
Event processing 
frameworks

Alden Fan (SLAC/LZ)
16 November 2021

Software and Computing for Small HEP experiments
1



Outline

● Event processing in LZ

● Event processing for small scale experiments in 
general

● Some comments on long term

2
* The ideas expressed here are my own and do not necessarily reflect those of the LZ collaboration.



LZ data

time

vo
lt

ag
e

simulation

● DAQ data:
○ ~1400 channels digitized at 100 MS/s, zero-suppressed
○ ~40 MB/s
○ Self-triggered

● Run control data
● Environmental data:

○ 1000s of sensors (temperature, pressure, voltage, etc)
● Calibrations constants

3

DAQ data are PMT traces



LZ reconstruction

● LZap = LZ analysis package (poorly named)

● Built on Gaudi

● Deployed via cvmfs

● Three ~independent lower level chains that 
merge into a single higher level chain

● Peak finding, classification, position 
reconstruction (fitting)

● Retrieve environmental data, calibration data, 
run control data for each event

● Output: ROOT TTree of (very) jagged arrays… 
it’s vectors all the way down

4

Pulse finding
(HG only)

Pulse 
finding

Pulse 
finding

Pulse 
param. Pulse 

param.

Pulse param. 
w/ HG-LG 
mixing

Pulse 
classif.Pulse classif.

SS/MS 
selection

SS/MS 
corrections

TPC Skin OD



LZ analysis

● ALPACA = tortured acronym (Analysis Lz PACkAge)
● Thin wrapper around TTreeReader. Essentially, a lightweight framework.
● Core code to manage the event loop + user-written analysis modules. 

○ 1 analysis = 1 module
○ Helper scripts to quickly generate new modules

● Includes multiple services: histogramming, skimming, ML integration, more
● Anyone can easily run anyone else’s code
● Features, especially cut definitions, feed back into common codebase
● Extensive documentation. 

○ New features merged to core code only when documentation is updated. 
● Widely adopted: >60 users (~250 person experiment) and >100 modules

5



Frameworks

● “Small experiment” ≠ “small computing problem”
● Small experiments need nearly every feature of full-fledged framework:

○ Configuration management
○ I/O: Transient and persistent data models
○ Services:

■ Conditions & calibrations
■ Messaging
■ Provenance tracking(?)
■ etc

○ Algorithms: Sequencing, filtering
○ Multithreading
○ External libraries

● But not always a perfect fit...
6



Unique challenges

Small experiments can bring unique challenges

● For self-triggered data, precise timestamps and time-ordering of events 
is critical (DAQ)

● For liquid noble detectors, there are detector effects that often span 
multiple consecutive triggers → require sequential processing of 
events, ability to look at more than one event a time
○ Challenge for adopting existing tools from collider experiments
○ Especially columnar data processing

● ...

7



Provenance tracking

● Frameworks provide the ability to capture the full processing history of 
every event

● For LZ and DarkSide, this feature is not much utilized: 
○ Running reconstruction requires data and compute resources too 

large to do anywhere except in managed productions 
○ → History is captured by software releases and metadata tracking

8



Data slimming/skimming

● (My very biased view)
● Liquid xenon detectors have a long history of surprises - unexpected 

detector effects. 
● Systematics from reconstruction are complicated.
● Provide as much information downstream as possible, i.e. no slimming 

or skimming, especially in early days of an experiment
● → Need a downstream analysis model that supports this:

○ I/O speed vs. ease of access (particularly in ROOT/PyROOT)
○ Method to deploy common/core cuts, until centralized skimmed/slimmed data can be 

produced
■ Conflicts with BYO-tool

● LZ (mostly) achieved this with ALPACA
○ ALPACA can provide official cut definitions; analyzers choose which ones to apply
○ ALPACA can skim data ad hoc

9



Deployment and maintenance

● How do new experiments build up their reconstruction package?
○ Deployment of a new framework requires expert knowledge
○ Fermilab experiments using art benefit from Fermilab support
○ Other experiments must rely on prior or outside expertise
○ LZ as an example: no significant computing ties to Fermilab or CERN; worked hard to 

secure support for usage of Gaudi
■ Missing support for xrootd out of US data center

● Who will maintain the framework throughout the lifetime of an 
experiment?

10



Algorithm development

● Python is increasingly the preferred 
language in HEP and data science

● Reconstruction frameworks in C++

● For small experiments: reconstruction 
algorithms largely developed by 
students/postdocs → loss of potential 
contributors to reconstruction 
algorithms. 

● Trending to diverge more in the next 10 
years.

CHEP2021

New repositories in CMS vs. time
Trend applies to small experiments

11

https://indico.cern.ch/event/948465/contributions/4348790/attachments/2245532/3808347/HeatherCHEP5.pdf


Conclusion

● “Small experiment” ≠ “small data volume” or “small computing 
problem”

● Community-supported event processing frameworks are a good fit for 
small experiments

● But they require expert support that is sometimes (or often) lacking in 
small experiments

Thanks for many useful discussions with M.E. Monzani, Steffen Luitz, Simon Patton, Gianluca 
Petrillo, Kazuhiro Terao 12


