Searches for Flavor Changing Neutral Currents in Top Quark Decays

Ryan Roberts 11/10/2021

Possible FCNC Top Quark Decays

t Decay Modes

Expand all decays

FCNC top decays to SM particles are of the form $t \rightarrow qX$

q is up or charm.

X is a neutral boson (gluon, photon, Z, Higgs)

	Mode	Fraction (Γ_t / Γ)	Scale Factor/ Conf. Level	P(MeV/c)
Γ_1	Wq(q=b, s, d)			~
Γ_2	Wb			\sim
Γ_3	$e\nu_e b$	$(11.10 \pm 0.30)\%$		\sim
Γ_4	$\mu u_{\mu}b$	$(11.40 \pm 0.20)\%$		\sim
Γ_5	$ au u_ au b$	$(10.7 \pm 0.5)\%$		\sim
Γ_6	$q\overline{q}b$	$(66.5 \pm 1.4)\%$		\sim
Γ_7	$\gamma q (q = u, c)$	$^{[1]}$ < 1.8 $ imes$ 10 ⁻⁴	CL=95%	\sim
Γ_8	$H^+ b,H^+ o au u_ au$			\sim
• $\Delta T =$	= 1 weak neutral current ($m{T}$ 1) modes			
Γ_9	Zq (q = u, c)	$< 5 imes 10^{-4}$	CL=95%	\sim
Γ_{10}	Hu	$< 1.2 imes 10^{-3}$	CL=95%	\sim
Гп	Нс	$< 1.1 imes 10^{-3}$	CL=95%	\sim
Γ_{12}	$\ell^+ \overline{q} \overline{q}' (q = d, s, b; q' = u, c)$	$< 1.6 imes 10^{-3}$	CL=95%	\sim

FCNC Top Decays in the SM are suppressed by a number of factors

- 1 loop processes loop suppressed
- Involves off diagonal element of CKM matrix for the third generation Cabibbo suppressed
- Sum over bottom type quarks in the loop GIM suppressed

$$\sum_i V_{ti} V_{ci}^* = 0$$
 $\mathcal{M} \propto \sum_i V_{ti} V_{ci}^* f(m_i^2/m_W^2)$

$\sum_i V_{ti} V_{ci}^* = 0$ $\mathcal{M} \propto \sum_i V_{ti} V_{ci}^* f(m_i^2/m_W^2)$

• BR(t \rightarrow uX) = 7.9 × 10⁻³ (BR(t \rightarrow cX))

BR(t \rightarrow c γ) = (4.6^{+1.2}_{-1.0}±0.2±0.4^{+1.6}_{-0.5}) × 10⁻¹⁴

- BR(t→cH) = 3 × 10⁻¹⁵
- BR(t \rightarrow cg) = 4.6 × 10⁻¹² • BR(t \rightarrow cZ) = 10⁻¹⁴

•

Experimental limits are at 10⁻⁴ at best.

Theoretical Branching Ratios have large uncertainties from the bottom mass and renormalization scale

 $\sim \gamma$

SM FCNC Top Decays

	Process	\mathbf{SM}	$2 \mathrm{HDM}(\mathrm{FV})$	2HDM(FC)	MSSM	RPV	\mathbf{RS}
	$t \rightarrow Zu$	7×10^{-17}	-	, 	$\leq 10^{-7}$	$\leq 10^{-6}$	-
BSM FCNC	$t \to Zc$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$
Ton Decays	$t \to g u$	4×10^{-14}	_	_	$\leq 10^{-7}$	$\leq 10^{-6}$	—
lep beeaye	$t \to gc$	5×10^{-12}	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$
	$t\to\gamma u$	4×10^{-16}	_	_	$\leq 10^{-8}$	$\leq 10^{-9}$	_
	$t \to \gamma c$	5×10^{-14}	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$
	$t \to h u$	2×10^{-17}	$6 imes 10^{-6}$	—	$\leq 10^{-5}$	$\leq 10^{-9}$	_
	$t \to hc$	$3 imes 10^{-15}$	$2 imes 10^{-3}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

BSM models - particularly extensions to the Higgs sector - often feature enhanced FCNC couplings

FCNC interactions are an important constraint, and measurements of top quark can FCNC can be complementary to FCNC limits from light hadron decays.

Searching for $t \rightarrow qZ$ before the LHC

tqZ vertex can be searched for via single top production

- Results from LEP searching for $e^+e^- \rightarrow tq$
- Would have constituted discovery of the top quark

D0 and CDF produced the direct constraints on FCNC Branching Ratios

• Best limit is 3% for tqZ

https://arxiv.org/pdf/1103.4574.pdf

Searching for $t \rightarrow qZ$ at the LHC

ATLAS and CMS both have results at $\sqrt{s} = 7$ and 8 TeV

Search channel is the same as at the Tevatron

- $tt \rightarrow bW qZ \rightarrow blv ql^+l^-$
- Final state has 3 leptons (1 pair OSSF), 2 jets (1 b-jet), and MET

CMS has additional constraints on the tqZ vertex from single top production at $\sqrt{s} = 8$ TeV

Strongest constraints come from ATLAS result on partial run 2 data at $\sqrt{s} = 13$ TeV

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Signal Region Event Selection

Events are selected from single electron (muon) triggers with p_T thresholds of 24 (20) GeV in 2015 data and 26 (26) GeV in 2016 data as well as triggers with higher p_T thresholds and looser isolation requirements

Trilepton Cuts

- Leading lepton p_T > 25 (27) GeV in 2015 (2016)
- 3 isolated leptons with $|\eta| < 2.5$ and $p_T > 15$ GeV

Signal Region Cuts

- OSSF lepton pair with $|m_{\mu} m_{\tau}| < 15 \text{ GeV}$
- MET > 20 GeV
- \geq 2 jets with $p_T > 25$ GeV and $|\eta| < 2.5$
- Exactly 1 b-tagged jet

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Event Reconstruction

The top two top quarks and the W boson are reconstructed by minimizing a \Box^2 score for the mass peaks, where the masses are minimized over the assignments of objects as well as p_z of the neutrino.

The means and widths of the peaks are taken from correctly matched simulated data with truth information.

The reconstruction efficiency is 80% for the FCNC top and 58% for the SM top.

The final signal region selection requires $|m_t^{reco} - 172.5 \text{ GeV}| < 40 \text{ GeV}$ and $|m_w^{reco} - 80.4 \text{ GeV}| < 30 \text{ GeV}$

$$\chi^{2} = \frac{\left(m_{j_{a}\ell_{a}\ell_{b}}^{\text{reco}} - m_{t_{\text{FCNC}}}\right)^{2}}{\sigma_{t_{\text{FCNC}}}^{2}} + \frac{\left(m_{j_{b}\ell_{c}\nu}^{\text{reco}} - m_{t_{\text{SM}}}\right)^{2}}{\sigma_{t_{\text{SM}}}^{2}} + \frac{\left(m_{\ell_{c}\nu}^{\text{reco}} - m_{W}\right)^{2}}{\sigma_{W}^{2}},$$

9

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Backgrounds

Prompt Leptons

- Diboson (WZ + jets \rightarrow IIIv + jets)
- ttZ (ttZ \rightarrow blv bqq' II)
- tZ
- Controlled through a combination of simulation and control regions

Non-Prompt Leptons

- Leptons are either fakes or come from heavy flavor decays
- Z+jets
- Ttbar
- Controlled through a semi data-driven approach

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Non-Prompt Scale Factors

Prior to the final fit, they define regions to control the contribution from various sources of non-prompt leptons and derive scale factors which are then applied to the relevant MC simulated background samples

Targetin	g Z+jets	Targeting ttbar		
"Light" region – e	"Light" region – μ	"Heavy" region – e	"Heavy" region – μ	
<i>eee</i> or $e\mu\mu$, OSSF	$\mu\mu\mu$ or μee , OSSF	$e\mu\mu$, OS no OSSF	µee, OS no OSSF	
$ m_{\ell\ell} - 91.2 \text{ GeV} < 15 \text{ GeV}$	$ m_{\ell\ell}-91.2~{\rm GeV} <15~{\rm GeV}$			
≥ 1 jet	≥ 1 jet	≥ 2 jet	≥ 2 jet	
$E_{\rm T}^{\rm miss}$ < 40 GeV	$E_{\rm T}^{\rm miss}$ < 40 GeV			
$m_{\rm T} \leq 50 { m GeV}$	$m_{\rm T} \leq 50 { m GeV}$			
2.2 ± 0.8	1.9 ± 0.9	1.1 ± 0.3	1.1 ± 0.7	

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Control Regions

In addition to the signal region, 5 control regions are defined and included in the final fit to constrain the backgrounds.

Selection	$t\bar{t}Z CR$	WZ CR	ZZ CR	Non-prompt lepton CR0 (CR1)	SR
No. leptons	3	3	4	3	3
OSSF	Yes	Yes	Yes	Yes	Yes
$ m_{\ell\ell}^{\rm reco} - 91.2 {\rm GeV} $	< 15 GeV	< 15 GeV	< 15 GeV	> 15 GeV	< 15 GeV
No. jets	≥ 4	≥ 2	≥ 1	≥ 2	≥ 2
No. <i>b</i> -tagged jets	2	0	0	0(1)	1
$E_{ m T}^{ m miss}$	> 20 GeV	> 40 GeV	> 20 GeV	> 20 GeV	> 20 GeV
$m_{\mathrm{T}}^{\ell \nu}$	-	> 50 GeV	-	-	-
$ m_{\ell_V}^{\rm reco} - 80.4 {\rm GeV} $	-	-	-	-	< 30 GeV
$ m_{i\ell\nu}^{\rm reco} - 172.5 {\rm GeV} $	-	-	-	-	< 40 GeV
$ m_{i\ell\ell}^{\rm reco} - 172.5 {\rm GeV} $	-	-	-	-	< 40 GeV

12

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Systematics

The systematic uncertainties are dominated by theory uncertainties in every region, even after profiling the theory uncertainties using the control regions

Post-fit	$t\bar{t}Z CR$	WZ CR	ZZ CR	Non-prompt	Non-prompt	SR	
Source				lepton CR0	lepton CR1		
	B [%]	B [%]	B [%]	B [%]	B [%]	B [%]	S [%]
Event modelling	22	10	11	9	23	18	5
Leptons	2.0	2.4	2.9	2.6	2.9	2.6	1.8
Jets	5	6	11	8	4	8	4
<i>b</i> -tagging	7	1.4	0.6	2.1	2.8	4	3.1
$E_{ m T}^{ m miss}$	0.3	3.3	2.5	2.8	0.7	4	1.4
Non-prompt leptons	1.1	1.1	100	8	12	5	1. <u> </u>
Pile-up	5	1.2	5	3.3	1.7	3.5	2.2
Luminosity	2.0	2.0	2.1	1.3	0.8	1.6	2.1

Fit Setup

Kinematic distributions in the signal region and control regions are simultaneously fit

14

Data

tīZ

WZ

Other

Data

ZZ

Other

Bkg uncertainty

m,,,, [GeV]

Non-prompt

(B = 0.017%)

//// Bkg uncertainty

••• tt→ bWuZ

Post Fit Distributions

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Results

95% CL Limits: B(t \rightarrow uZ) < 1.7 × 10⁻⁴, B(t \rightarrow cZ) < 2.4 × 10⁻⁴

Experimental Outlook of $t \rightarrow cZ$

- Observation of this decay mode in the SM with any current or proposed collider is not feasible.
- Experimental limits are approaching a regime where they can contribute to limits on plausible models.
- Projections for HL-LHC limits reach ≈10⁻⁵, enough to rule out some currently allowed models.
- Goals to constrain BSM physics are not fixed!

ATLAS Run 2 t→qH Search

The best limit for top decays to Higgs come from an ATLAS analysis on partial run 2 data which uses a combination of all major Higgs decay modes

Top quark FCNC **Overview**

There is a chance for HL-LHC results or results from a future collider to start probing a well-motivated parameter space

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	$t \to hq$	2 imes 1
$t \rightarrow Z_{21}$	7×10^{-17}			$< 10^{-7}$	$= t \rightarrow hq$	5×1
$t \rightarrow Zc$	1×10^{-14}	$< 10^{-6}$	$< 10^{-10}$	≤ 10	$t \rightarrow hq$	5 X 1
$t \rightarrow ZC$	1×10^{-14}	≤ 10	≤ 10	≤ 10	$t \rightarrow hq$	2 × 1
$\iota \rightarrow g u$	4×10 5 × 10 ⁻¹²	- < 10-4	-	≤ 10	≤ 10	-
$\iota \to gc$	5×10	≤ 10	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-9}$	≤ 10
$t \rightarrow \gamma u$	4×10^{-10}	-	-	$\leq 10^{\circ}$	$\leq 10^{-9}$	-
$t \rightarrow \gamma c$	5×10^{-17}	$\leq 10^{-6}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-5}$
$t \rightarrow hu$	2×10^{-17}	6×10^{-6}	— 	$\leq 10^{-5}$	$\leq 10^{-9}$	_
$t \rightarrow hc$	3×10^{-15}	2×10^{-3}	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$

Process	Br Limit	Search	Dataset
$t \to Zq$	$2.2 imes 10^{-4}$	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to Zq$	$7 imes 10^{-5}$	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to Zq$	$5(2) \times 10^{-4}$	ILC single top, $\gamma_{\mu} (\sigma_{\mu\nu})$	$500 {\rm ~fb^{-1}}, 250 {\rm ~GeV}$
$t\to Zq$	$1.5(1.1) imes 10^{-4(-5)}$	ILC single top, $\gamma_{\mu} (\sigma_{\mu\nu})$	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$
$t \to Zq$	$1.6(1.7) imes 10^{-3}$	ILC $t\bar{t}, \gamma_{\mu} (\sigma_{\mu\nu})$	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$
$t\to \gamma q$	$8 imes 10^{-5}$	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$300 {\rm ~fb^{-1}}, 14 {\rm ~TeV}$
$t\to \gamma q$	$2.5 imes 10^{-5}$	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$
$t\to \gamma q$	$6 imes 10^{-5}$	ILC single top	$500 {\rm ~fb^{-1}}, 250 {\rm ~GeV}$
$t\to \gamma q$	$6.4 imes10^{-6}$	ILC single top	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$
$t\to \gamma q$	$1.0 imes10^{-4}$	ILC $t\bar{t}$	$500 {\rm ~fb^{-1}}, 500 {\rm ~GeV}$
$t \to g u$	4×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$300 {\rm ~fb^{-1}}, 14 {\rm ~TeV}$
$t \to g u$	1×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to gc$	1×10^{-5}	ATLAS $qg \rightarrow t \rightarrow Wb$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to gc$	4×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$3000 {\rm ~fb^{-1}}, 14 {\rm ~TeV}$
$t \to hq$	$2 imes 10^{-3}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell qX$	$300~{ m fb^{-1}},14~{ m TeV}$
$t \to hq$	$5 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell q X$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$
$t \to hq$	$5 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$	$300 {\rm ~fb^{-1}}, 14 {\rm ~TeV}$
$t \to hq$	$2 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$

Caution: These numbers are not up to date. The experimental limits are lower than shown and the theoretical predictions have been pushed lower by other measurements. 19

References

- Aguilar-Saavedra. *Top flavour-changing neutral interactions: theoretical expectations and experimental detection*. Acta Phys.Polon.B35:2695-2710, 2004. arXiv:hep-ph/0409342
- Agashe, et. al. *Snowmass 2013 Top quark working group report*. arXiv:1311.2028
- D0 Collaboration. Search for flavor changing neutral currents in decays of top quarks. Physics Letters B 701 (2011), pp. 313-320. arXiv:1103.4574
- CMS Collaboration Search for associated production of a Z boson with a single top quark and for tZ flavour-changing interactions in pp collisions at \sqrt{s}=8 TeV. JHEP 07 (2017) 003. arxiv:1702.01404
- ATLAS Collaboration. Search for flavour-changing neutral current top-quark decays t→qZ in proton-proton collision at \sqrt{s} = 13 TeV with the ATLAS detector. JHEP 07 (2018) 176. Arxiv:1803.09923
- Inspire searches of all results mentioned in the PDG
 - tqZ:

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=keyword%20%22Q007%3ADESIG%3D2%22

• tqH:

https://inspirehep.net/literature?sort=mostrecent&size=25&page=1&q=keyword%20%22Q007%3ADESIG%3D13%22

<u>ATLAS Run 2 t \rightarrow qZ Search</u> Systematics

The systematic uncertainties are dominated by theory uncertainties in every region

Pre-fit	tīZ CR	WZ CR	ZZ CR	Non-prompt	Non-prompt	SR	
Source				lepton CR0	lepton CR1		
	B [%]	B [%]	B [%]	B [%]	B [%]	B [%]	S [%]
Event modelling	29	40	13	24	40	30	5
Leptons	2.1	2.4	3.0	2.6	2.9	2.6	1.9
Jets	6	8	15	10	4	9	4
<i>b</i> -tagging	7	1.5	0.6	2.3	3.0	5	3.4
$E_{ m T}^{ m miss}$	0.4	4	2.6	3.0	0.8	5	1.4
Non-prompt leptons	1.1	1.3		12	15	6	
Pile-up	5	1.3	5	3.5	1.8	4	2.3
Luminosity	2.0	2.0	2.1	1.3	0.8	1.7	2.1