

Direct limits on neutrino masses

Sai Neha Santpur 290E Fall 2021

08 December 2021

Standard model of particle physics

- Standard model of particle physics has been tremendously successful in explaining most of the experimental phenomena
- Unexplained phenomena:
 - Existence of dark matter
 - Neutrino oscillations
 - Matter/Anti-matter asymmetry
 - Hierarchy problem
 - Why only 3 generations of matter?
- SM neutrinos do not oscillate and are massless
 - Experimental evidence says otherwise!

S. N. Santpur

Neutrinos oscillate

- From numerous experiments, we know today that neutrinos do oscillate
- The oscillations occur for all the weak flavors of neutrinos
- This implies that at least two neutrinos are massive

Neutrino oscillations \Rightarrow massive neutrinos?

- Neutrino weak eigenstates, $v_{\rm e}^{}, v_{\mu}^{}$ and $v_{\rm T}^{}$, differ from the neutrino mass eigenstates
- For example, in the W⁺ boson decay, v_e is produced in association with a e⁺ but it can be any mass eigenstate -> v_e is in fact superposition of the three mass eigenstate
 - The wavefunction for v_{e} at the interaction vertex can be written as

$$|\psi\rangle = U_{e1}^* |v_1\rangle + U_{e2}^* |v_2\rangle + U_{e3}^* |v_3\rangle.$$

 Similarly, the following PMNS matrix related the three weak eigenstates to mass eigenstates

$$\begin{pmatrix} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{pmatrix}$$

Neutrino oscillation theory

• An electron neutrino produced at the interaction point:

$$|\psi(0)\rangle = |\mathbf{v}_{e}\rangle \equiv U_{e1}^{*}|\mathbf{v}_{1}\rangle + U_{e2}^{*}|\mathbf{v}_{2}\rangle + U_{e3}^{*}|\mathbf{v}_{3}\rangle$$

• Its propagation is described by

$$\begin{split} |\psi(\mathbf{x},t)\rangle &= U_{e1}^{*}(U_{e1}|\nu_{e}\rangle + U_{\mu1}|\nu_{\mu}\rangle + U_{\tau1}|\nu_{\tau}\rangle)e^{-i\phi_{1}} \\ &+ U_{e2}^{*}(U_{e2}|\nu_{e}\rangle + U_{\mu2}|\nu_{\mu}\rangle + U_{\tau2}|\nu_{\tau}\rangle)e^{-i\phi_{2}} \\ &+ U_{e3}^{*}(U_{e3}|\nu_{e}\rangle + U_{\mu3}|\nu_{\mu}\rangle + U_{\tau3}|\nu_{\tau}\rangle)e^{-i\phi_{3}} \end{split}$$

• Probability of electron survival at length L is described by

$$P(v_{e} \rightarrow v_{e}) = 1 - 4|U_{e1}|^{2}|U_{e2}|^{2}\sin^{2}\Delta_{21}$$
$$- 4|U_{e1}|^{2}|U_{e3}|^{2}\sin^{2}\Delta_{31} - 4|U_{e2}|^{2}|U_{e3}|^{2}\sin^{2}\Delta_{32}.$$

where

$$\Delta_{ji} = \frac{\phi_j - \phi_i}{2} = \frac{(m_j^2 - m_i^2)L}{4E_{\nu}}$$

Dec 08, 2021

S. N. Santpur

Probability of electron survival depends on neutrino mass difference

- If neutrinos were massless, $\Delta m_{31}^2 = \Delta m_{21}^2 = \Delta m_{32}^2 = 0$ which implies $P(v_e \rightarrow v_e)=1$ and there would be no oscillations
- From the neutrino oscillation experimental results, it is clear that
 - $\circ~\Delta m^2_{~_{31}}$, $\Delta m^2_{~_{21}}$ and $~\Delta m^2_{~_{32}}$ are non-zero

Dec 08, 2021

- Only two of these differences are independent and $\Delta_{31} = \Delta_{32} + \Delta_{21}$
- From neutrino oscillations measurements, we get mass differences
- How do we measure the masses of the neutrinos?

Model dependent limits

- Cosmological limits:
 - Comparing the Planck satellite data with the simulations of early universe development, yields an upper limit on sum of all neutrino masses
 - Sum of masses < 0.12 eV at 95% CL after including BAO and other data
 - Caveats:
 - Such limits depend on which data is included in the study
 - Assumes neutrinos are stable on cosmological timescales
 - Valid only in ∧CDM model
- Neutrino-less double beta decay:
 - Provides an estimate for neutrino mass assuming it is a Majorana fermion

Model independent limits

- Electron-capture decay of 163Holmium
 - Best limits from this study are mass<150 eV in 2019
- Tritium decay provides a direct measurement on neutrino mass
 - This measurement is model independent

^oHe

- End-point energy is 18.57 keV
- Half life of Tritium is 12.32 years

$${}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He^{+}} + \mathrm{e^{-}} + \bar{\nu}_{e}$$

 $m_{\nu,eff}^{2} = \sum_{i}^{3} |U_{ei}|^{2} m_{i}^{2}$
 $m_{\nu,eff}^{2} = \sum_{i}^{3} |U_{ei}|^{2} m_{i}^{2}$

эH

β spectrum

- Massive neutrinos distort the β spectrum of Tritium decay
- As can be seen below, the end-point in the energy spectrum looks different
- This difference can be used to measure the neutrino mass directly
- No assumptions are made in this study

Dec 08, 2021

Previous measurements

• History of neutrino mass from tritium decays

Dec 08, 2021

S. N. Santpur

State of the art neutrino mass measurement

- Before 2019, state of the art measurements using Tritium decay were set by Mainz and Troitsk experiments at m_y < 2 eV (95 % CL)
- KATRIN experiment set the most stringent limit on neutrino mass at m<
 1.1 eV (90% C.L.) in 2019 with one month of data!
 - The expected sensitivity after 5 years of running is 0.2 eV, a factor of 10 improvement on the earlier measurements
 - This will be the focus of rest of my talk

Challenges for KATRIN

- Only 10⁻¹³ decays end up in the last eV -> need large quantity of tritium
- Precision measurement of energy and rate at the end of β spectrum
- Observable is m²_v, so 100x reduced uncertainties implies 10x improvement on m_v
- Two ways to do this: Increase statistics and lower the systematics
- Improvements in KATRIN:
 - Excellent β source
 - Energy resolution better than eV
 - Low backgrounds
 - A lot of improvements in the systematics

KATRIN experiment

KATRIN experiment layout

Dec 08, 2021

Tritium source

- Windowless Gaseous Tritium Source (WGTS)
- Gaseous T2 molecular source kept at 30K and pressurized
- 2.45 ×10¹⁰ decays per second
- Purified gas is passed through PdAg silver that only allows Hydrogen isotopes to pass through
- Source beam tube:
 - Tritium decays in 10m length and 90mm diameter source tube
- Given the molecular T2, the additional excitations including vibrations and rotations are carefully taken into account for the beta spectrum emission

Electron beam

- Electrons from the source beam tube are guided using magnetic field
- Specially designed electrodes prevent the transmission of tritium atoms
- Uses two Magnetic Adiabatic Collimation + Electrostatic (MAC-E) filters
 - First MAC-E filter has a fixed energy threshold at 10keV to remove bulk of the low-energy electrons
 - Second MAC-E filter is the main spectrometer that analyzes the integral beta spectrum

MAC-E filters

- Isotropic electron motion at the source is converted to longitudinal motion
- High magnetic field is applied at the both ends with low field in the analyzing plane in the center
- Resulting magnetic moment is held constant in the adiabatic transport of electrons
- Only very high energy electrons at the end-point of beta spectrum can be selected by tuning the magnetic fields -> MAC-E acts as a high pass filter

Energy resolution

- The MAC-E acts as a high pass filter to allow only electrons near the tail of beta spectrum
- The transmission probability spectrum below shows an energy resolution of 0.93 eV
- KATRIN runs scans at different MAC-E filter potentials and performs an integral analysis on the final spectrum

Forward Pixel Detector

- Electrons passing the MAC-E filters are accelerated further using an electrode
- The rate and spectrum of these electrons is recorded using a silicon pixel detector
- FPD acts as a low resolution electron counter

Forward Pixel Detector

- Retarding potential of 18 keV and additional acceleration of 10keV results in a signal broad peak in FPD at ~28 keV
- Detector noise peaks can be seen at ~7 keV

Background processes

- Cosmic rays
- Radon induced background
- Natural radioactivity
- Due to upstream source

S. N. Santpur

Main background due to lead

- 210 Pb decays produce electrons and Rydberg atoms
 - atoms where the electrons are far away from nucleus but the atoms are not ionized
- Rydberg atoms are ionized from thermal radiation inside the spectrometer and lead to the largest background in the spectrometer
- This process is well measured and can be accounted for with great precision

KATRIN data analysis

- KATRIN beta spectrum is modeled by 4 main parameters
 - Intensity
 - End-point energy
 - Background
 - Neutrino mass
- The fitted spectrum matches the data quite well
- Statistics limited result from 2019
 - With more data, the result would be much better

Uncertainties and impact on m²_v

Effect	relative	$\sigma(m_{\nu}^2)$
	uncertainty	in eV^2
Source properties		
$ ho d \cdot \sigma$	0.85%	0.05
energy loss $\varepsilon(\delta E)$	$\mathcal{O}(1\%)$	negligibl
Beamline		0.05
B _{WGTS}	$2.5 \ \%$	
B_{min}	1 %	
B_{max}	0.2~%	
Final state distribution	$\mathcal{O}(1\%)$	0.02
Fluctuations in scan k		0.05
HV stacking	$2 \mathrm{ppm}$	
ρd variation	0.8%	
isotopologue fractions	0.2%	
Background		
background slope	$1.7\%/\mathrm{keV}$	0.07
non-Poisson background	6.4%	0.30
Total syst. uncertainty		0.32
Statistical uncertainty		0.97

Result

• Limit on neutrino mass from 1 month of KATRIN run:

$$m_{\nu}^2 = (-1.0^{+0.9}_{-1.1}) \text{ eV}^2$$

 $m_{\nu} < 1.1 \text{ eV} (90\% \text{ C.L.})$

Comparing against other experiments

S. N. Santpur

Outlook

- Since 2019, KATRIN experiment has recorded a lot more data and expect future results with reduced systematics and more statistics
 - $\circ~$ 5 year projection aims to set a limit of 0.2 eV
- Multiple experiments studying electron-capture decay of Holmium underway
 - HOLMES, ECHo, and NuMECS
 - ECHo targets sub-eV neutrino mass range
- A lot of interesting results from this will be showing up over the next decade to address the question of nominal hierarchy vs inverted hierarchy of neutrino masses

References

- Modern Particle Physics by Mark Thomson
- <u>https://indico.cern.ch/event/818781/contributions/3666444/attachments/19</u>
 <u>63581/3264425/NuPhys-KATRINResults-2019.pdf</u>
- https://arxiv.org/pdf/1807.06209.pdf
- <u>https://www.symmetrymagazine.org/article/march-2007/deconstruction-kat</u> rin
- https://arxiv.org/pdf/1308.0532.pdf
- <u>http://qgp.uni-muenster.de/~weinheim/heraeus_seminar561/talks/04_Thursday/05_Glueck_MACEfilter.pdf</u>
- https://arxiv.org/pdf/2102.00594.pdf