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Part 1: The IceCube Experiment




What is IceCube?
ICECUBE

SOUTH POLE NEUTRINO OBSERVATORY

e (Centered around IceCube Neutrino

Observatory
o Cherenkov detector in Antarctica
o Started data taking in 2008
e Focus on neutrino astronomy

o General idea: observe the universe by
looking at neutrinos rather than photons

o Useful for observing distant phenomena

since they scatter very rarely
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The IceCube detector

e Detector encompasses 1 km?
of ice

e 86 strings with 5160 total
Digital Optical Modules
(DOMs) containing PMTs

e DeepCore: set of 8 central,

densely-spaced strings
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Experimental focus

e High-energy neutrinos (~TeV-PeV scale) created by violent interstellar

events of particular interest for astronomy

o Allow for identification of point sources in the sky (supernovae, gamma-ray bursts, black

hole mergers, etc.)
e (an also detect lower-energy neutrinos created by cosmic ray

interactions in the atmosphere (~GeV scale)

o More interesting for particle physics purposes since travel distance is known (WIMPs,

sterile neutrinos, oscillations, etc.)
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Detecting neutrinos

e Neutrinos only interact weakly -> cannot measure directly
o Need to examine products of their interactions

e |ceCube detects Cherenkov radiation (photons) originating from

particles produced in neutrino interactions via its array of PMTs
o Incoming neutrinos interact with protons/neutrons in the ice

e Antarcticice allows photons to travel relatively undisturbed (minimal

scattering)
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Part 2: Physics behind IceCube




Cherenkov radiation

e Occurs when charged particles
travel through medium at
v>c/n

e Particle propagates faster than
its own EM field -> interference |

e Manifests as light cones along

trajectory




Neutrino scattering

e Three main types of neutrino-nucleon

interactions:

o Quasi-elastic scattering (QE)
o Resonance production (RES)

o Deep inelastic scattering (DIS)

e IceCube probes deep inelastic

neutrino-nucleon scattering

o High-energy neutrino “tears apart” nucleon
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Charged vs. neutral current

Charged-current (CC) interactions mediated by W+ bosons, neutral-current

(NC) interactions by Z boson

NC:vyo+N—>v,+X

N = nucleon
X = hadronic shower

CC : Uy _|_N — l; +X | = charged lepton
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Detector signatures

e Hadronic cascades usually difficult to resolve due to sparse detector grid
o Can't probe structure of hadronic showers
e Two primary event types: tracks and cascades

o Electrons scatter easily and produce electromagnetic cascades
o Muons are easiest to identify since they don't scatter as easily and produce tracks
o Taus decay quickly and so are hard to distinguish from electrons -> given enough energy

they could produce “double bang” signature (two cascades connected by a track)

e Tracks useful for finding point sources, cascades for energy studies
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Important backgrounds

e Two main backgrounds: atmospheric muons and atmospheric neutrinos
o Produced by cosmic ray interactions in the atmosphere
e Atmospheric muons vetoed by only considering events originating from
below the horizon (“upgoing”) or cutting events not originating in detector
o Rateis ~100 billion per year

e Atmospheric neutrinos are dominant at lower energies
o Rateis ~100,000 per year

o Relevant for particle physics analyses
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Part 3: Interesting results




AStI'OthSiCS 2015 sky map (7 years of data)
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e IceCube has produced

neutrino sky maps in search -y e
Db

for point sources .
—15° &R

e Resolution for northern
hemisphere is much better

than southern hemisphere

o Due to cut on “downgoing” events 0.0
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Multi-messenger astronomy

e In 2018 IceCube found excess in
high-energy neutrino flux from
Blazar TXS 0506+056

e First time high-energy neutrinos
were matched to known
astronomical source

e Observations made during period of

enhanced gamma-ray emission
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Other results

Limits on neutralino mass

e Detection of Glashow resonance %wm\ __() e
e Search for neutralino (WIMP dark Q:: ‘i\\\_d,/::/:;_/f_‘/ e
matter candidate) annihilation in § w0} T e
the sun to set limit on WIMP mass :‘°
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