
1)Learn calorimeter response “f(pT

true)”

2)Invert function f(pT
true) to get calibration pT

reco,cal=f -1(pT
reco)

3)Apply multiple f-1(x ;θi) sequentially to correct for θi

● Neural Net can be used to create a single f-1(x;θ0..n)
● Generalized Numerical Inversion: A Neural Network Approach to Jet Calibration

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2018-013/
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Numerical Inversion With NN

1)Learn detector response by training NN L(x, )θ
● Approximation of 

2)Learn inversion by training NN C(L(x, ), θ )θ  to predict x

3)Apply calibration

Note:
● θ are jet moments that predict jet type (ie: radiation pattern of quark vs gluon)
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Response vs θ
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Removing Dependence on θ 
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Closure of Method



September 22, 2021Particle Physics38

Generative Models

● Simulating our detector is very computationally expensive
● Especially harmonica structure of our Ecal

● Fast Simulation is very useful
● PCA: database of frozen showers, assigned randomly
● GAN: Showers generated via neural network (inputs: particle and rand num)

SIMU-2018-04

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SIMU-2018-04/
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Voxelizting a Shower

Think of it as a 3D image.

calorimeter depth
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Generative Adversarial network
Generate Shower

Adversary: Reject unrealistic showers during training
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Track Reconstruction

arXiv:2003.11603: bunch of people at LBL

All possible hit 
combinations

Hit combinations 
corresponding to a single track

Great intro to GNN’s: Relational inductive biases, deep learning, and graph networks

Image credit: arXiv:2010.13557

https://exatrkx.github.io/

https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/1806.01261
https://arxiv.org/abs/2010.13557
https://exatrkx.github.io/
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GAN Results



September 22, 2021Particle Physics43

Detector Data Compression arXiv:2105.01683

● Pixel detectors (tracking)
● x/y positions with hits
● Many hits! Lots of data…
● Very sparse

● Compression
● Lossless already good
● Can you improve via lossy? (use NN)

● Caveats to NN “in detector”
● Need to be energy efficient
● Need to be radiation hard

● Are NN’s inherently reliant to SEUs?

Example “pixel data”

Logic implementation using HLS4ML

https://arxiv.org/abs/2105.01683
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Pattern Recognition via Associative Memory
arXiv:2101.05078

Hardest part of track reconstruction is pattern recognition.
Pattern recognition = which hits came from the same particle

Creating pattern bank of N most likely patterns is ML.

Pattern: possible pattern a 
track leaves in the tracking 
detector.

Associative Memory: simultaneous 
matching against I patterns

https://arxiv.org/abs/2101.05078
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Proposed Short Projects

Classification (Supervised)
Boosted Top vs W/Z vs QCD Tagger

Classification (Unsupervised)
Anomalies in Hadronic Resonances using Auto-Encoders

Regression
Improving Jet Energy Scale/Resolution

Event Generation
Event Simulation Using Adversarial Networks

Note: Limitation in project ideas = generating data (currently my responsibility)
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