

# BERKELEY LAB











- Goal of particle physics experiments
  - Refine knowledge on SM (e.g. W boson mass)
  - Make discoveries
    - Search for particles predicted by SM: chapter closed
    - Look for new physics, ideally new particles as predicted by BSM models (SUSY, 2HDM...)

#### Fish discovered water





Hongtao Yang (LBNL) Sept 29, 2021, Berkeley graduate student seminar





- While new physics must exist (e.g. neutrino mass, dark energy/dark matter), there are unfortunately no theories that could provide as solid guide as SM to experiments
- We will not have another significant increase of center-of-mass energy in the coming decades
  - If energy scale of new physics is beyond the reach of LHC, then it can only be inferred **indirectly** through **deviations** in precision measurements



Hongtao Yang (LBNL) Sept 29, 2021, Berkeley graduate student seminar

# Interpretation example: kappa framework

 Leading order motivated framework: assign coupling modifier to each (effective) interaction vertex (e.g. κ<sub>W</sub>, κ<sub>Z</sub>, κ<sub>t</sub>...) and total width (κ<sub>H</sub>)







- Kappa framework is intrinsically LO, designed to probe deviations
  - If everything is SM, the results are straightforward to interpret
  - If deviations are observed,
     however, this framework by
     itself cannot provide clear
     physics guidance
- Kappa framework is based on inclusive production and decay rates. It is, therefore, blind to tension in diff. distributions



# Current dataset only 5% of expected LHC total!

Hongtao Yang (LBNL) Sept 29, 2021, Berkeley graduate student seminar





• **SMEFT**: only use SM fields and respect SM symmetries, expand SM Lagrangian to include higher dimension terms that are suppressed by cut-off scale  $\Lambda$ 

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i}^{N_{d6}} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{j}^{N_{d8}} \frac{b_j}{\Lambda^4} \mathcal{O}_j^{(8)} + \dots$$

- \* Dimension 5 and 7 operators excluded as they introduce violation to lepton/baryon number conservations
- Using above Lagrangian to calculate cross section of a process, the BSM part should include
  - Leading order  $(1/\Lambda^2)$ : inference between SM and d6 EFT
  - Next leading order (1/Λ<sup>4</sup>): pure d6 EFT + interference between SM and d8 EFT

## Does the effective theory work?

Eleni Vryonidou's lecture

An example of a successful EFT:

 $n \rightarrow p + e^- + \bar{\nu}_e$  Fermi formulated his theory in the 1930's



It described β-decay data very well Energy of β-decay: ~MeV

But this is not the full theory: cross-section rising with energy, violating unitarity



1983 Discovery of W-boson at CERN UA1 and UA2 M<sub>w</sub>=80 GeV >> Q<sub>β</sub>

Energy borrowed from the vacuum A virtual W-boson exchange

# EFT for New Physics

Low Energy Effective Theory without the Z'



E.Vryonidou

Eleni Vryonidou's lecture





- Large amount of operators to be taken into account. Fortunately, many are well-constrained by precision measurements e.g. from LEP. But there are still many left
- Same physics processes can be modified by multiple operators, and same operator can modify multiple processes
  - Large correlation between difference Wilson coefficients in experimental measurements (degeneracy)
- Operators modify rate and kinematics of physics processes
  - Ideally the EFT MC should be processed with the full analysis chain to consider acceptance effects
- Operators modify both "signal" and "background" processes
  - Greater overhead for MC production and also analyses. Difficult to combine multiple channels

#### General Principles of Building EFTs







# Example of EFT interpretations in Higgs analyses





- Dedicated analyses optimized to probe one property (e.g. CP mixing angle)
  - Optimal sensitivity, but also very model dependent. Not for generic interpretations

$$\mathcal{L}_{\text{top-Yuk}}^{\text{SMEFT}} = \frac{1}{\sqrt{2}} H \bar{t}_L \left[ \frac{y_t^{\text{SM}}}{\sqrt{2}} \left( 1 - \frac{1}{4} c_{\varphi D} \frac{v^2}{\Lambda^2} + c_{\varphi \Box} \frac{v^2}{\Lambda^2} \right) - \frac{v^2}{\sqrt{2}\Lambda^2} \text{Re}(c_{t\varphi}) - i\gamma_5 \frac{v^2}{\sqrt{2}\Lambda^2} \text{Im}(c_{t\varphi}) \right] t_R$$
$$\mathcal{L}_t = -\frac{m}{\nu} \kappa_t (\cos(\alpha) \bar{t}t + i \sin(\alpha) \bar{t}\gamma_5 t) H, \ \kappa_t > 0, \ \alpha \in [-\pi, \pi]$$



Hongtao Yang (LBNL)

#### Interpret differential cross-section measurements





Hongtao Yang (LBNL)





- Simplified template cross-section (STXS) framework: measure crosssection per production mode in different phase-space regions
  - Decay is inclusive so far. No kinematic bins introduced yet
- STXS is ideal for EFT interpretation
  - Provide differential cross-section measurements while allow experimentalists to apply aggressive analysis techniques
  - Easy to combine multiple production & decay channels



Hongtao Yang (LBNL)



## STXS bins for V(lep)H





- STXS framework is designed to find balance between experimental and theory demand
- Definition of V(lep)H STXS bins is driven by selection used in V(lep)H, H→bb analyses at LHC
  - Separate different N(lepton) and N(jet) regions
  - Categorize analysis using vector boson p<sub>T</sub>



0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

\_1

0

#### **STXS** measurements





Hongtao Yang (LBNL)

#### EFT parameterization of STXS production x-section

Production cross-section in any STXS bin can be written as

$$\sigma_{STXS} = \sigma_{SM} + \sigma_{int} + \sigma_{BSM} = \sigma_{SM} (1 + \frac{\sigma_{int}}{\sigma_{SM}} + \frac{\sigma_{BSM}}{\sigma_{SM}})$$

- Here  $\sigma_{int}$  is the interference between SM and d6 EFT (1/ $\Lambda^2$ ), and  $\sigma_{BSM}$  is pure d6 EFT contribution (1/ $\Lambda^4$ )
  - Interference between d8 and SM is not calculated yet
- $\sigma_{SM}$  in the front will be replaced by state-of-art calculation
- Ratios will be replaced by parameterization derived from MadGraph\_aMC@NLO
  - $\sigma_{int}/\sigma_{SM}$  will be a linear function of Wilson coefficient  $c_i$
  - $\sigma_{BSM}/\sigma_{SM}$  will be a 2nd order polynomial of  $c_i$



#### **Example operators considered**



| Coefficient | Operator                                                               | Example process                                                                                                                                                                                                                       | - | $c_{Hl}^{\scriptscriptstyle (1)}$ | $(H^\dagger i\overleftrightarrow{D}_\mu H)(\bar{l}_p\gamma^\mu l_r)$                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $c_{HDD}$   | $\left(H^{\dagger}D^{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$ | $\begin{array}{c} q \longrightarrow q \\ \hline Z \searrow q \\ \hline q \longrightarrow q \end{array} \qquad \qquad$ | - | $c_{Hl}^{\scriptscriptstyle (3)}$ | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$ | $q \xrightarrow{q} \overset{\vee}{}_{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $c_{HG}$    | $H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$                                | $g \xrightarrow{g} H$                                                                                                                                                                                                                 | - | $c_{He}$                          | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$             | $\begin{array}{c} q \\ \hline q \\ \hline q \\ \hline \end{array} \\ \begin{array}{c} Q \\ \hline \\ Q \\ \hline \end{array} \\ \begin{array}{c} Q \\ \hline \\ \\ \\ \end{array} \\ \begin{array}{c} Q \\ \hline \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} Q \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} Q \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} Q \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} Q \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} Q \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $ |
| $c_{H\!B}$  | $H^{\dagger}HB_{\mu u}B^{\mu u}$                                       | $\begin{array}{c} q Z \\ q \\ q \\ Z \\ q \\ q \\ q \\ q \\ q \\ q \\ $                                                                                                                                                               | - | $c_{Hq}^{\scriptscriptstyle (1)}$ | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$             | $q \xrightarrow{Z} \ell_{\ell}$<br>$q \xrightarrow{Z} H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $c_{HW}$    | $H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$                               | $\begin{array}{c} q & & & q \\ \hline W & & & H \\ q & & & & q \end{array}$                                                                                                                                                           | - | $c_{Hq}^{\scriptscriptstyle (3)}$ | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$ | $q \xrightarrow{W}_{\mu} \frac{\ell}{\nu}_{H}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $c_{HWB}$   | $H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$                         | $\begin{array}{c} q \gamma \\ q \\ q \\ z \\ z \\ q \\ q \\ q \\ q \\ q \\ q$                                                                                                                                                         | - | $c_{Hu}$                          | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$             | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $c_{eH}$    | $(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$                                    | $H - \mathcal{L}_{\ell}^{\ell}$                                                                                                                                                                                                       | - | $c_{Hd}$                          | $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$             | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

- EFT operators can be presented in different bases
- Warsaw basis is now widely used in ATLAS

Hongtao Yang (LBNL) Sept 29, 2021, Berkeley graduate student seminar





 Use narrow-width approximation, production and decay of Higgs boson can be factorized

$$(\sigma \times B)^{i,H \to X} = (\sigma \times B)^{i,H \to X}_{SM} (1 + \frac{\sigma_{int}^i}{\sigma_{SM}^i} + \dots) \frac{(1 + \frac{\Gamma_{int}^{H \to X}}{\Gamma_{SM}^{H \to X}} + \dots)}{(1 + \frac{\Gamma_{int}^{H}}{\Gamma_{SM}^{H}} + \dots)}$$

- Again the ratios can be expressed as 1st (interference) or 2nd (BSM) order polynomial of Wilson coefficients
- For both production cross-sections and decay branching ratios, two interpretation scenarios considered
  - Linear: only contains 1st order Wilson coefficients
  - (Linear + )Quadratic: also contains 2nd order terms to estimate the potential effect from higher order (incomplete)

## Linear (solid) vs. linear+quadratic (hollow)





Hongtao Yang (LBNL)



#### Acceptance effect



- Production: (partially) handled by phase-space partitions within the STXS framework
  - Analyses selections are usually aligned with STXS bin definitions
  - Acceptance effect within each STXS bin is neglected
- Decay: non-trivial effect in channels such as H→ZZ. Needs to take into account if possible
  - Plan to introduce STXS bins to decay





### Physics (Warsaw) basis → fit basis



#  $\lambda$  **ATLAS** Preliminary  $\sqrt{s} = 13$  TeV, 139 fb<sup>-1</sup>

| 1  | 299310 |       | -0.70 | -0.23 | 0.39  | -0.04 | -0.02 |       |       |       |       |       |       |       |       | 0.55  | 0.02            |       |                |       |       |                |       |       |       |       |             |       |       |       |           | -0.02 |       | T      |
|----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------------|-------|----------------|-------|-------|----------------|-------|-------|-------|-------|-------------|-------|-------|-------|-----------|-------|-------|--------|
| 2  | 121830 |       | -0.47 | -0.15 | 0.26  | -0.03 |       |       |       |       |       |       |       |       |       | -0.83 | -0.03           |       |                |       |       |                | LA    | S-    | CC    | DN    | <b>F-</b> : | 20    | 20    | -05   | <u>53</u> |       |       | 0.8    |
| 3  | 1960   | 0.99  |       | 0.10  | 0.03  |       |       |       | -0.03 | 0.09  | -0.05 |       |       | -0.02 | 0.02  |       |                 |       |                |       |       |                |       |       |       |       |             |       |       |       |           |       |       | 0.6    |
| 4  | 38     | -0.11 | 0.09  |       | 0.15  |       |       | 0.02  | -0.26 | 0.84  | -0.41 | -0.02 | -0.02 | -0.06 | 0.04  |       | 0.08            |       |                |       |       |                |       |       |       | 0.02  |             |       |       | 0.03  |           |       |       | 0.4    |
| 5  | 19     |       | 0.10  | -0.19 | 0.06  |       |       |       |       | 0.03  | -0.02 | -0.07 | 0.09  | -0.13 | 0.10  | 0.02  | -0.69           | 0.17  | 0.03           | 0.03  | 0.22  | 0.05           | 0.52  |       | 0.15  | -0.08 | 0.03        | 0.02  | 0.23  | 0.07  | 0.06      |       |       | 0.2    |
| 6  | 10     | 0.08  |       | -0.57 | -0.34 |       |       | -0.02 | -0.02 | 0.08  | -0.10 | 0.13  | -0.13 | 0.54  | -0.40 |       | -0.04           |       |                |       | 0.02  |                | 0.04  |       |       | -0.02 |             |       | 0.02  | -0.20 | -0.08     |       |       | 0      |
| 7  | 5.9    | -0.07 | -0.23 | 0.73  |       | -0.03 | -0.02 | -0.03 | -0.02 | 0.08  |       | 0.10  | -0.15 | 0.44  | -0.25 |       | -0.13           | 0.08  |                |       | 0.09  | 0.02           | 0.22  |       | 0.06  |       |             |       | 0.10  | -0.07 | -0.11     |       |       | 0      |
| 8  | 1.1    | -0.01 | -0.02 | 0.08  |       |       |       | -0.02 | -0.02 | 0.04  | -0.02 | -0.01 | 0.02  | 0.08  | -0.03 | 0.03  | -0.68           | -0.29 | -0.03          | -0.04 | -0.24 | -0.04          | -0.52 | -0.01 | -0.15 | -0.10 | -0.03       | -0.02 | -0.25 | 0.04  |           |       |       | -0.2   |
| 9  | 0.3    | -0.02 | -0.41 | 0.09  | -0.70 | -0.02 | -0.01 | -0.12 | 0.01  | -0.03 | -0.36 | 0.16  |       | -0.37 | 0.10  |       | -0.05           | 0.03  |                |       |       |                |       |       |       | 0.06  |             |       |       | 0.06  | -0.11     | -0.01 |       | -0.4   |
| 10 | 0.16   |       | 0.09  | -0.09 | 0.09  | -0.04 | -0.01 | -0.04 |       | 0.10  | 0.31  | 0.29  | -0.58 | -0.26 | -0.12 |       | -0.07           | 0.02  |                |       |       | -0.04          |       |       |       | 0.08  |             |       |       | 0.27  | -0.52     | -0.02 | 0.01  | -0.6   |
| 11 | 0.036  |       | 0.03  | 0.03  | 0.07  | -0.01 | 0.04  | 0.19  | -0.04 |       | 0.03  | 0.09  | -0.06 | -0.18 | -0.07 | 0.01  | -0.16           | 0.22  | -0.01          | 0.01  | -0.01 | -0.10          | -0.09 |       | -0.02 | 0.70  | -0.01       |       | -0.02 | -0.56 | 0.09      |       | -0.02 | -0.8   |
| 12 | 0.023  |       | -0.01 |       |       |       | 0.37  | -0.01 |       | -0.01 | -0.03 | -0.02 | 0.03  | 0.05  | 0.03  |       | 0.01            | -0.05 |                |       | 0.03  | -0.91          | 0.08  |       | 0.02  | -0.02 |             |       | 0.03  | 0.09  |           |       |       | 1      |
|    |        | Ena   | CHB   | CHAN  | UNB   | CUB   | CUN   | CHOD  | CHQ   | CHN   | Eha   | CHe   | EHI   | ÊH    | ۲۷    | CHG   | cu <sup>G</sup> | رك    | ()<br>()<br>() | Eda   | Caa   | ୍ଦ୍ରି<br>ଜୁନ୍ଦ | Eda   | Eau   | Equ   | cutt  | Cud         | Cuu   | 200   | CHC   | cdH       | CN    | Ceth  | <br>-1 |

- Warsaw basis cannot be used out of box due to large correlations
- Considering only linear terms. Calculate eigenvectors and eigenvalues of hesse matrix ( = (covariance)<sup>-1</sup>) from fitting to data
- Focus on eigenvectors with eigenvalue > 0.01





#  $\lambda$  **ATLAS** Preliminary  $\sqrt{s} = 13$  TeV, 139 fb<sup>-1</sup>

| 1  | 299310 |       | -0.70 | -0.23 | 0.39  | -0.04 | -0.02 |       |       |       |       |       |       |       |       | 0.55  | 0.02  |       |       |       |       |       |       |       |       |       |        |       |       |       |       | -0.02 |       |  |
|----|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|--|
| 2  | 121830 |       | -0.47 | -0.15 | 0.26  | -0.03 |       |       |       |       |       |       |       |       |       | -0.83 | -0.03 |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |  |
| 3  | 1960   | 0.99  |       | 0.10  | 0.03  |       |       |       | -0.03 | 0.09  | -0.05 |       |       | -0.02 | 0.02  |       |       |       |       |       |       |       |       |       |       |       |        |       |       |       |       |       |       |  |
| 4  | 38     | -0.11 | 0.09  |       | 0.15  |       |       | 0.02  | -0.26 | 0.84  | -0.41 | -0.02 | -0.02 | -0.06 | 0.04  |       | 0.08  |       |       |       |       |       |       |       |       | 0.02  |        |       |       | 0.03  |       |       |       |  |
| 5  | 19     |       | 0.10  | -0.19 | 0.06  |       |       |       |       | 0.03  | -0.02 | -0.07 | 0.09  | -0.13 | 0.10  | 0.02  | -0.69 | 0.17  | 0.03  | 0.03  | 0.22  | 0.05  | 0.52  |       | 0.15  | -0.08 | 0.03   | 0.02  | 0.23  | 0.07  | 0.06  |       |       |  |
| 6  | 10     | 0.08  |       | -0.57 | -0.34 |       |       | -0.02 | -0.02 | 0.08  | -0.10 | 0.13  | -0.13 | 0.54  | -0.40 |       | -0.04 |       |       |       | 0.02  |       | 0.04  |       |       | -0.02 |        |       | 0.02  | -0.20 | -0.08 |       |       |  |
| 7  | 5.9    | -0.07 | -0.23 | 0.73  |       | -0.03 | -0.02 | -0.03 | -0.02 | 0.08  |       | 0.10  | -0.15 | 0.44  | -0.25 |       | -0.13 | 0.08  |       |       | 0.09  | 0.02  | 0.22  |       | 0.06  |       |        |       | 0.10  | -0.07 | -0.11 |       |       |  |
| 8  | 1.1    | -0.01 | -0.02 | 0.08  |       |       |       | -0.02 | -0.02 | 0.04  | -0.02 | -0.01 | 0.02  | 0.08  | -0.03 | 0.03  | -0.68 | -0.29 | -0.03 | -0.04 | -0.24 | -0.04 | -0.52 | -0.01 | -0.15 | -0.10 | -0.03  | -0.02 | -0.25 | 0.04  |       |       |       |  |
| 9  | 0.3    | -0.02 | -0.41 | 0.09  | -0.70 | -0.02 | -0.01 | -0.12 | 0.01  | -0.03 | -0.36 | 0.16  |       | -0.37 | 0.10  |       | -0.05 | 0.03  |       |       |       |       |       |       |       | 0.06  |        |       |       | 0.06  | -0.11 | -0.01 |       |  |
| 10 | 0.16   |       | 0.09  | -0.09 | 0.09  | -0.04 | -0.01 | -0.04 |       | 0.10  | 0.31  | 0.29  | -0.58 | -0.26 | -0.12 |       | -0.07 | 0.02  |       |       |       | -0.04 |       |       |       | 0.08  |        |       |       | 0.27  | -0.52 | -0.02 | 0.01  |  |
| 11 | 0.036  |       | 0.03  | 0.03  | 0.07  | -0.01 | 0.04  | 0.19  | -0.04 |       | 0.03  | 0.09  | -0.06 | -0.18 | -0.07 | 0.01  | -0.16 | 0.22  | -0.01 | 0.01  | -0.01 | -0.10 | -0.09 |       | -0.02 | 0.70  | -0.01  |       | -0.02 | -0.56 | 0.09  |       | -0.02 |  |
| 12 | 0.023  |       | -0.01 |       |       |       | 0.37  | -0.01 |       | -0.01 | -0.03 | -0.02 | 0.03  | 0.05  | 0.03  |       | 0.01  | -0.05 |       |       | 0.03  | -0.91 | 0.08  |       | 0.02  | -0.02 |        |       | 0.03  | 0.09  |       |       |       |  |
|    |        | CHa   | CHB   | CHAN  | CHINB | CUB   | cun   | CHDD  | CHQ   | CHU   | Eha   | CHe   | ÊH    | (A)   | 21    | CHG   | cuG   | ςG    | ( ad  | Eda   | Caa   | Eda   | Enda  | Eau   | Eau   | cutt  | (B) ud | CUU   | Cuu   | CHD   | cdH   | CN    | ceth  |  |

- Fix coefficients that only scale the overall normalization ( $c_{H\square}$ ,  $c_{dH}$ ,  $c_{eH}$ ) to zero (degenerate with other coefficients)
- Regroup remaining parameters with physics judgement, and rediagonalize within each group



#### Final "fit basis" choice



$$\{c_i\} = \{c_{Hq}^{(3)}\} \times \{c_{HG}, c_{uG}, c_{uH}, c_{qq}^{(1)}, c_{qq}, c_{qq}^{(3)}, c_{qq}^{(31)}, c_{uu}, c_{uu}^{(1)}, c_{ud}^{(8)}, c_{qu}^{(1)}, c_{qd}^{(8)}, c_{G}\} \times \{c_{HW}, c_{HB}, c_{HWB}, c_{HDD}, c_{uW}, c_{uB}, \} \times \{c_{Hl}^{(1)}, c_{He}\} \times \{c_{Hl}^{(3)}, c_{ll}'\} \times \{c_{Hu}, c_{Hd}, c_{Hq}^{(1)}\}.$$





#### **Identify flat directions**





- After transforming Wilson coefficients into fit basis, identify flat directions and fix them to 0 in the fit
- We are finally ready for getting the results!



#### **Constraints of Wilson coefficients**







#### **Correlation matrix**





Hongtao Yang (LBNL)





# Towards the grand EFT combination

ATL-PHYS-PUB-2021-010





- So far we have only exercised EFT on Higgs boson production and decay measurements
  - In fact, the EFT operators modify not only Higgs, but also other SM processes measured at LHC
- The ultimate goal is to have a grand EFT
   combination including all relevant measurements
  - Very ambitious goal. Possibly a logistic nightmare
  - Study feasibility by combining two closely related processes: H→WW and SM WW











#### **Challenges: overlap**



- Higgs analysis signal region is orthogonal with SM analysis
- But Higgs analysis WW background control region overlaps with SM analysis
- Solution: use SM analysis as control region for Higgs analysis
  - Worsening ggF signal strength precision by 10%



# Challenges: different analysis techniques

- SM analysis provides an unfolded distribution, while Higgs analysis has full likelihood function
  - Construct a multi-Gaussian from SM diff. xs measurement.
     Introduce constrained nuisance parameters for systematics
  - Combine multi-Gaussian with
     Poisson likelihood function from
     Higgs analysis





#### **Impact of Wilson coefficients**







#### **Results**





Hongtao Yang (LBNL)





- LHC experiments are making good progress implementing EFT interpretations facilitated by the STXS framework
  - Many results based on Run 2 data are available
  - "Grand combination" covering Higgs, EW, and top measurements under preparation
- For longer term, EFT results will probably be an important legacy of LHC. This direction is worth pursuing further
  - Although we also need to be pragmatic and conscious with limitation of resource and person-power
- Finally, EFT ≠ everything! For new physics reachable by LHC, better to directly search for them