Measuring the light quark couplings to Z in HERA

Cesar Gonzalez Renteria

10/20/21

Particle Physics Seminar 290E

Z-fermion coupling

Coupling of Z to fermions completely determined by SM

This is seen in the SM Z current term:

$$j_{\rm Z}^{\mu} = -\frac{1}{2}g'\sin\theta_{\rm W}[Y_{\rm f_L}\overline{u}_L\gamma^{\mu}u_L + Y_{\rm f_R}\overline{u}_R\gamma^{\mu}u_R] + I_{\rm W}^{(3)}g_{\rm W}\cos\theta_{\rm W}[\overline{u}_L\gamma^{\mu}u_L]$$

Which can be rearranged to:

$$j_{Z}^{\mu} = \frac{1}{2}g_{Z}\overline{u}\left(c_{V}\gamma^{\mu} - c_{A}\gamma^{\mu}\gamma^{5}\right)u$$

$$c_{V} = (c_{L} + c_{R}) = I_{W}^{(3)} - 2Q\sin^{2}\theta_{W}$$

$$c_{A} = (c_{L} - c_{R}) = I_{W}^{(3)}$$

e^-p^+ Scattering

- The structure of the proton can be probed by using a lepton
- Low energy photon exchange cannot resolve the inner structure but gives a measure of the proton size (elastic scattering)
- For $q^2 \sim m_p^2$ you create hadrons, but proton remain intact (inelastic scattering)
- For $q^2 \gg m_p^2$, proton completely dissociates (deep inelastic scattering)

Deep Inelastic Scattering

- W is the invariant mass of the hadronic system
- In lab frame: P = (M, 0)
- In any frame, k = k' + q, W = p + q
- Invariants of the problem:

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

$$= 2EE'(1 - \cos \theta) \text{ [in lab]}$$

$$P \cdot q = P \cdot (k - k')$$

$$= M(E - E') \text{ [in lab]}$$

$$\frac{d^2\sigma^{ep}}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1-y) \frac{F_2(x,Q^2)}{x} + y^2 F_1(x,Q^2) \right]$$

Define $\nu \equiv E - E'$ (in lab frame) so $P \cdot q = m\nu$ and

$$W^{2} = (P+q)^{2}$$

$$= (P-Q)^{2}$$

$$= M^{2} + 2P \cdot q - Q^{2}$$

$$= M^{2} + 2M\nu - Q^{2}$$

where
$$Q^2 = -q^2$$

- Elastic scattering corresponds to $W^2 = P^2 = M^2$
 - $ightharpoonup Q^2 = 2M\nu$ elastic scattering
- We can define 2 indep dimensionless parameters

$$x \equiv Q^2/2M\nu; \quad (0 < x \le 1)$$

$$y \equiv \frac{P \cdot q}{P \cdot k} = 1 - E'/E; \quad (0 < y \le 1)$$

Neutral Current DIS

If we work out specifically the NC cross-section we get:

$$\sigma_{r,\text{NC}}^{e^{\pm}p} = \frac{x_{\text{Bj}}Q^4}{2\pi\alpha_0^2} \frac{1}{Y_+} \frac{d^2\sigma(e^{\pm}p)}{dx_{\text{Bj}}dQ^2} = \tilde{F}_2(x_{\text{Bj}}, Q^2) \mp \frac{Y_-}{Y_+} x \tilde{F}_3(x_{\text{Bj}}, Q^2) - \frac{y^2}{Y_+} F_L(x_{\text{Bj}}, Q^2)$$

Decomposed into Z/γ components:

$$\tilde{F}_{2}^{\pm} = F_{2}^{\gamma} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z} + (v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})\chi_{Z}^{2}F_{2}^{Z}$$

$$x\tilde{F}_{3}^{\pm} = -(a_{e} \pm P_{e}v_{e})\chi_{Z}xF_{3}^{\gamma Z} + (2v_{e}a_{e} \pm P_{e}(v_{e}^{2} + a_{e}^{2}))\chi_{Z}^{2}xF_{3}^{Z}$$

$$P_{e} = \frac{N_{R} - N_{L}}{N_{R} + N_{L}}$$

Where the Form factors can be written as:

$$[F_2^{\gamma}, F_2^{\gamma Z}, F_2^{Z}] = \sum_{q} [e_q^2, 2e_q v_q, v_q^2 + a_q^2] x(q + \bar{q})$$
$$[xF_3^{\gamma Z}, xF_3^{Z}] = \sum_{q} [e_q a_q, v_q a_q] 2x(q - \bar{q})$$

Neutral Current DIS

That was a lot, but to summarize, the NC DIS cross section can be written:

$$\sigma_{NC}^{e^{\pm}p} \propto \tilde{F}(x,Q^2)$$

These form factors in turn can be expanded to:

$$\tilde{F} \propto F^{\gamma}, F^{\gamma Z}, F^{Z}$$

And these process specific form factors are written:

$$F^{\gamma,\gamma Z,Z} \propto c_V^q, c_A^q$$

By measuring the cross-sections, you measure the **Z-quark** coupling!!

HERA: the world's only ep collider

two general purpose detectors, **H1** and **ZEUS** collected 0.5 fb⁻¹ per experiment, equally between e⁺ and e⁻

HERA-II (02–07): polarised lepton beams; crucial for electroweak measurements

$$\begin{split} Q^2 &= -q^2 = -(k-k')^2 \\ \text{Virtuality of the exchanged boson} \\ x &= \frac{Q^2}{2p \cdot q} \text{ Bjorken scaling parameter} \\ y &= \frac{p \cdot q}{p \cdot k} \text{ Inelasticity parameter} \\ s &= (k+p)^2 = \frac{Q^2}{xy} \text{ Invariant c.o.m.} \end{split}$$

H1 and Zeus Detectors

Event Selection

- Well reconstructed interaction vertex
- Isolated electron in calorimeter
- Low MET requirement
- $E P_z \sim 2E_e$
- Hadronic angle γ_h large enough that you don't have lost hadronic activity to beam pipe

Results

Before we wrote:

$$\sigma \propto c_V^q, c_A^q$$

How do we get a cross-section?

$$\sigma(x,Q^2) = \frac{N-B}{\mathcal{L} \cdot A} \cdot \mathcal{C} \cdot (1 + \Delta^{QED})$$

As is customary, this is really a counting experiment

Q^2		2	£	s	2	sE	sh	2	sE+	+02	sh+	_{sN} +	sB ⁺
(GeV^2)	æ	$\tilde{\sigma}_{ m NC}$	δ_{tot} (%)	δ_{stat} (%)	δ _{unc} (%)	$\delta_{\mathrm{unc}}^{E}$ (%)	$\delta_{\mathrm{unc}}^{h}$ (%)	δ_{cor} (%)	δ ^{E+} (%)	$\delta_{\text{cor}}^{\theta^+}$ (%)	$\delta_{\text{cor}}^{h^+}$ (%)	$\delta_{\text{cor}}^{N^+}$ (%)	$\delta_{\text{cor}}^{B^+}$ (%)
120 120	0.0020 0.0032	1.312 1.182	1.73 1.89	0.87 1.24	1.02 1.21	0.54 0.77	0.09 0.05	1.09 0.75	-0.36 -0.35	-0.61 -0.62	0.02	0.18 0.19	-0.81 -0.16
150	0.0032	1.195	1.43	0.73	0.91	0.43	0.06	0.81	-0.32	-0.59	0.02	0.19	-0.41
150	0.0050	1.071	1.74	0.88	1.20	0.86	0.00	0.90	-0.55	-0.71	0.00	0.04	-0.04
150	0.0080	0.9197	2.54	1.20	1.85	1.24	1.02	1.26	-0.79	-0.80	-0.27	-0.50	-0.08
150	0.0130	0.7984	4.03	1.68	3.09	2.78	0.82	1.96	-1.61	-0.64	-0.28	-0.85	-0.09
200	0.0032	1.222	1.81	1.35	0.94	0.18	0.07	0.75	0.18	-0.50	0.01	0.15	-0.51
200 200	0.0050	1.079 0.9389	1.57 1.93	0.96	0.99	0.54	0.02	0.75 0.91	-0.44 -0.60	-0.58	0.01 0.00	0.14	-0.08
200	0.0080 0.0130	0.9389	1.62	0.99 1.14	1.39 0.89	1.10 0.19	0.00	0.91	-0.04	-0.69 -0.46	-0.02	0.55	0.00 0.00
200	0.0130	0.7809	1.81	1.14	1.14	0.19	0.03	0.72	-0.04 -0.47	-0.40	-0.02	0.33	-0.01
200	0.0320	0.5735	2.21	1.38	1.51	1.07	0.51	0.85	-0.60	-0.56	-0.19	0.09	0.00
200	0.0500	0.5107	2.97	1.63	1.78	1.47	0.02	1.73	-0.89	-0.79	-0.18	1.24	0.00
200	0.0800	0.4341	3.41	1.73	2.19	1.90	0.19	1.96	-1.13	-0.86	-0.07	1.35	-0.01
200	0.1300	0.3521	3.54	2.09	2.21	1.36	1.09	1.81	-0.80	-1.02	-0.27	-1.23	0.00
200	0.1800	0.2987	4.40	2.71	2.82	1.17	1.97	2.01	-0.83	-1.23	-0.49	-1.26	0.00
250	0.0050	1.096	1.56	1.12	0.89	0.30	0.06	0.60	-0.29	-0.42	0.02	0.18	-0.27
250 250	0.0080 0.0130	0.9512 0.8042	1.67 2.08	1.10	1.01	0.55 0.89	0.00 0.18	0.76 1.15	-0.50 0.50	-0.57	0.00	0.04 0.79	0.00
250	0.0130	0.8042	2.08	1.20 1.23	1.25 1.31	0.89	0.18	1.15	0.50	-0.66 -0.57	0.03	0.79	-0.02 0.00
250	0.0200	0.5813	2.10	1.30	1.42	1.10	0.20	1.06	0.52	-0.63	-0.08	0.67	0.00
250	0.0500	0.4968	2.44	1.48	1.46	1.12	0.16	1.27	0.45	-0.57	-0.12	1.03	-0.01
250	0.0800	0.4166	2.94	1.52	1.11	0.41	0.34	2.26	0.18	-0.45	-0.02	2.21	0.00
250	0.1300	0.3560	2.55	1.54	1.82	1.08	0.76	0.92	0.51	-0.56	-0.22	-0.46	0.00
250	0.1800	0.3035	4.11	2.11	2.69	1.59	1.59	2.28	1.02	-0.80	-0.38	-1.84	0.00
300	0.0050	1.110	2.23	1.89	1.00	0.17	0.08	0.63	-0.17	-0.46	0.03	0.15	-0.38
300	0.0080	0.9626	1.71	1.28	0.92	0.35	0.02	0.65	-0.35	-0.53	0.01	0.10	-0.08
300 300	0.0130 0.0200	0.8029 0.6884	1.97 2.00	1.28 1.42	1.18 1.07	0.80 0.57	0.00 0.17	0.93 0.91	-0.79 0.43	-0.50 -0.53	0.00	0.00 0.61	0.00 -0.02
300	0.0200	0.5748	2.15	1.50	1.20	0.57	0.17	0.97	0.46	-0.55	-0.03	0.65	0.00
300	0.0500	0.4892	2.57	1.62	1.45	1.10	0.18	1.38	0.60	-0.66	-0.10	1.05	0.00
300	0.0800	0.4164	3.12	1.72	1.48	1.09	0.18	2.14	0.47	-0.69	-0.06	1.97	-0.01
300	0.1300	0.3547	2.76	1.71	1.89	1.35	0.42	1.07	0.66	-0.69	-0.17	0.45	0.00
300	0.1800	0.2961	4.67	2.26	3.02	2.14	1.53	2.76	1.31	-0.88	-0.36	-2.23	0.00
300	0.4000	0.1439	6.67	2.75	3.63	2.38	1.99	4.88	1.39	-1.03	-0.41	-4.55	0.00
400	0.0080	1.025	1.91	1.54	0.96	0.38	0.04	0.59	-0.33	-0.41	0.01	0.16	-0.22
400 400	0.0130 0.0200	0.8439 0.7106	1.93 2.25	1.50 1.54	0.97 1.28	0.42 0.91	0.00	0.72 1.03	-0.41 -0.90	-0.59 -0.50	0.00	0.03	-0.02 0.00
400	0.0320	0.7100	2.15	1.63	1.02	0.46	0.00	0.95	0.45	-0.48	-0.02	0.69	-0.01
400	0.0500	0.4846	2.32	1.84	1.12	0.51	0.34	0.85	0.50	-0.36	-0.13	0.58	-0.01
400	0.0800	0.4188	2.74	1.91	1.05	0.27	0.23	1.67	0.22	-0.33	0.05	1.62	0.00
400	0.1300	0.3598	2.65	1.93	1.42	0.64	0.16	1.12	0.55	-0.49	-0.10	0.85	0.00
400	0.1800	0.2991	4.47	2.43	2.57	1.14	1.78	2.73	1.06	-0.54	-0.48	-2.41	0.00
400	0.4000	0.1438	7.28	3.09	3.24	1.27	2.22	5.74	1.18	-0.56	-0.31	-5.58	0.00
500	0.0080	0.9879	2.83	2.57	1.05	0.16	0.07	0.52	-0.24	-0.39	0.02	0.16	-0.20
500 500	0.0130 0.0200	0.8903 0.7270	2.15 2.31	1.85 1.83	0.96 1.15	0.31 0.69	0.03	0.56 0.80	-0.25 -0.69	-0.49 -0.40	0.00	0.08	-0.06 0.00
500	0.0200	0.6232	2.35	1.87	1.13	0.50	0.00	0.80	0.52	-0.40	-0.03	0.65	0.00
500	0.0500	0.5411	2.44	1.99	1.12	0.56	0.18	0.84	0.56	-0.32	-0.06	0.54	0.00
500	0.0800	0.4169	2.96	2.27	1.17	0.60	0.07	1.49	0.60	-0.52	-0.02	1.26	0.00
500	0.1300	0.3658	3.21	2.54	1.38	0.44	0.07	1.41	0.44	-0.38	-0.11	1.28	0.00
500	0.1800	0.3299	3.63	2.86	1.95	0.90	0.92	1.11	0.90	-0.53	-0.30	-0.18	0.00
500	0.2500	0.2529	5.34	3.32	2.54	0.99	1.69	3.32	0.99	-0.53	-0.44	-3.09	0.00
650 650	0.0130	0.8832	2.38 2.48	2.08	1.06	0.48	0.05	0.49 0.70	-0.32 -0.47	-0.31 -0.52	0.01	0.14	-0.13
650 650	0.0200 0.0320	0.7582 0.6334	2.48	2.14 2.23	1.06 1.43	0.41 1.01	0.00	1.04	-0.47	-0.52 -0.45	0.00	0.03	0.00 0.00
650	0.0520	0.5334	2.82	2.25	1.24	0.68	0.00	0.94	0.75	-0.43 -0.43	-0.12	0.34	0.00
650	0.0800	0.4300	3.14	2.66	1.16	0.41	0.08	1.22	0.47	-0.30	0.07	1.08	0.00
650	0.1300	0.3599	3.64	2.94	1.55	0.70	0.21	1.48	0.72	-0.51	-0.06	1.19	0.00
650	0.1800	0.3140	3.77	3.18	1.78	0.79	0.46	0.93	0.82	-0.37	-0.17	0.17	0.00
650	0.2500	0.2471	5.56	4.13	2.44	1.09	1.40	2.82	1.06	-0.44	-0.34	-2.55	0.00
650	0.4000	0.1222	8.53	6.14	3.78	1.65	2.42	4.56	1.67	-0.71	-0.63	-4.13	0.00

Measuring the Structure Functions

So now we have the cross-section, use this to derive \tilde{F} 's

$$\sigma \propto F^{\gamma}$$
, $F^{\gamma Z}$, F^{Z}

Then in turn, we can use these structure functions to calculate coupling constants!

$$F_2^{\gamma Z} = \sum_{q} 2e_q \mathbf{c}_V^q x(q + \bar{q})$$
$$xF_3^{\gamma Z} = \sum_{q} 2e_q \mathbf{c}_A^q x(q - \bar{q})$$

Finally! The Coupling Constants

- HERA calculated the up and down quark couplings to Z
- Agrees with SM EW predictions

$$a_{u} = +0.532^{+0.081}_{-0.058} \text{ (experimental/fit)} + 0.036_{-0.022} \text{ (model)} + 0.060_{-0.008} \text{ (parameterisation)}$$

$$c_{V} = (c_{L} + c_{R}) = I_{W}^{(3)} - 2Q \sin^{2} \theta_{W} \qquad a_{d} = -0.409^{+0.327}_{-0.199} \text{ (experimental/fit)} + 0.112_{-0.071} \text{ (model)} + 0.140_{-0.026} \text{ (parameterisation)}$$

$$c_{A} = (c_{L} - c_{R}) = I_{W}^{(3)} \qquad v_{u} = +0.144^{+0.065}_{-0.050} \text{ (experimental/fit)} + 0.013_{-0.014} \text{ (model)} + 0.002_{-0.025} \text{ (parameterisation)}$$

$$v_{d} = -0.503^{+0.168}_{-0.093} \text{ (experimental/fit)} + 0.031_{-0.028} \text{ (model)} + 0.006_{-0.036} \text{ (parameterisation)}$$

Table 15.1 The charge, $I_{\rm W}^{(3)}$ and weak hypercharge assignments of the fundamental fermions and their couplings to the Z assuming $\sin^2 \theta_{\rm W} = 0.23146$.

fermion	$Q_{ m f}$	$I_{ m W}^{(3)}$	Y_L	Y_R	c_L	C_R	C_V	\mathcal{C}_A
$ u_e, \nu_\mu, \nu_ au$	0	$+\frac{1}{2}$	-1	0	$+\frac{1}{2}$	0		
e^-, μ^-, τ^-	-1	$-\frac{1}{2}$	-1	-2	-0.27	+0.23	-0.04	$-\frac{1}{2}$
u, c, t	$+\frac{2}{3}$	$+\frac{1}{2}$	$+\frac{1}{3}$	$+\frac{4}{3}$	+0.35	-0.15	+0.19	$+\frac{1}{2}$
d, s, b	$-\frac{1}{3}$	$-\frac{1}{2}$	$+\frac{1}{3}$	$-\frac{2}{3}$	-0.42	+0.08	-0.35	$-\frac{1}{2}$

Coupling Constants

References

- Zeus Collaboration, "Combined QCD and electroweak analysis of HERA data", arXiv:1603.09628v2
- Zeus Collaboration, "The Zeus Detector: Status Report 1993" (https://www-zeus.desy.de/bluebook/scanned-bluebook.pdf)
- H1 Collaboration, "The H1 Detector at HERA"
 (https://www.physics.mcgill.ca/~corriveau/projects/620B/HERA/h1 detect or 1.pdf)
- H1 Collaboration, "Inclusive Deep Inelastic Scattering at High Q2 with Longitudinally Polarised Lepton Beams at HERA", arXiv:1206.7007v1
- Zeus Collaboration, "Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA", arXiv:1208.6138v2

Backup Slides

Measuring L/R Asymmetry

- Parity violation built into SM
- Can calculate this through the Z quark couplings via L/R crosssections

$$A^{\pm} = \frac{2}{P_L^{\pm} - P_R^{\pm}} \cdot \frac{\sigma^{\pm}(P_L^{\pm}) - \sigma^{\pm}(P_R^{\pm})}{\sigma^{\pm}(P_L^{\pm}) + \sigma^{\pm}(P_R^{\pm})}$$

Asymmetry matches well with SM prediction

Calculating Proton PDF

- Cross-sections can also be used to measure proton PDFs
- 13 parameter fit for PDFs performed
- Combination of HERA I+II give more stringent PDF values

Deep Inelastic Scattering

- Due to the high energy exchange, the interaction is between the electron and the parton inside the proton
- Cross-section of electron-parton scattering given by:

$$\left(\frac{d\sigma}{d\Omega dE'}\right)_{\text{lab}} = \frac{\alpha_e^2}{8\pi E^2 \sin^4 \frac{\theta}{2}} \left[\frac{m_p}{2} W_2(x, Q) \cos^2 \frac{\theta}{2} + \frac{1}{m_p} W_1(x, Q) \sin^2 \frac{\theta}{2} \right]$$

• Where W_1 and W_2 are structure functions which are dependent on the energy of the photon exchanged (Q), the fractional energy of the parton (x), and the parton distribution function

$$F_2 = W_2 * (E - E'); F_2 = 2xF_1$$
 Q²/GeV²

Parton Distribution Functions (PDF)

Parton distribution function written,

•
$$f_i^{(H_j)}(x_i,\mu)$$

- is the probability of finding parton *i* in hadron j with x_i fraction of momentum at scale μ
- Due to large mass of the charm and strange quarks, their respective pdfs are much harder to probe than the valence quark pdfs
- High energy protons allow for easier probe of these tougher pdfs

Parton Distribution Functions (PDF)

Energy conservation: momentum sum rule

$$\int_0^1 dx \, x \left(\sum_{i=1}^{n_f} \left[q_i((x, Q^2) + \bar{q}_i(x, Q^2) \right] + g(x, Q^2) \right) = 1$$

Quark number conservation: valence sum rules

$$\int_0^1 dx \, \left(u(x, Q^2) + \bar{u}(x, Q^2) \right) = 2$$

- Sum rules give constraints on the different gluon and quark pdf values in the proton
- Better measure of one pdf makes a difference in others

