Same Sign WW Scattering

October 27, 2021 Greg Ottino For 290E, Fall 2021

Overview

- Background and theory of vector boson scattering (VBS)
- Most recent ATLAS published results of same sign WW measurements

LHC and the "No Lose" Theorem

- Prior to Higgs discovery, it was known that at the LHC something would be found for EW interactions at a scale of ~1 TeV
- In SM Lagrangian, there exist terms that couple EW gauge bosons directly

$$\mathcal{L} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{8} tr(\mathbf{W}_{\mu\nu} \mathbf{W}^{\mu\nu}) + \dots$$

- These terms lead to both WWZ type scattering terms, as well as WZ->WZ and WW -> WW terms
- These processes clearly probe the structure of the EW sector of the SM Lagrangian, but they also lead to ...

Divergences!

- When considering the cross section of longitudinal polarized scattering of W bosons, the cross section of this process alone is unbounded (ie $\sigma \sim s$)
- This is obviously unphysical, and thus to preserve unitarity and avoid a divergence, something must give at approximately 1 TeV

Historical Aside

• Analogous to the logic applied in 1933 to 4 fermion couplings observed in electron neutrino scattering

How Do We Preserve Unitarity?

- Many ideas pre LHC, the most popular of which today was the correct one, the Higgs Boson
- Addition of Higgs diagrams causes cancellation with the unbounded piece of the WWWW matrix element, leading to an implicit mass limit on the Higgs (< ~1 TeV) and restoration of unitarity
- Of course we found the Higgs in 2012, so this is moot right?
- Wrong, still interesting for many reasons
 - Self consistency of standard model
 - Potential for non cancellation / addition terms in the Lagrangian
 - Possible BSM physics in higher order terms

What processes can we look for at the LHC?

Two processes with same initial and final states

- (a) Strong production
- (b) Electroweak production

Why same sign WW?

- Largest ratio of EW production to strong production
 - As compared to WZ-> WZ, ZZ->ZZ, and opposite sign WW
 - At LO gluon initiated processes are absent
 - qqbar annihilation diagrams are suppressed
- Trilinear VBS reactions in the s channel are absent in this final state
- Same sign leptons are not common, relative to opposite sign leptons

Signal Selection

Selection	Cut
Trigger	Single lepton (e/mu)
m _{ii}	> 30 GeV
MET	> 30 GeV
Leading jet pT	> 60 GeV
Subleading jet pT	> 35 GeV
N bjets	== 0
m _{ij}	> 200 GeV
$ \Delta y_{jj} $	> 2.0

Background Sources

- Backgrounds from SM originate from 3 main sources
 - SM processes with 2 same sign leptons
 - Modeled from MC simulation
 - Trilepton events (WZ) where the OS lepton is not reco'd
 - \circ $\,$ SM processes that lead to non-prompt or fake leptons $\,$
 - Estimated by data driven method
 - ttbar, W+jets, single top, QCD multijet events
 - SM processes with 2 opposite sign leptons where the charge on one is mislDed
 - Estimated by data driven method
 - ttbar, W+jets, Z/ɣ + jets

Background Estimation I

- WZ, V+y, ZZ, ttbar + V are all estimated from MC simulation
 - WZ normalization is determined by events with 3 baseline leptons, two of which pass the signal selection, in the data
 - V + γ is corrected using Z > $\mu\mu\gamma$, in data, to account for photons faking electrons
 - The selection in data requires 75 GeV < m(µµe) < 100 GeV and an inverted MET cut, to enhance the Z contribution
 - Large systematic (44%) is assigned to interpolate from Z ->

Background Estimation II

- Background contributions from non-prompt/fake leptons are estimated from a data control region via "fake factor" method
- Sources are heavy flavor and jets faking leptons (electrons)
- Method uses a region kinematically similar to signal, but enhanced in fake/non-prompt leptons
 - Leptons are divided into "loose" (inverted cuts) and "tight" (signal like)
- Background is generated by weighting control region events using fake factor, defined below
- Uncertainties vary from 40-90%

$$f_{lepton, std} \equiv \frac{N_{nominal \ lepton \ ID}}{N_{loose \ lepton \ ID}}$$

Background Estimation III

- Charge misID occurs when two opposite sign have one reconstructed with the incorrect charge
- The probability that a charge is misID'd, ϵ_{misrec} , is measured in Z -> ee events and varies from 0.1 ~1%
- This is applied to the ssWW analysis by selecting dilepton pairs that satisfy all the electron selection criteria, except for the same sign requirement
- These events are then weighted by $\varepsilon_{_{misrec}}$ to estimate the background in the signal region
- Note muon charge misID is negligible

Results

- Six channels are made in all flavor/charge combinations
- Four bins are made in m_{jj} > 500 GeV plus additional control regions at lower m_{ij} values
- All regions are combined into a profile likelihood fit

Results II

Events / 25 GeV

Source	Impact [%]
Experimental	
Electron energy scale and resolution, and efficiency	0.6
Muon momentum scale and resolution, and efficiency	1.3
Jet energy and $E_{\rm T}^{\rm miss}$ scale and resolution	3.2
b-tagging inefficiency	2.1
Pileup modeling	1.6
Background, statistical	3.2
Background, misid. leptons	3.3
Background, charge misrec.	0.3
Background, other	1.8
Theory modeling	
$W^{\pm}W^{\pm}jj$ electroweak-strong interference	1.0
$W^{\pm}W^{\pm}jj$ electroweak, EW corrections	1.4
$W^{\pm}W^{\pm}jj$ electroweak, shower, scale, PDF & α_s	2.8
$W^{\pm}W^{\pm}jj$ strong	2.9
WZ	3.3
Luminosity	2.4

Conclusion

- Final measurement: $\sigma^{\text{fid.}} = 2.89^{+0.51}_{-0.48} \text{ (stat.)} {}^{+0.24}_{-0.22} \text{ (exp. syst.)} {}^{+0.14}_{-0.16} \text{ (mod. syst.)} {}^{+0.08}_{-0.06} \text{ (lumi.) fb.}$
- Background only rejected by 6.5 sigma (4.4 exp)
- Extensions possible here though not explored in the 13 TeV ATLAS result
 - Higher level operators in the Lagrangian
 - Specifically, O(6) operators can produce small effects at EW scale, depending on the new physics scale
 - As precision improves for such processes, it is worth improving precision to look for anomalous couplings in ssWW in particular

References

[1] arxiv:1906.03203
[2] arxiv: hep-ph/9504426
[3] B. Jager. "Vector Boson Scattering: A phenomenological Perspective" HiggsTools Summer School. Online Talk. https://conference.ippp.dur.ac.uk/event/447/contributions/2227/attach ments/1838/2047/Jaeger1.pdf

