Practical ML Examples in HEP*

* HEP = biased towards my interested, collider experiments and jets...

Karol Krizka

September 22, 2021

Particle Physics

Tagger: Classifier used to identify an object.

ie: b-tagger identifies a jet as containing a b-hadron or not

Fake: Object of class x tagged as class y

Signal: What you are looking for

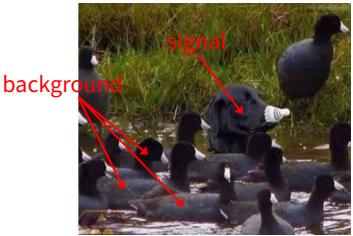
aka the needle

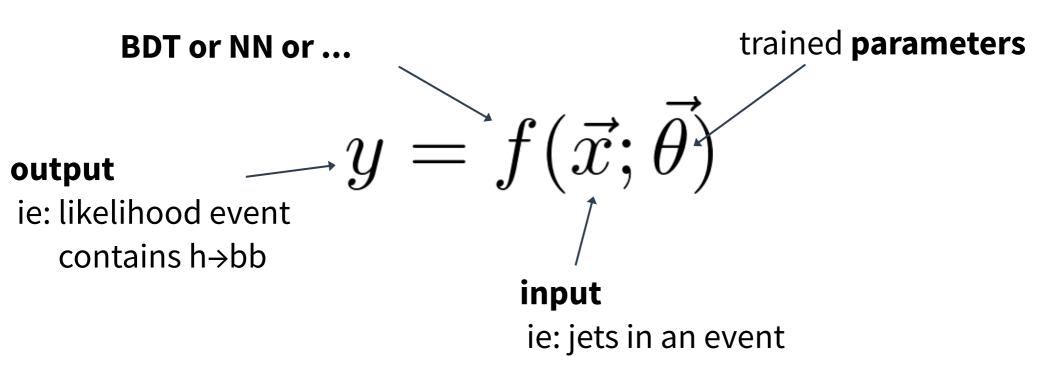
Background: What you want to reduce

aka the haystack

irreducible = cannot be reduced because it looks exactly like the signal

Search for the dogduck





Uses of Machine Learning in HEP

Classification (Supervised)

does this event contain a Higgs boson or QCD background?

Classification (Unsupervised)

does this event look like new physics?

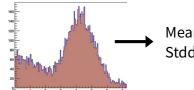
Regression

value of a funtion without a (simple) analytical form

Event Generation

generate new events without the need for complicated simulation

and constantly growing...



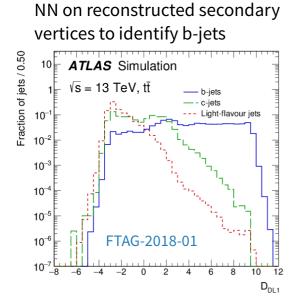
Mean: 3.6 Stddev: 1.8

nature

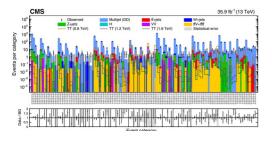
photon in calorimeter

Object/Event Classification

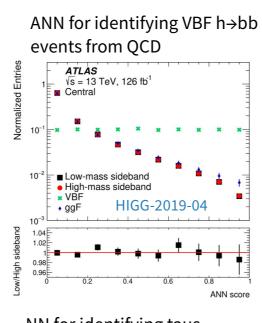
The classical use of ML in High Energy Physics...



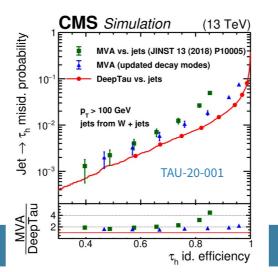
NN classifies jets as W, Z, H, t, b, light and categories in event are counted for vector-like quarks search B2G-18-005



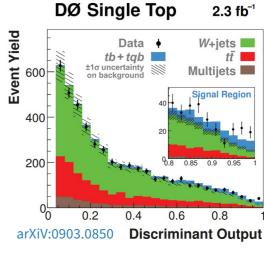
Particle Physics



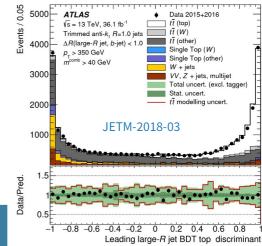
NN for identifying taus



BDT used for observation of single top quark production



BDT for identifying W vs top jets

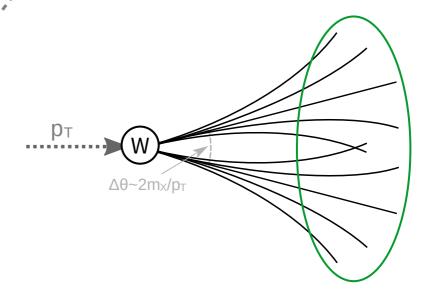


, 2021

What are boosted objects?

A hadronically decaying particle *W* at rest can be reconstructed using two anti-K_T R=0.4 jets.

But if *W* is boosted, then anti-k_τ R=0.4 will not be able to resolve two separate jets.

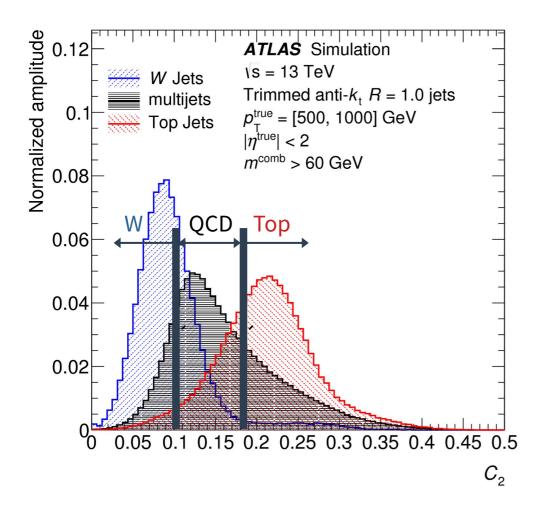


Solution: reconstruct a single large-R jet and look at the radiation pattern of the constituents (substructure).

- Invariant mass of constituents?
- How many hard prongs?
- How many b-tagged track jets?

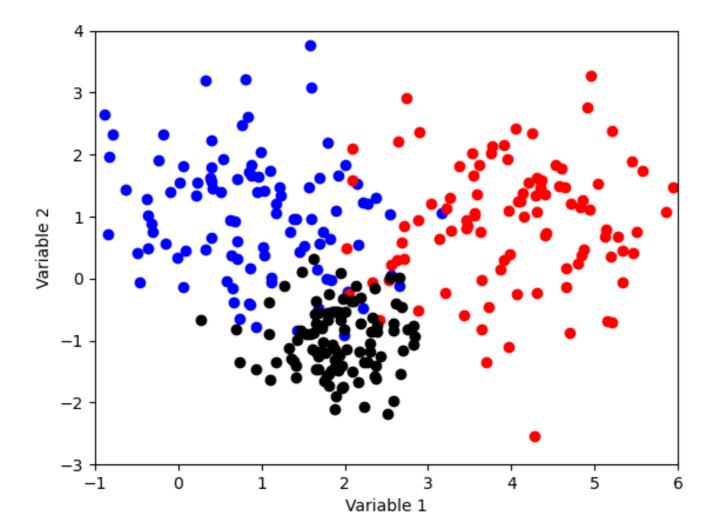
W

Some Jet Moments

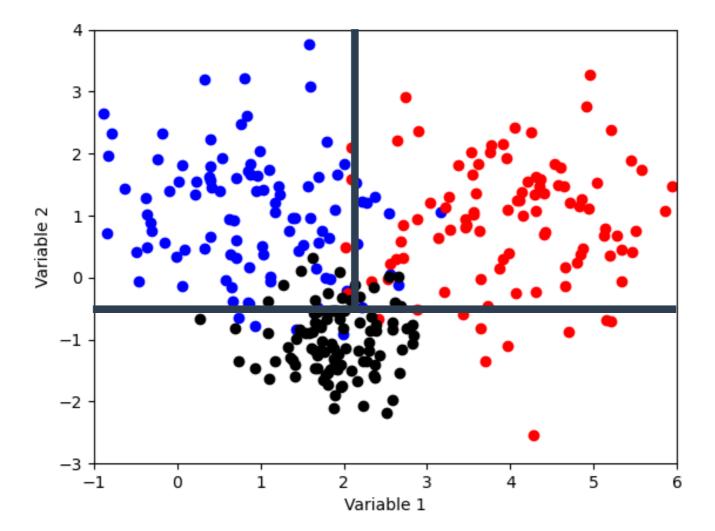


Observable	Variable	Used for
Calibrated jet kinematics	$p_{\mathrm{T}}, m^{\mathrm{comb}}$	top,W
Energy correlation ratios	e_3, C_2, D_2	top,W
N-subjettiness	$\tau_1, \tau_2, \tau_{21}$	top, W
	τ_3, τ_{32}	top
Fox–Wolfram moment	$R_2^{\rm FW}$	W
Splitting measures	Z _{cut}	W
	$\sqrt{d_{12}}$	top, W
	$\sqrt{d_{23}}$	top
Planar flow	\mathcal{P}	W
Angularity	<i>a</i> ₃	W
Aplanarity	Α	W
KtDR	KtDR	W
Qw	Q_w	top

Multivariate Classification With ML

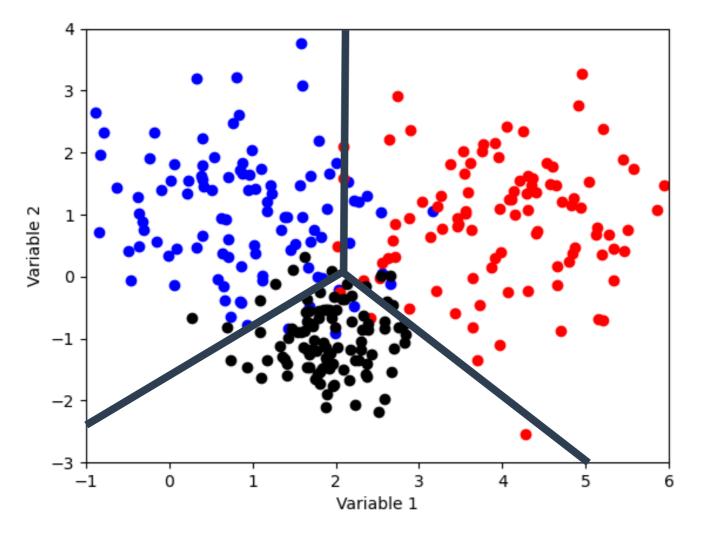


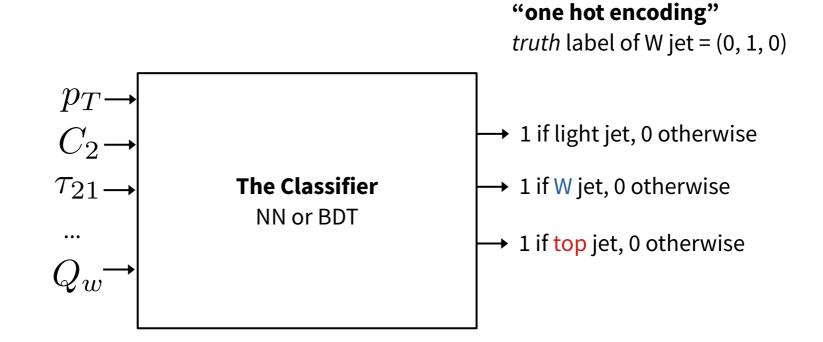
"Cut-Based" Classification



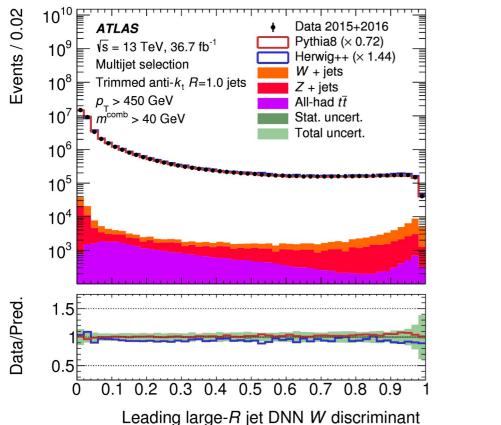
Multivariate Classification

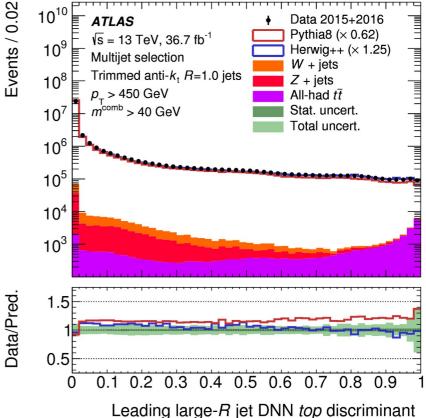
Neural network or BDT also allows to draw curly boundaries!





Results of ATLAS Classifier



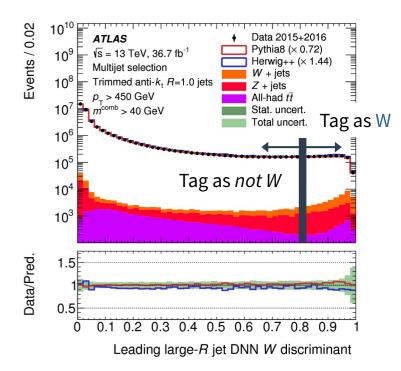


In most ML tutorials, you will see:

class = argmax{ $[p_W, p_{QCD}, P_t]$ }

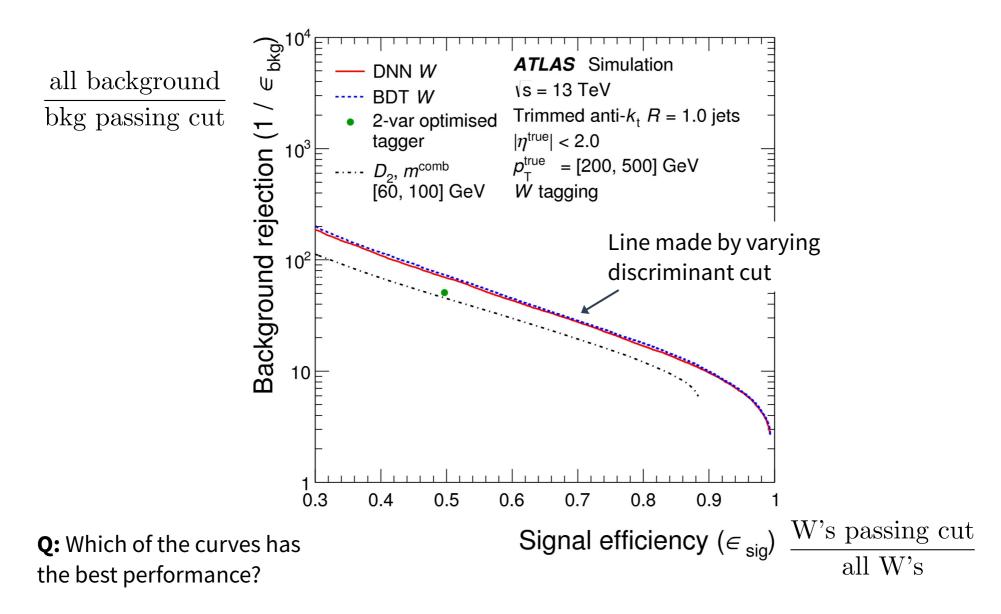
In HEP, we often cut on discriminator variable:

- Tight cut → very pure sample
 - Low on statistics
 - Used for measurements
- Loose cut → many signal events
 - Good for searches
- Chosen value is part of analysis optimization
 - Sometimes only few *calibrated* cuts allowed

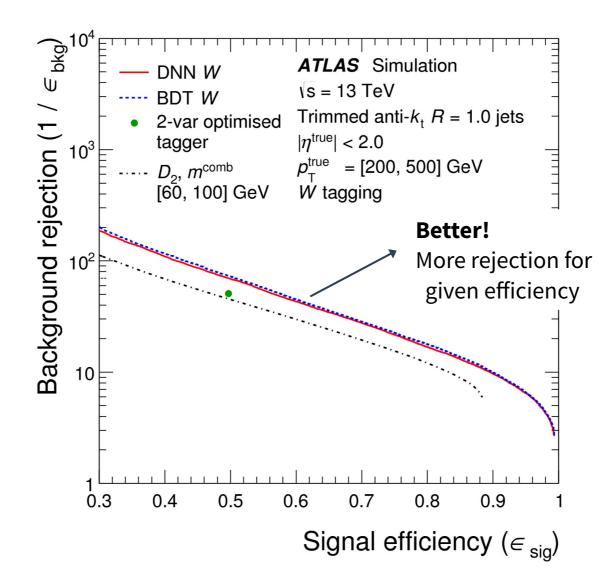


September 22, 2021

Receiver Operating Characteristic (ROC) Curve



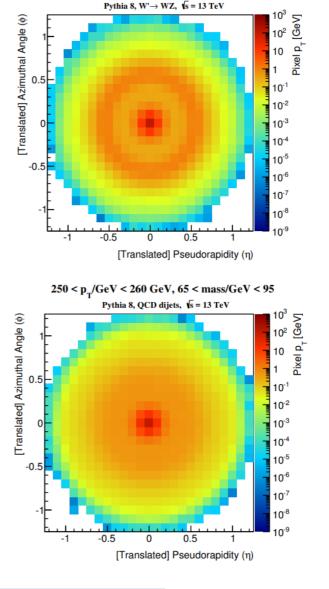
Receiver Operating Characteristic (ROC) Curve



Jet Images

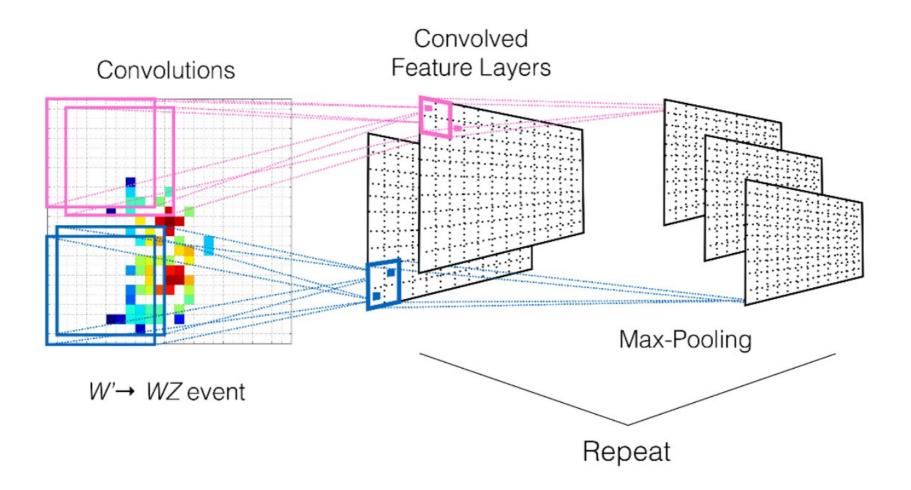
Calorimeter ≈ an image

- x,y = φ, η
- color = energy deposition
- Image classification is a key part of ML in industry
- Can a NN learn the calculation of "jet moments" from images?
 - And can it calculate jet moments we didn't think of?



250 < p_r/GeV < 260 GeV, 65 < mass/GeV < 95

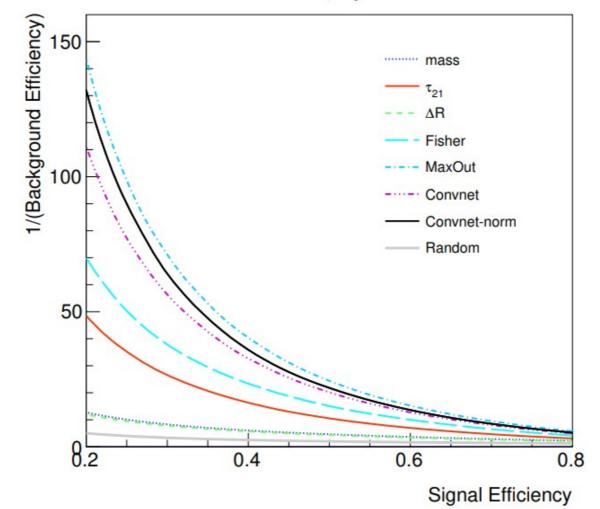
CNN's are a great architecture for processing images



Result of Jet Images

 $250 < p_T/GeV < 300 GeV, 65 < mass/GeV < 95$

 $\sqrt{s} = 13$ TeV, Pythia 8



Calibrating a Classifier

- Classifier is a black box... no idea what it is learning.
- Training is (mostly) done on simulated events.
 - What if our simulation is wrong? NN can be sensitive to random corners...
- Calibration: ensure same efficiency in MC as in data

1)Run classifier on data that is pure in signal via selection

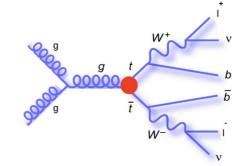
2)Run classifier on MC (pure in signal)

3)Scale Factor = correction to MC = $\epsilon_{data}/\epsilon_{MC}$

4)Repeat on background sample second SF

THIS IS THE <u>HARDEST PART</u> TO PUT A NEW CLASSIFIER INTO <u>PRODUCTION</u>!!!

Example of pure b-jet sample



Any jets in a dileptonic ttbar event will be b-jets

Important Classifier Figures

• Thoughts?

Important Classifier Figures

• Plot your input variables

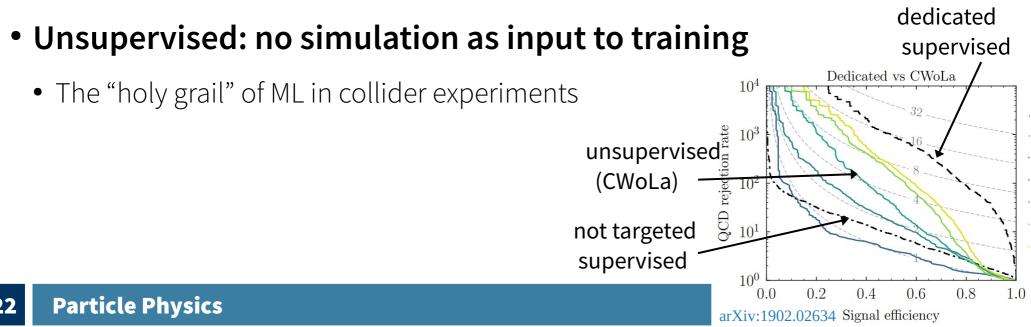
• Teaches you what is important. Even better if you include correlations

• ROC curves are great way to compare classifiers

- Great overview of the performance. Not just a single point.
- Always include a simple cut-based for comparison
 - If your NN does not outperform cut-based, then don't use it (Keep It Simple).

Given collision events, find ones that you can't exaplain.

- Supervised: train on background and signal
 - Most powerful, but <u>model dependent</u>. Not anomaly search.
- Weakly Supervised: train with imperfectly labeled data
 - Hard to tell if "anomaly" is new physics or bad modeling



Learn to encode and decode your data to a representation



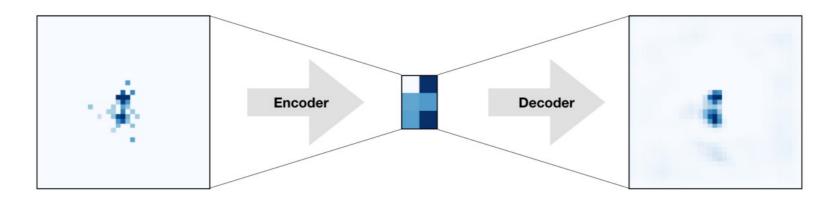
If trained on class of x

If **not** trained on class of x $x \approx d(e(x, \theta_e), \theta_d))$ $x \not\approx d(e(x, \theta_e), \theta_d))$

Important figure of merit (loss function)

????? question

Learn to encode and decode your data to a representation



If trained on class of x $x \approx d(e(x, \theta_e), \theta_d))$ $x \not\approx d(e(x, \theta_e), \theta_d))$

If **not** trained on class of x

Important figure of merit (loss function)

$$L = |x - d(e(x, \theta_e), \theta_d)|$$

Searching for New Physics with Deep Autoencoders*

* Marco Farina, Yuichiro Nakai, David Shih

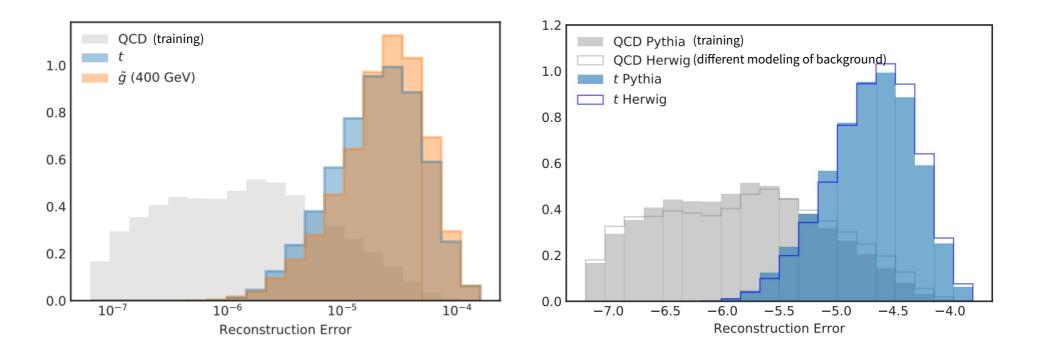
arXiv:1808.08992

- Proposed for a (weakly) supervised jet substructure search
- Input to the autoencoder is a jet image
- Three architectures tried
 - Principal Component Analysis
 - Deep Neural Network
 - Convolutional Neural Network

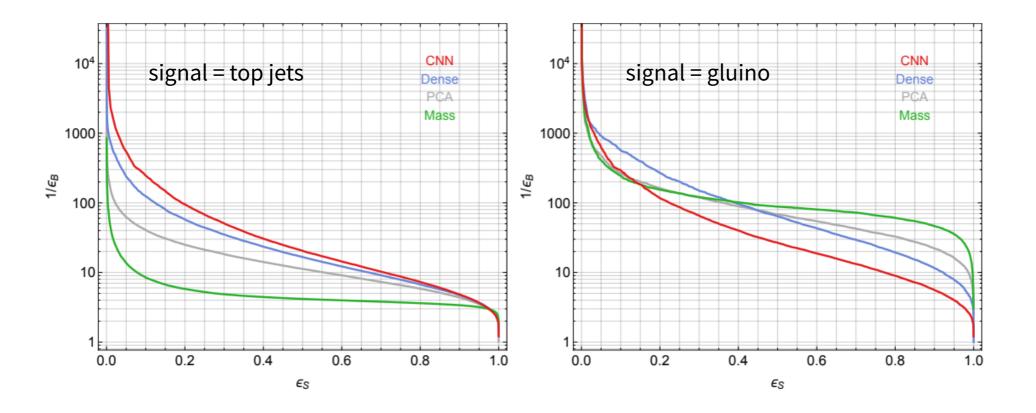
Two approaches to training

- Weakly supervised: train on simulated background
- Unsupervised: train on (simulated) background with signal injected

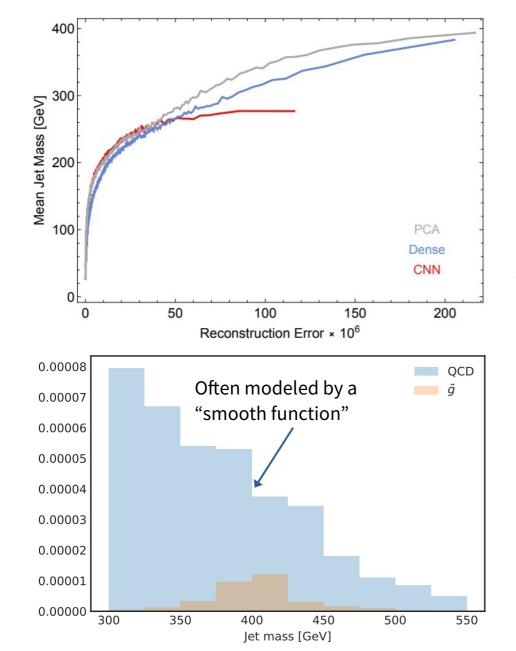
Reconstruction Error



Performance



Be Careful of Black Boxes



Typical analysis flow:

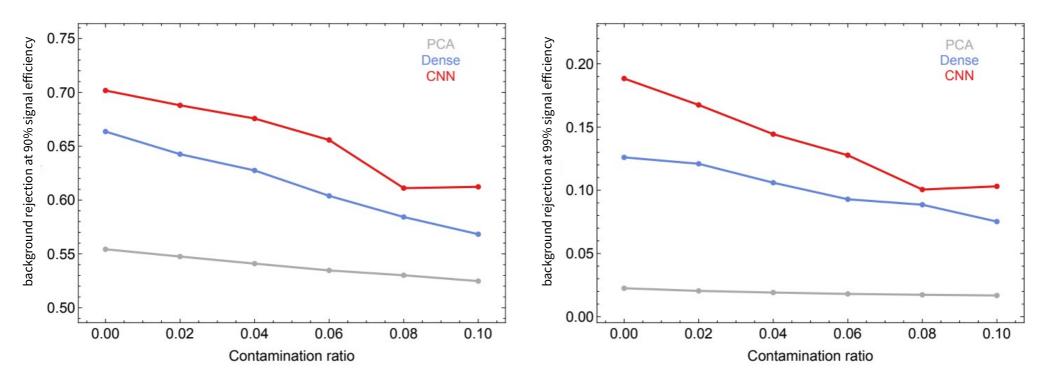
1)Reduce background (ie: classifier)

2)Estimate remaining background

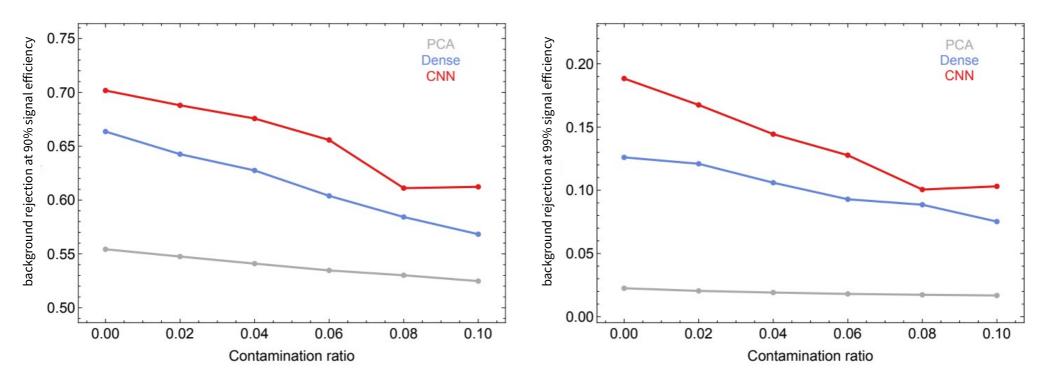
You need to make sure that 1) does not make 2) harder.

ie: do not sculpting of background!

Training dataset is contaminated with top sample



Training dataset is contaminated with top sample

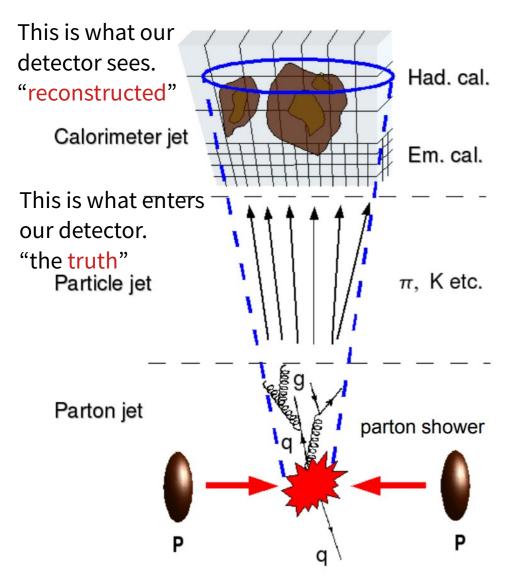


Estimate quantity given properties.

$$y = f(\vec{x}; \vec{\theta})$$

- Example: calibrated jet energy given calorimeter measurements
- ML gives opportunity to handle correlations

Calibrating Jets



Calibration: $f(x) \equiv \langle p_T^{\text{reco}} | p_T^{\text{true}} = x \rangle = x$ reconstructed energy = true energy *on average*

Why is this hard?

- Calorimeter response not gaussian
- Calorimeter response not fully known
- Different jets respond differently
 - Depends on jet content (ie: b- vs light jet)

Calibration depends on many variables. NN is a convenient way to account for their correlation.

Numerical Inversion

- Learning to predict p_T^{true} given p_T^{reco} does not close
 - Due to assumptions on learning sample (ie: p_T^{true} distribution)

• Numerical inversion to the rescue:

1)Learn calorimeter response " $f(p_T^{true})$ "

2)Invert function $f(p_T^{true})$ to get calibration $p_T^{reco,cal} = f^{-1}(p_T^{reco})$

3) Apply multiple $f^{1}(x; \theta_{i})$ sequentially to correct for θ_{i}

$$p_{\mathrm{T}}^{\mathrm{reco}} \mapsto \hat{p}_{\mathrm{T}}^{\mathrm{reco}} = f_{\theta_n}^{-1} \left(\cdots f_{\theta_2}^{-1} \left(f_{\theta_1}^{-1} \left(p_{\mathrm{T}}^{\mathrm{reco}} \right) \right) \cdots \right)$$

- Neural Net can be used to create a single $f^{1}(x; \theta_{0..n})$
 - Generalized Numerical Inversion: A Neural Network Approach to Jet Calibration

1)Learn detector response by training NN $L(x, \theta)$

• Approximation of $f_{\theta}(x) = \langle p_{T}^{reco} | p_{T}^{true} = x, \theta \rangle$

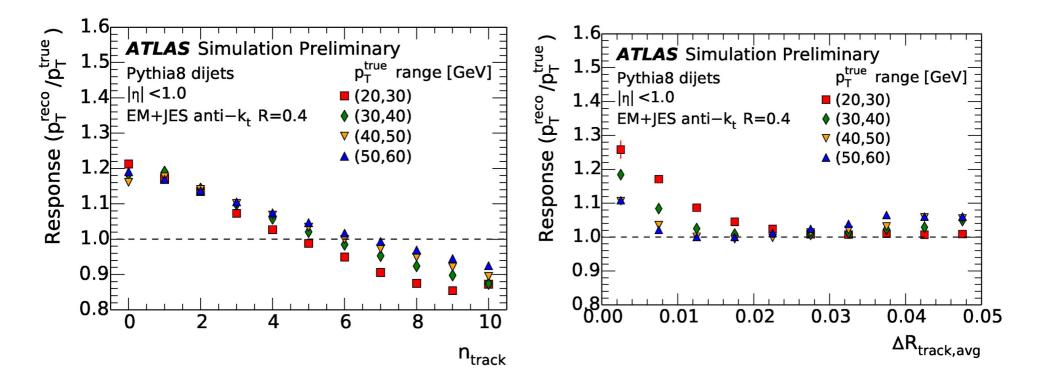
2)Learn inversion by training NN $C(L(x, \theta), \theta)$ to predict x 3)Apply calibration

$$p_{\rm T}^{\rm reco} \mapsto \hat{p}_{\rm T}^{\rm reco} = C(p_{\rm T}^{\rm reco}, \theta)$$

Note:

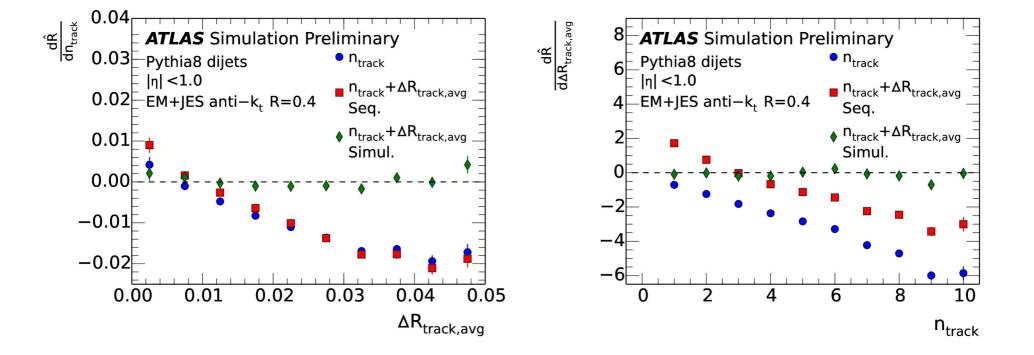
• θ are jet moments that predict jet type (ie: radiation pattern of quark vs gluon)

Response vs θ

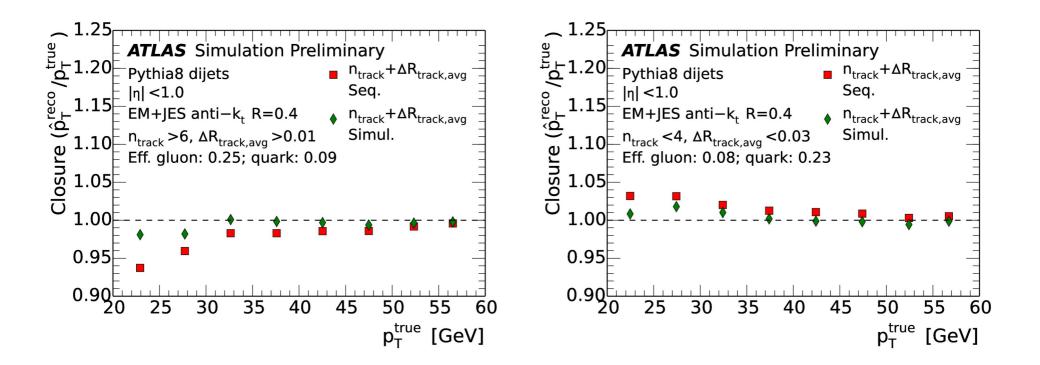


Removing Dependence on θ

$$\hat{R} \equiv <\hat{p}_T^{\rm reco}/p_T^{\rm true}|p_T^{\rm true} = x >$$

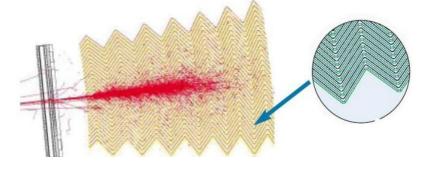


Closure of Method



Generative Models

- Simulating our detector is very computationally expensive
 - Especially harmonica structure of our Ecal

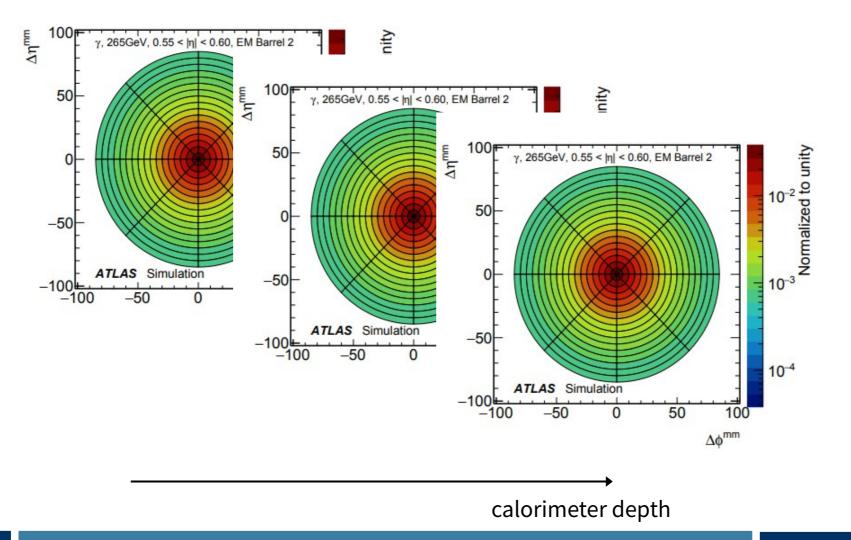


SIMU-2018-04

- Fast Simulation is very useful
 - PCA: database of frozen showers, assigned randomly
 - GAN: Showers generated via neural network (inputs: particle and rand num)

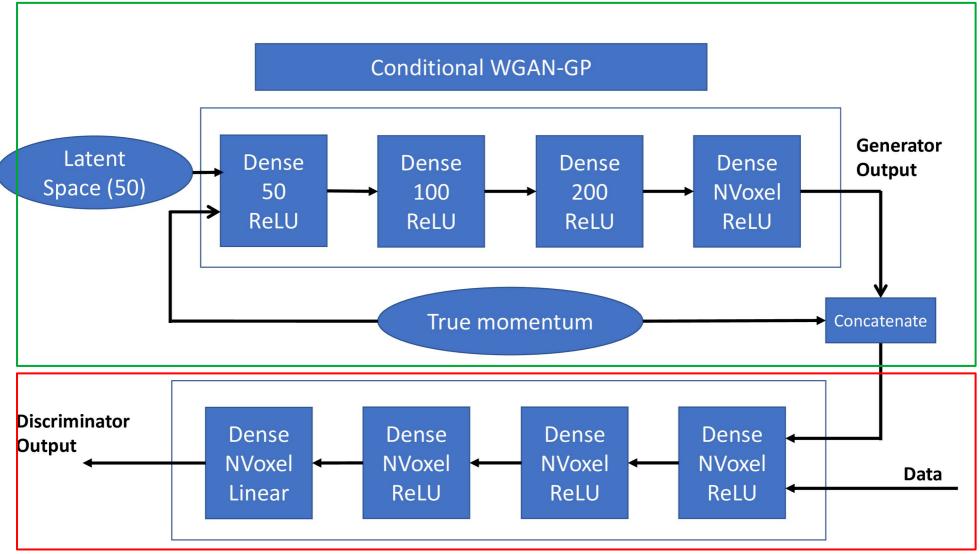
Voxelizting a Shower

Think of it as a 3D image.



Generative Adversarial network

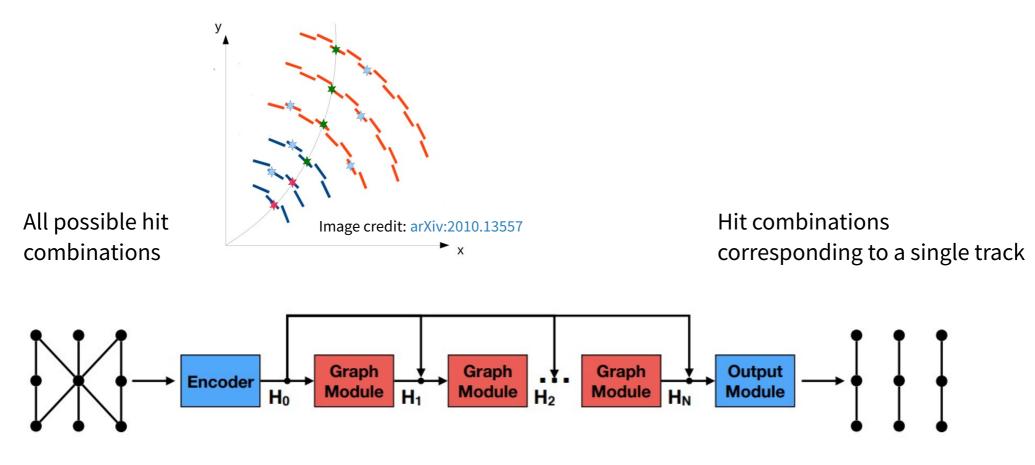
Generate Shower



Adversary: Reject unrealistic showers during training

Track Reconstruction

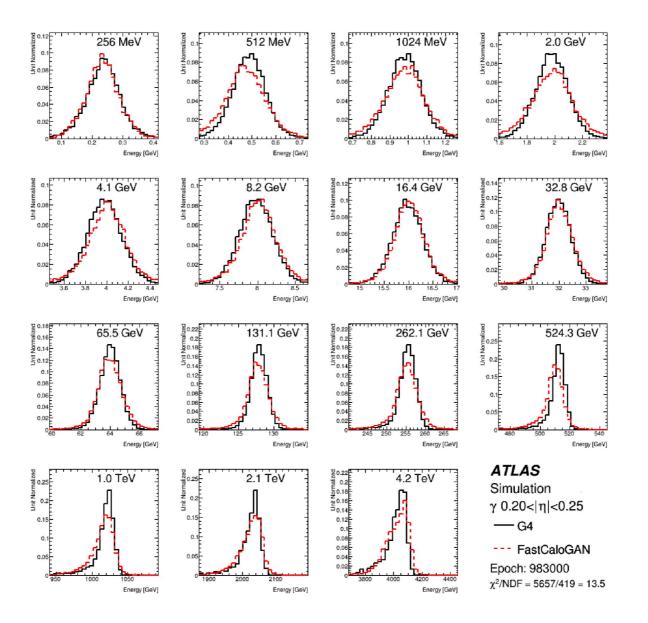
https://exatrkx.github.io/



arXiv:2003.11603: bunch of people at LBL

Great intro to GNN's: Relational inductive biases, deep learning, and graph networks

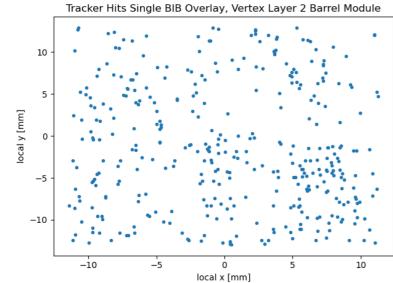
GAN Results



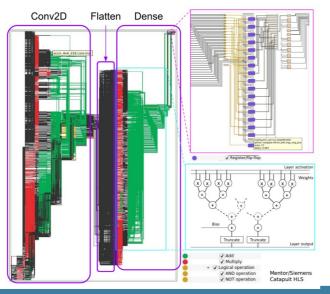
September 22, 2021

Detector Data Compression

Example "pixel data"



Logic implementation using HLS4ML



- Pixel detectors (tracking)
 - x/y positions with hits
 - Many hits! Lots of data...
 - Very sparse

Compression

- Lossless already good
- Can you improve via lossy? (use NN)
- Caveats to NN "in detector"
 - Need to be energy efficient
 - Need to be radiation hard
 - Are NN's inherently reliant to SEUs?

Pattern Recognition via Associative Memory

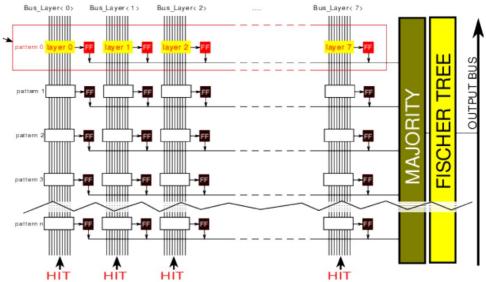
arXiv:2101.05078

Hardest part of track reconstruction is pattern recognition.

Pattern recognition = which hits came from the same particle

Pattern: possible pattern a track leaves in the tracking detector.

Associative Memory: simultaneous matching against I patterns



Creating pattern bank of N most likely patterns is ML.

Proposed Short Projects

Classification (Supervised)

Boosted Top vs W/Z vs QCD Tagger

Classification (Unsupervised)

Anomalies in Hadronic Resonances using Auto-Encoders

Regression

Improving Jet Energy Scale/Resolution

Event Generation

Event Simulation Using Adversarial Networks

Note: Limitation in project ideas = generating data (currently my responsibility)