

The Plasma Axion Haloscope & the ALPHA Collaboration

Katie Dunne

katherine.dunne@fysik.su.se on behalf of the ALPHA collaboration

LBNL Instrumentation

Brown Bag Seminar

Outline

- Axion Dark Matter
- Experimental methods for axion detection
- Plasmon-axion coupling
- Wire metamaterial plasma haloscope
- ALPHA Collaboration
 - Theory/Simulation
 - Superconductors
 - Metamaterial
 - Antenna and Readout

Axion Dark Matter

Stockholm University

- Dark Matter parameter space spans 84 orders of magnitude!
- QCD axion wave-like, detect as a classical field rather than a single particle

Axion Dark Matter

- QCD axion proposed by F. Wilczek in response to PQ solution to the Strong CP puzzle
- Theta term in the standard model is potentially CP violating
- Problem is that theta is strongly constrained to be close to 0 (10⁻¹⁰) by nEDM experiments
- PQ solution makes theta dynamical rather than a fixed value
- Result is pseudo-goldstone boson with a small mass the axion
- Kills two birds with one stone
 - Solution to Strong CP puzzle
 - Candidate for dark matter

Axion Dark Matter

•**•**J@

Axion Detection

- Common coupling to detect in axion experiments is axion-photon coupling with a mediating magnetic field
- But axion has a mass and the photon doesn't, How to conserve energy and momentum?

Axion Detection

- Impose boundary conditions on photon modes (Cavity and dielectric haloscopes)
- Relativistic axions (LSW, Helioscopes)
- Probe axions much larger than your system (ABRACADABRA, DM Radio)
- Use another coupling (CASPEr, ARIADNE, QUAX, etc.)
- **Give photon a mass** by using an appropriate medium (ALPHA, TOORAD)
 - Decouples the volume of the detector from the mass of the axion
 - Breaks tyranny of V ~ $1/\omega^3$ scaling
 - Using a plasma you can reach higher masses without sacrificing volume

Axion-plasmon coupling

- In plasma, photon has a tunable mass
- Axion couples to E&M as *aE*·*B*
- Primary effect of axion is to act like an oscillating current, driving the system at ω_a
- In presence of DC B-field, axion induces plasmon excitations
- Resonance when $\omega_{p} = \omega_{a}$
- Enhancement of the E field is not related to boundary conditions
- Limited by losses (Γ)

$$\mathbf{E} = -\frac{g_{a\gamma}\mathbf{B}_{e}a}{\epsilon} = -g_{a\gamma}\mathbf{B}_{e}a\left(1 - \frac{\omega_{p}^{2}}{\omega_{a}^{2} - i\omega_{a}\Gamma}\right)^{-1}$$

What do you want in a plasma?

- Cryogenic temperatures
- Tunable plasma frequency
- Large volume
- Lower plasma frequency than typically in nature
- Low-losses / long plasmon lifetimes

Wire Metamaterials

- A finite volume of wires with thickness less than the wire spacing acts as an effective medium [1], [2]
 - so-called 'Wire Metamaterial'
- Plasma frequency related to electron density and effective mass of the electrons
- Plasma frequency set by the mutual inductance of the wires,
 - i.e. inter-wire spacing
- cm spacings \rightarrow GHz frequencies
- Q of resonance depeneds on resistive and radiative losses
- Higher freq -> higher Q
- Volume limited by the coherent volume of the axion
 - Practically speaking limited by volume of magnet you can find

J.B. Pendry et al. J. Phys. Condens. Matter 10, 1998
P. Belov et al. Phys. Rev. B 67, 113103 2003

Plasma Haloscope

Stockholm University Cohar K

- Proposed in <u>Phys Rev Lett.123.141802</u> by M. Lawson, A. Millar, M. Pancaldi, E. Vitagliano, F. Wilczek
- Wire metamaterial chosen as target medium
- Competitive in region 10–100 GHz
 - Assuming T=4K, B=10T, V=0.8m³, Q=100, 6 years measurement time

Open Questions

- Can we get reasonable Q factors for the metamaterial?
- Can we tune the metamaterial?
- Can we effectively couple an antenna to the resonance and read it out?

ALPHA Collaboration

- <u>ALPHA</u> formed with aim to answer these questions and build a tunable, cryogenic plasma haloscope
 - First full-scale demonstrator for the feasibility of the detection of axion-plasmon coupling
- International and multi/inter-disciplinary. Collaborators with broad range of backgrounds
 - Condensed matter
 - High energy physics
 - CMB experiments,
 - Superconductors
- Theorists and experimentalists

ALPHA Collaboration - Steering Committee

Matthew Lawson **Spokesperson**

Alexander Millar Theory Coordinator

Stockholm University

Jón Gudmundsson **Technical Coordinator**

Hiranya Peiris **Funding Coordinator**

Pavel Belov (ITMO) At-Large Member

Karl van Bibber (UC Berkeley) At-Large Member

ALPHA Collaboration - Working Groups

in the second

Stockholm University

Theory and Simulation Working Group

- Focused on simulations to understand metamaterial properties and antenna-system coupling
- Show achievable Qs ~3500, more than an order of magnitude than assumed for initial paper
- Simulations help with identification of modes of interest (TM mode along the axis of the wires) and complications from mode mixing and crowding
- Simulation of tuning mechanism show potentially 30% tunability

Members	
Pavel Belov (ITMO)	Alex Millar (SU)
Andrea Gallo Rosso (SU)	Tove Klaesson (SU)
Jón Gudmundsson (SU)	Mackenzie Wooten (UCB)
Sid Morampudi (ASU)	Rustam Balafendiev (ITMO)

Q Factor Wires

Stockholm University

Radius of Wires

Number of Wires

R. Balafendiev

Crean Rein alpha Katie Dunne LBNL Instrumentation Seminar - Feb 2022

TE and TM Modes

- Other than TM modes, TE modes are present
- Cavity imperfections can cause mixing of modes
- Simulations show TE modes can be ignored with antenna placement

R. Balafendiev

Mechanical Tuning

Stockholm University

First resonance frequency versus wire shift $f_{max}-f_{min} = 32\%$ f_{max}

8

dx(25)=0.0045 m Eigenfrequency=9.3246 GHz

•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	۰	•	•	•	•
•	۰	•	۰	•	۰	•	•	•	•
•	۰	•	•	•	•	•	۰	•	•
•	۰	•	•	•	۰	•	۰	•	•
•	۰	•	•	•	۰	•	۰	•	•
•	۰	•	•	•	•	•	•	•	•
•	۰	•	•	•	۰	•	۰	•	•
•	•	•	•	•	۰	•	•	•	•
	•	•	•	•	•	•	•	•	•

2022-02

dx(18)=0.008 m Eigenfrequency=7.6477 GHz

2022-02

R. Balafendiev

Simulation of tuning mechanism with 1D shift of plane spacing

Show potentially 30% tunability

4

 $\Delta x (mm)$

6

12 11.5

11 10.5

> 10 9.5

> > 9

8 7.5

> 7 0

2

8.5

Frequency (GHz)

Superconductors Working Group

Members

Steven Anlage (U. Maryland)
Henrik Røising (SU)
Philip Mauskopf (ASU)
Alex Millar (SU)
Matthew Lawson (SU)

- Focused on non-mechanical tuning by adjusting kinetic inductance of wires
- Feasibility studies promising avenue with experimental challenges [3]
- Superconducting wires have been demonstrated in the literature with
 - Low ohmic losses at mm-wave frequencies
 - High Q resonance in 6T parallel field
 - Microwave resonance as narrow (<100nm) and thin (<10nm) wires
- Tunability of inductive properties has been demonstrated through:
 - Kinetic inductance by means of temperature, dc current, or dc flux
 - Josephson inductance by means of temp, dc current, or dc flux

Metamaterials Working Group

_		Members
Foc	used on building prototypes	Pavel Belov (ITMO)
3 pr	ototypes constructed UCB, ITMO, SU	
Pur	pose of prototypes	Katie Dunne (SU)
0	Mechanical tuning - Berkeley	Jón Gudmundsson (SU)
0	Metamaterial properties - ITMO	Mackenzie Wooten (UCB)
0	Antenna R&D - Stockholm	
		Alex Millar (SU)
		Karl van Bibber (UCB)
		Matthew Lawson (SU)

Berkeley Prototype

• Goals

- S21 measurements on wire metamaterials
- Determine parameters compare with sim
- Investigate mechanical tuning schemes
- Build tunable engineering prototype
- 40 frames
- 20 50um Tungsten wires each frame

Plane Spacing and Plasma Frequency

- Metamaterial behavior observed
- Working on implementing new frame geometries for sliding frames relative to one another

ITMO Prototype

Stockholm University

- Goals
 - Measure Q values of wire metameterial in a cavity
 - Compare results with simulations
- Geometry
 - 10 x 10 3mm brass wire rods
 - Welded cavity
 - SMA connector for e-field monopole probe inserted parallel to wires

R. Balafendiev

ITMO Prototype

	\frown	\frown	
\sim	\sim	\sim	\sim
\sim			\sim
\sim		\sim	\sim
\sim	\sim	\sim	\sim
\sim	\sim		\checkmark

	Experimental	Numerical
Frequency [GHz]	11.420	11.495
Bandwidth [GHz]	0.022	0.019
Loaded Q	509	611
Coupling coefficient	1.34	1.94
Unloaded Q	1194	1798

R. Balafendiev

ITMO Prototype

Because of how the probes are placed there is no excitation of the TE modes

Might not be the case in a less ideal system

R. Balafendiev

Stockholm Prototypes

- Designed and constructed a set of prototypes of fixed frequency
- Purpose: test various antennae
- Two versions
 - \circ Wires
 - PCB traces
- Inside aluminum cavity

Prototype	Wire	РСВ
Conductor Spacing [mm]	5	5
Conductor Thickness [um]	50	100
f _p [GHz]	11	12
Lambda [cm]	2.7	2.5

Wires

PCBs

Wire Prototype at SU

Stockholm University

- 20 frames of 20 wires each
- Gold plated Tungsten 50 um
- Electrically connected to reduce capacitances that alter mode structure
- Walls with ports allow inserting antennae at various positions to map mode map

Antenna & Readout Working Group

- Focused on understanding mode structure and how to read it out
- Antenna design that is sensitive to those modes and can pick up just those that couple to axion
- Open Questions
 - Placement and number of antennas
 - Strength of antenna coupling to system (weakly, critically, strongly)
 - Types of antennas
 - Method of tuning antenna

Members
Stafford Withington (Cambdrige)
Tony Tyson (UC Davis)
Jón Gudmundsson (SU)
Philip Mauskopf (ASU)
Alex Millar (SU)
Katie Dunne (SU)
Matthew Lawson (SU)

Readout vs. Q

- Low Q: read out in the bulk of the material
- High Q: read out at the boundaries i.e. cavity walls
- Low Q: degenerate system mode mixing
- High Q: single moded system

Antenna

Stockholm University

Cohar Klein

- E-field antenna perturbs the system
 - Must be inserted with some depth into the material
- Magnetic field antenna can pick up field close to the walls
- Just constructed two prototypes and measurements are ongoing with magnetic field antennas
- Will compare simulation and empty cavity measurements with metamaterial to verify we are seeing the modes we expect
- Would also like to take experimental data of antennas near to each other

Readout

Stockholm University

- Baseline is preamplification with cold HEMTs followed by room temperature linear amplifiers
- Loops can be placed at the cavity walls separated by a compton wavelength
- Future work on designing such a network will come after antenna choice

Signals from 8 H-field loops feed a broadband multiplexer

ALPHA Pathfinder

Stockholm University

- R&D efforts are towards a large-scale pathfinder experiment
- 20 cm bore 8T solenoid
- Sensitive to mass range around 10–20 GHz
- Tuning with low power piezoelectric translation stages
- Warm/cryogenic tests expected 2024/2025
- Data run expected ~2026

Conclusions

- Axion-plasma mixing a promising new avenue for axion detection
- Plasma haloscopes are novel way to get to higher axion masses
- ALPHA collaboration recently formed with goal of building tunable, cryogenic plasma haloscope
- Deal breakers have not broken any deals
- Prototyping stage towards ALPHA Pathfinder
- Open to collaborators!

Funded by ERC and VR AxionDM Research Environment

European Research Council Established by the European Commission Swedish Research Council

Backup Slides

Stockholm Prototypes

Crar Klein alpha

$$SNR = \frac{P_a}{P_N}\sqrt{Bt} = \frac{P_a}{k_B T_s}\sqrt{\frac{t}{B}}$$

scan rate $\propto (B_0^2 V)^2 \frac{1}{T_s^2}$

$$g_{\alpha\gamma\gamma} \propto \frac{T_s}{B_0^2 V}$$
 (7)

Equations 6 and 7 show that it is critical to minimize the system noise temperature T_s . Doing so allows ADMX to scan faster while maintaining sensitivity, or scan at the same rate while increasing sensitivity.