

crystaLiZe: path forward

Hao Chen, Ryan Gibbons, Scott Haselschwardt, Scott Kravitz, Peter Sorensen, Shilo Xia

10 December 2021 snowmass@lbl

Lesko slide

LZ expects 200 pp neutrinos and 1000 betas (from Rn)

- If neutrinos were the limiting background, could just operate LZ until it reaches the neutrino floor
- If LZ were a <u>crystalline xenon</u> TPC, radon decays would have a unique (E,x,y,z,t) signature. >98% Rn tagging. <u>Neutrino Limited</u>

LZ with Rn (left) and without Rn (right)

LZ 1000 day, with Rn

crystaLiZe 1000 day, without Rn

Could further remove another 67 BG events (1/3 of pp neutrino number) if 136Xe were swapped out – e.g. to nEXO

LZ sensitivity vs time

Why pursue crystaLiZe?

pros	cons
 G3 will be politically fraught, expensive (guess ~\$250M) and time-consuming (at least 10 years from CD0) – will it happen?? LZ infrastructure exists, in principle it is a small* perturbation to crystalize it electron mobility x2 Potential for improved discrimination (still hypothetical) 	 Technical challenges Demonstrated at the cm scale, need O(100) cm 10-20 years to reach neutrino limit

R&D status: basic concept appears to work nicely

- First demonstration of a dual-phase crystalline/vapor xenon TPC
 - Manuscript in progress (Scott Kravitz / Hao Chen lead on analysis & writing)
- Photon yield demonstrated same as in liquid
- Subsequent study will focus on e- yield and emission across crystal/vapor interface
- + Rn tagging (!!)

Next steps

- 1. IF08 LOI => White paper
- 2. R&D demonstration of S2 stability and performance (FY22)
- 3. R&D demonstration of Rn-tagging (FY23-FY24)
- 4. Community buy-in
- 5. Engineering design studies
 - a. For retrofitting LZ as-needed, with temperature sensors and heaters
 - b. Also SiPMs

Extra slide: we need to close the window on WIMP DM

Plot from arXiv:2107.09688

Extra slide: technical details

TABLE II. Comparison of transport parameters in solid and liquid xenon. Values of other data used in the calculations are also quoted.

	Solid T = 161.2 °K	Liquid T = 163 °K	Unit			
Ec	9.272	9.22	eV			
G	1.063	1.084	eV			
€∞	2.00 a	1.85 ^b	•••			
<i>m</i> *	0.31 ^c	0.27	electron mass			
μ	4.5×10^{3} d	$2.2 \times 10^{3} e$	$cm^2 V^{-1} sec^{-1}$			
Τ.	8.0×10^{-13}	3.4×10^{-13}	sec			
Ĺ	7.1×10^{-6}	3.3×10^{-6}	cm			
β	1.36×10 ^{10 f}	0.58×10^{10} g	dyn/cm ²			
a	3.8×10^{-9}	4.2×10^{-9}	cm			
$ E_{1CB} $	0.93	1.01	eV			

Phys Rev B 10 4464 (1974)

Solid xenon emission TPC is expected to perform at least as well as a liquid xenon emission TPC:

- electron mobility: x2
- electron emission: easier
- band gap (hence W-value): same
- density: 20% bonus
- high voltage: similar dielectric constant but challenge due to ice-fishing effect

Extra slide: 136Xe next up for removal

TABLE III. Estimated backgrounds from all significant sources in the LZ 1000 day WIMP search exposure. Counts are for a region of interest relevant to a 40 GeV/ c^2 WIMP: approximately 1.5–6.5 keV for ERs and 6–30 keV for NRs; and after application of the single scatter, skin and OD veto, and 5.6 tonne fiducial volume cuts. Mass-weighted average activities are shown for composite materials and the ³⁸⁰U and ³⁹⁰Th chains are split into contributions from early. and late-chain, with the latter defined as those coming from isotopes below and including ²²⁰R and ²²⁴R and ²²⁴R and ²²⁴R and ²²⁴R.

Background Source	Mass	$ ^{238}U_{e} ^{238}U_{l} ^{232}Th_{e} ^{232}Th_{l} ^{60}Co ^{40}K n/yr $						\mathbf{ER}	NR	
	(kg)	mBq/kg							(cts)	(cts)
Detector Components										
PMT systems	308	31.2	5.20	2.32	2.29	1.46	18.6	248	2.82	0.027
TPC systems	373	3.28	1.01	0.84	0.76	2.58	7.80	79.9	4.33	0.022
Cryostat	2778	2.88	0.63	0.48	0.51	0.31	2.62	323	1.27	0.018
Outer detector (OD)	22950	6.13	4.74	3.78	3.71	0.33	13.8	8061	0.62	0.001
All else	358	3.61	1.25	0.55	0.65	1.31	2.64	39.1	0.11	0.003
subtotal									9	0.07
Surface Contamination	1									
Dust (intrinsic activity, 50	00 ng/cn	n ²)							0.2	0.05
Plate-out (PTFE panels,	50 nBq/	cm^2)							-	0.05
²¹⁰ Bi mobility (0.1 µBq/kg LXe)								40.0		
Ion misreconstruction (50 nBg/cm^2)								-	0.16	
²¹⁰ Pb (in bulk PTFE, 10 mBq/kg PTFE)							-	0.12		
		. ,					SI	ubtotal	40	0.39
Xenon contaminants										
²²² Rn (1.8 uBa/kg)									681	
220 Bn (0.09 uBa/kg)									111	-
nat Kr (0.015 ppt g/g)								24.5	-	
nat Ar (0.45 ppb g/g)								2.5	-	
subtotal								819	0	
Laboratory and Cosmo	ogenics									
Laboratory rock walls								4.6	0.00	
Muon induced neutrons								-	0.06	
Cosmogenic activation								0.2	-	
							SI	ubtotal	5	0.06
Physics										
136 Xe $2\nu\beta\beta$									67	
Solar neutrinos: $pp+^{7}Be+$	- ¹³ N, ⁸ B	+hep							191	0*
Diffuse supernova neutrin	os (DSN)							-	0.05
Atmospheric neutrinos (A	tm)	·							-	0.46
							SI	ubtotal	258	0.51
Total									1131	1.03
Total (with 99.5% ER dis	criminat	ion, 50%	% NR eff	ficiency)					5.66	0.52
Sum of ER and NR in LZ for 1000 days, 5.6 tonne FV, with all analysis cuts							6.18			
* Below the 6 keV NR threshold used here.										

- Could imagine swapping enriched xenon with nEXO
- crystaLiZe gets lower BG, nEXO gets higher sensitivity
- win-win for physics