

The Compton Spectrometer and Imager Project for MeV Astronomy

John Tomsick (COSI PI) UC Berkeley/Space Sciences Laboratory May 25, 2022

Overview

- □ Part 1: MeV gamma-ray astronomy, scientific goals, COSI requirements
- Part 2: Compton telescope operation and COSI-balloon
- Part 3: Use of machine learning in the data pipeline
- □ Part 4: From balloon to satellite mission

Part 1: MeV gamma-ray astronomy, scientific goals, COSI requirements

The MeV gap

- Previous and current missions have had relatively poor sensitivity in the MeV range
- Discovery space where there is known to be interesting physics
 Nucleosynthesis and supernovae
 511 keV e⁻e⁺ annihilation line
 High levels of polarization
 - Multimessenger astrophysics

• NuSTAR (nuclear line spectroscopy)

High-energy space missions with COSI connections

Mission	Dates	Instrument	Energy band	COSI connection
CGRO	1991-2000	COMPTEL	0.8-30 MeV	Compton telescope
INTEGRAL	2002-now	SPI	0.02-8 MeV	Germanium detectors (excellent energy resolution)
Fermi	2008-now	LAT	20 MeV-300 GeV	Large field of view (FOV) giving all-sky coverage every day
NuSTAR	2012-now	CZT focal plane	3-79 keV	Nuclear line spectroscopy (science connection)
COSI	Planned for launch in 2026	Single instrument	0.2-5 MeV	All of the above (Compton telescope, germanium detectors, FOV >25%-sky)

The MeV gap

- Previous and current missions have had relatively poor sensitivity in the MeV range
- Discovery space where there is known to be interesting physics
 Nucleosynthesis and supernovae
 511 keV e⁻e⁺ annihilation line
 High levels of polarization
 Multimessenger astrophysics

Nucleosynthesis and ²⁶Al at 1.809 MeV

 \square ²⁶Al is produced in stellar processes Released into the interstellar medium (ISM) in winds from massive stars and supernova explosions

□ 0.7 Myr half-life for decay producing a 1.8 MeV gamma-ray

• One of the legacies of the COMPTEL mission is the mapping of ²⁶Al in the Galaxy

Oberlack+96

- Angular resolution improvement by • 2x

COSI

A Gamma-rav Space Explorer

7

Nucleosynthesis and supernovae: Using ⁴⁴Ti to trace ejection velocities

□ ⁴⁴Ti is a tracer of young supernova remnants (60 yr half-life)
 •⁴⁴Ti→⁴⁴Sc: 68 keV, 78 keV
 •⁴⁴Sc→⁴⁴Ca: 1.157 MeV

□ NuSTAR observations

- Cas A: 44Ti lines redshifted by 1100-3000 km/s
- •SN 1987A: ⁴⁴Ti line redshifted by ~700 km/s
- Evidence for asymmetric explosions but there are only measurements for these two cases
- □ COSI: Search for more with a Galactic survey at 1.157 MeV

Cas A with NuSTAR (Grefenstette+14)

SN 1987A with NuSTAR (Boggs+15)

511 keV e⁻e⁺ annihilation line

- e⁺ from massive star and core collapse SN nucleosynthesis
 ²⁶Al: 4x10⁴² e⁺/s
 - ■⁴⁴Ti: ~3x10⁴² e⁺/s
- □ Strong excess coming from the Galactic bulge
 - Need 2x10⁴³ e⁺/s (bulge only)
- COSI will identify the spatial components and potentially find individual e⁺ sources

INTEGRAL/SPI map of the 511 keV emission (Bouchet+10)

Skinner+14, Siegert+16

High levels of polarization at MeV energies

□Crab nebula and pulsar measurements at 0.1-1 MeV with INTEGRAL ■46-98% (Dean+08; Forot+08; Moran+16)

Cygnus X-1 accreting black hole measurements with INTEGRAL ■~70% above 0.4 MeV (Laurent+11, Jourdain+12)

Gamma-ray burst (GRB) polarization measurements

E.g., McConnell+17

COSI polarization measurements for:

GRBs

- Galactic sources: BHs, Crab
- Active Galactic Nuclei

COSI

Multimessenger astrophysics

- □ Gamma-ray observations have played a crucial role in all multimessenger astrophysics (MMA) observations
- Gamma-rays + neutrinos from SN1987A
- Gamma-rays + gravitational waves from GRB 170817A/GW170817
- □ Gamma-rays + high-energy neutrinos from TXS 0506+056/IceCube-170922A

Blazars: looking down the barrel of a BH jet

Figure from Gao+19

COSI:

- Rapid reporting of short GRB positions
- Gamma-ray counterparts to HE neutrino events
- Nearby SNe (but rare)

Merging neutron stars (short GRBs)

COSI science goals

Revolutionizing our understanding of creation and destruction of matter in our Galaxy and beyond

Energy range: 0.2-5 MeV gamma-rays

- 1. Uncover the origin of Galactic positrons
- 2. Reveal Galactic element formation
- 3. Gain insight into extreme environments with polarization
- 4. Probe the physics of multimessenger events

511 keV with

(Bouchet+10)

INTEGRAL

COSI science goals with qualitative observational requirements

- 1. Uncover the origin of Galactic positrons
 - Imaging spectroscopy of entire Galaxy at 511 keV
- 2. Reveal Galactic element formation (⁴⁴Ti, ²⁶Al, ⁶⁰Fe)
 Imaging spectroscopy of entire Galaxy at 1.157, 1.809, 1.173, 1.333 MeV
- 3. Gain insight into extreme environments with polarimetry
 - Polarization sensitivity
- 4. Probe the physics of multimessenger events
 - Large FOV to catch GRBs
 - Angular resolution for localizations

Observational requirements to do the science:

- FOV: large fraction of the sky
- High resolution spectroscopy
- Polarimetry
- Moderate angular resolution

COSI orbit and operations for daily all-sky coverage

 Instantaneous >25%-sky field of view (FOV) and North-South repointing every 12 hours to cover the whole sky every day
 "Survey Mode"

Near-equatorial orbit to minimize South Atlantic Anomaly passages (and background)

COSI in low-Earth orbit (LEO)

COSI requirements

Primarily for goals 1+2

Characteristic	Requirement	
Sky Coverage	 >25%-sky instantaneous FOV 100%-sky each day 	
Energy Resolution (FWHM)	 6.0 keV at 511 keV 9.0 keV at 1.157 MeV (⁴⁴Ti) 	
Narrow Line Sensitivity (2 yr, 3σ, point source)	[photons cm ⁻² s ⁻¹]	
511 keV	• 1x10 ⁻⁵ (Galactic bulge is 100x brighter)	
1.8 MeV	• $3x10^{-6}$ (²⁶ Al, ~7x better than COMPTEL)	
Angular Resolution (FWHM)	• 2.0° at 1.8 MeV	

Goal 3	Accreting BH polarization	 Reaches bright AGN in 2 yr: Cen A, 3C 273, NGC 4151 At least three Galactic BHs
	GRB polarization	S30 GRBs with polarization measurements

Short GRB detection, localization, and reporting	 >10 short GRBs (~20 detections predicted) <1° localizations provided in <1 hr
--	---

Part 2: Compton telescope operation and COSI-balloon

COSI A Gamma-ray Space Explorer

Detecting photons at ~MeV energies

Cross-sections for Germanium

- COSI-balloon instrument
- Twelve 8x8 cm² detectors
- Funded under NASA's Astrophysics Research and Analysis (APRA) program

Compton telescope operating principle

E_γ = E₁ + E₂ + E₃ + ...
 The photon may have come from any point on the "event circle"

deconvolution techniques (e.g., maximum likelihood) to produce images

Compton telescope operating principle

Choice of detector material

□ Advantages of germanium

- Best energy resolution: 2.96 eV per electron-hole pair
- Moderate atomic number: Z=32
 - Lower Z does not have the stopping power for MeV energies
 - Higher Z has too much stopping power for a Compton telescope
- High purity germanium detectors (HPGeDs) with thickness of 1.5 cm with 3-dimensional position sensitivity

□ But keep in mind

- Complex process for making the detectors (Amman+18+20)
- Voltages of >1000 V are used for electron-hole collection
- Detectors need to be cooled to <90 K</p>

3-dimensional position sensitivity

Uses orthogonal strips to measure x and y Uses rise-time difference to measure z

Energy spectra from calibration

 $\Box E_{\rm C} = E_{\gamma}/(1+2E_{\gamma}/m_{\rm e}c^2)$

□A Compton telescope relies on the Compton continuum photons

COSI A Gamma-ray Space Explorer

Cryostat, cryocooler, and shields (COSI-balloon)

Cryostat

- Aluminum shell
- HV feedthroughs
- Preamp boxes (bottom photo)

Cryocooler

- Stirling cycle cooler
- □CsI active shields
 - Anticoincidence

- Sunpower CryoTel
- 11 W lift for 160 W input
- Largest item in instrument power budget

- Detectors surrounded by 4cm-thick CsI shields (white) read out by photomultiplier tubes
- 4 of 6 shields shown
- Largest item in instrument mass budget

COSI A Gamma-ray Space Explorer

COSI balloon campaigns

- Nuclear Compton Telescope (NCT):
 2 GeD-prototype flew from Ft.
 Sumner, NM in 2005
- □ NCT: 10 GeD instrument from Ft. Sumner in 2009
- NCT: Failed launch from Australia in 2010
- □ COSI: 12 GeD instrument from Antarctica in 2014
- □ COSI: 12 GeD instrument from New Zealand in 2016
- COSI: 2020 NZ campaign cancelled due to COVID

First detection of the Crab nebula during the 2009 flight (Bandstra+11)

COSI 2016 46 days later, COSI landed in Peru, Wanaka completing the longest Flight mid-latitude flight for a large balloon May 30, 2016: First balloon to report a GRB detection and localization with Gamma-ray Coordination Network (GCN): GRB160530A COSI detects and images the Crab nebula COSI detects and images 511-keV emission from COSI measures 1.8 MeV Galactic e+-eemission from Galactic annihilation Al-26

May 17, 2016: COSI launch

Slide adapted from Alex Lowell

COSI-balloon 2016 flight: GRB 160530A

COSI A Gamma-rav Space Explorer

Image pixels are 5°x5°

LBNL instrumentation colloquium - John Tomsick

COSI-balloon summary

Part 3: Use of machine learning in the data pipeline

Enhancing the data analysis pipeline with machine learning

COSI A Gamma-ray Space Explorer

Interaction sequencing

Challenge:

Determine the path of the gamma-ray in the instrument

Reconstructed event

Set of interactions with *the same measured arrival time*

Green: Germanium detectors Dots: Interaction locations Lines: Possible paths

Results:

□ Comparison of different machine learning approaches

Smallest angular distance between the event circle and the source location (degrees)

Provides a very significant decrease in the number of incorrectly reconstructed events

Event classification

Challenge:

Remove events that do not deposit all of their energy in the instrument

Collapsing the multi-dimensional data space into the boosted decision tree (BDT) variable that best separates the two classes

Optimal cut:

Background reduced by half while only reducing signal efficiency by 8%

Part 4: From balloon to satellite mission

COSI advances vs. COSI-balloon

- □ Change from 12 to 16 GeDs
- □ Change from 37 to 64 strips per GeD side
 - Better angular resolution
 - Better event reconstruction
- □ Change from CsI to BGO shield material
 - Better stopping power for BGO
- Longer exposure
 - COSI has a 2-year baseline mission (and no consumables)
- □No atmosphere
 - No attenuation, lower and more stable background
- □All-sky coverage

From balloon to satellite

□ Minimize size of shields to keep mass low

- □ Switch to ASIC electronics
 - Needed to reduce mass while accommodating the increased number of channels
- Ruggedize detector support structure for satellite launch
 - Keep launch loads on germanium detectors at an acceptable level
 - Isolate electronics from cryocooler vibrations
- □ Thermal system
 - Balloon: liquid cooling system
 - Satellite: heat pipes and radiators

COSI

A Gamma-ray

• Size is 1 meter across (flat-to-flat)

Considerations for keeping shield mass low

COSI

□ Moving cryocooler below instrument deck

- Allows for shield box to be smaller, shorter, and lighter
- □ 2cm-thick BGO instead of 4cm-thick CsI
 - better stopping power with less mass due to smaller housing
- Shields ~ 90 kg
- Total satellite mass < 365 kg (to equatorial LEO)

LBNL instrumentation colloquium - John Tomsick

COSI

ASIC readout

- 32 channel ASICs developed by the Naval Research Laboratory (NRL)
 - Need 4 ACISs per detector
 - 2048 channels for 16 GeDs
- Heritage is NCIASIC2, which has been used for silicon strip detectors and CZT
- $\hfill \square$ NRL1 added a timing circuit
 - Needed by COSI for depth measurement
 - Wulf+18, NIM A
- □ NRL2 separated energy and timing circuits to allow for a shorter peaking time for timing
 - Met requirements except for an instability in the track-and-hold section of the peak detect circuit

□ NRL3 recently received and undergoing tests

ASIC requirements and NRL2 performance

Even though NRL2 will not be used for flight because of the "peak detect" bug, we were able to make measurements to demonstrate that NRL2 meets COSI's requirements

30.6 81 J 34.9 53.2 104 10³ 302.9 276.4 Counts 10² 10¹ 100 50 100 150 200 250 300 350 Energy (keV)

Ba-133 Spectrum

□ Early testing of NRL3 looks good

Value	Requirement	Measurement	Met
Energy Resolution	< 3.1 keV FWHM	2.4 (LV) 2.9 (HV) keV FWHM	
Trigger Threshold (dynamic range)	<18 keV	17.1 keV	
Maximum Range (dynamic range)	>1800 keV	>1850 keV	
Noise Threshold (nearest neighbor)	<10 keV	<9.4 keV	
Timing Threshold (for depth)	<50 keV	48 keV	
Timing Resolution (for depth)	<11.3 ns FWHM	8-10.6 ns FWHM	

105

COSI detector support structure

- The COSI detector support structure was prototyped and tested during phase A
- $\hfill\square$ Use of Frangibolt $^{\rm TM}$ and spring system
 - Launch configuration: Frangibolt[™] locks support structure in place
 - After launch: Frangibolt[™] releases and spring system provides isolation from cryocooler vibrations
- A suite of vibration tests on the structure validated the mechanical integrity of the assemblies and vibration isolation between the spacecraft and the GeD array

Frangibolt[™].

• Main Phase A deliverable is a Concept Study Report

- CSR completed in March 2021
- NASA Site Visit June 2021
- Selected to proceed to Phase B formulation in October 2021

From NASA Astrophysics Town Hall: Paul Hertz

COSI

A Gamma-ray Space Explorer

The COSI collaboration

University of California

- John Tomsick (Principal Investigator, UCB)
- Steven Boggs (Deputy PI, UCSD)
- Andreas Zoglauer (Project Scientist, UCB)
- J. Martinez Oliveros (Student Collaboration Lead, UCB)
- P. Saint-Hilaire (SEO Lead, UCB)

Naval Research Laboratory

• E. Wulf, C. Sleator, B. Phlips

Goddard Space Flight Center

• A. Shih, C. Kierans, A. Smale

Northrop Grumman

U.S.NAVAL RESEARCH

NASA

Institutions of Co-Is and Collaborators

- Clemson University
- Los Alamos National Laboratory
- Louisiana State University
- IRAP, France
- INAF, Italy
- Kavli IPMU and Nagoya University, Japan
- JMU, Germany
- NTHU, Taiwan

Operation: Every day, COSI will cover the entire sky, resulting in a sensitive all-sky map in the 0.2-5 MeV range.

Science: Revolutionizing our understanding of creation and destruction of matter in our Galaxy and beyond.

COSI required line sensitivity and grasp compared to previous and current missions

COSI is optimized for making images of emission lines over large regions of the sky, enabling full-Galaxy and all-sky images.

□ COSI's large FOV provides a substantial improvement in grasp (aka "geometric factor").

COSI

A Gamma-rav

Space Explorer

Summary and conclusions

- MeV sensitivity has lagged behind that of other energy bands, but holds large science potential
- COSI-balloon has allowed for instrument development and has provided an important proof of concept
- □ Engineering changes for satellite
 - Keeping shield mass low
 - ASIC readout
 - Detector support structure
 - Thermal system
- Getting involved
 - Machine learning projects (URAP program)
 - Student collaboration project (Background and Transient Observer)
 - Public data challenges starting in the Fall

Backup

Strip pairing to determine x and y

Challenge:

□ Since all interactions from a single gamma-ray occur simultaneously, there can be x,y ambiguity when two interactions occur in the same detector

LBNL instrumentation colloquium - John Tomsick

Results:

□ Benchmark (energy-matching approach) vs. 4-layer fully connected neural network:

Provides a significant increase in the reliability of the interaction location determinations

COSI

COSI observational summary

Transient scienceImage: Strange scienceImage: Strange

Expected persistent source types

- □ AGN (e.g., Cen A)
- □ X-ray binaries (e.g., Cyg X-1)
- Pulsars
- □ Gamma-ray binaries

positrons ²⁶Al Vela Galactic Center ⁶⁰Fe Cygnus ⁴⁴Ti Cas A Tycho

COSI comparisons:

- Obtains 46-day balloon 511 keV sensitivity in 1 day
- Energy resolution is >20x better than COMPTEL
- FOV is 4x larger than COMPTEL and 12x larger than INTEGRAL

The radioactive Milky Way

COMPTEL and COSI

CGRO/COMPTEL:

- ~40 cm³ resolution
- ∆E/E ~10%
- up to 0.4% efficiency

COSI has 16 detectors (one more layer than pictured here)

Each	
detector	is
8cmx8cn	n

COSI:

- <1 mm³ resolution
- ∆E/E ~0.2-1%
- up to 10% efficiency
- bandpass covers 511 keV
- polarization

• Vastly improved performance with a fraction of the mass and volume