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A few things you maybe hadn’t 
heard and I think are cool
• Interesting developments in field (see LOIs)
• Papers
• NEXT Energy Distance

• Efforts worth knowing:
• NSF (and soon DOE?) Institutes
• Extrkx, didacts, DANCE-Edu

• Small experiments as ML Testbed [remaining time]
• Uncertainty quantification
• Robust physics-informed architectures

https://www.snowmass21.org/docs/files/?dir=summaries/CompF


Lots of work CNN classifiers

• CNN: Major advances in computer vision and natural 
language processing (NLP) in past decades, so we leverage 
heavily computer vision a la CNN
• Few borrow from NLP….

• Classifier: NNs were breakthrough in classification problems 
rather than regressions
• References

• DUNE: Neutrino interaction classification with a convolutional neural network in the DUNE far detector 
(2020) [link]

• IceCube: A convolutional neural network based cascade reconstruction for the IceCube Neutrino 
Observatory (2021) [link]

• Minerva: Neutral pion reconstruction using machine learning in the experiment at 〈Eν〉 6 GeV [link]
• MicroBooNE: Electromagnetic Shower Reconstruction and Energy Validation with Michel Electrons 

and π0 Samples for the Deep-Learning-Based Analyses in MicroBooNE [link]
• EXO: [link]
• LUX: [link]
• Most HEP results have ML in places within pipeline

• Mostly medium-scale experiments since small experiments rarely have effort to publish

A Review on Machine Learning for Neutrino Experiments (2020) Psihas et al

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07041/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07060/pdf
https://arxiv.org/abs/2110.11874
https://arxiv.org/abs/1804.09641
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.012011
https://inspirehep.net/literature/1810029


Cool thing:
NEXT’s Energy Distance
• NEXT is 0nuBD experiment.

• MC and data are always different, which can make supervised learning ill-defined
• Do data augmentation to avoid overfitting (top right)
• How quantify overfitting? And show learning important features in data

• Procedure: Augment, then look at “Energy Distance” in side band

• Small experiments are great test beds for new methods

2102.11931 also interesting

2009.10783

VGG19 (not their network)



Entities with relevant ML 
components:
• Physics + AI w/ IAIFI: Institute for Artificial Intelligence and 

Fundamental Interactions https://iaifi.org [mailing list]
• Fast ML w/ A3D3: Accelerated Artificial Intelligence 

Algorithms for Data-Driven Discover https://a3d3.ai
• Community with CLARIPHY: https://clariphy.org [google 

group]
• Track finding w/ Exa.TrkX: https://exatrkx.github.io/
• ML reconstruction w/ DIDACTS: https://didacts.org [output]
• HEP Software: https://iris-hep.org/
• DANCE-Edu: Fellowship and post-pandemic summer schools

https://iaifi.org/
http://mailman.mit.edu/mailman/listinfo/iaifi-news
https://a3d3.ai/
https://clariphy.org/
https://groups.google.com/a/clariphy.org/g/announcements
https://exatrkx.github.io/
https://didacts.org/
https://www.zenodo.org/communities/didacts/?page=1&size=20
https://iris-hep.org/
https://docs.google.com/forms/d/1quNi3jMS724h0nsR_iSTcrhymSRPqZ0xxygAKxobh9I/edit


DANCE-ML 2022?

• Successful DANCE-
ML in 2020 (Thanks, 
Scott!)
• No desire for 

remote. Again in 
22?
• Already funded

https://indico.physics.lbl.gov/event/1192/


Probabilistic Programming

• Deep link between ML and auto. differentiation
• Machine-learning optimization of experiment

• Articles on what this means [1] [2], great talk
• MODE Collaboration in Europe [info] [workshop]
• Key idea:

• Auto differentiation key to recent ML advances 
(backprop)

• For some function ‘f’, can see how output varies as vary 
parameters

• ‘f’ can be your simulation or ML model
• Can use to optimize experiments w/ e.g. NEST

https://www.tandfonline.com/doi/full/10.1080/10619127.2021.1881364
https://www.sciencedirect.com/science/article/pii/S2666032620300090?via%3Dihub
https://indico.cern.ch/event/1022938/contributions/4487279/
https://mode-collaboration.github.io/
https://mode-collaboration.github.io/workshop/index.html




Two novel classes of ML problems that 
experiments face, but small experiments can 
tackle more easily

Known Unknown

Knowns Known
Knowns

Unknown
Knows
Graph denoiser

Unknowns Known
Unknowns

Unknown 
Unknowns
Physics-constrained 
Graph NN



Exponential advances in direct-detection dark 
matter reveals missing methods

Machine
LearningObserved 

data and 
ground truth

Known science
+uncertainty
+synth. data

Pr[X|data, 
science] 

What is needed for discovery... 

Detector’s extreme simplicity and sensitivity requires 
deep understanding of each step of pipeline, and 1% 
improvements worth millions of dollars



Exponential advances in direct-detection dark 
matter reveals missing methods

• Measurement process, this is all 
we do
• Inverse problem
• 1/100 sensor spacing
• Poisson counting noise 
• Almost perfect forward model

• Dimensions have some meaning, 
not images, but no standard 
architectures
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Known Unknowns Bayesian Networks

w/ UDelaware, Tina Peters, Hagit Shatkay
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Figure 3. Spatial distribution of the ER back-
ground events from the detector materials inside
the active LXe volume, in the (1, 12) keV energy
range. The thick black line indicates the refer-
ence 1 t super-ellipsoid fiducial volume. With the
purple, red and brown lines, we indicate the FVs
corresponding to 800 kg, 1250 kg and 1530 kg,
respectively. The white regions present a back-
ground rate smaller than 1 ·10�6 (kg ·day ·keV)�1.
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Figure 4. The total ER background rate as a
function of the fiducial mass (black line), together
with the separate contributions from the detector
components (purple), 10 µBq/kg of 222Rn (red),
0.2 ppt of natKr (blue), solar neutrinos (green)
and 136Xe double-beta decay (brown). With the
dashed violet line we show the sum of the back-
ground sources uniformly distributed inside the
LXe volume. The rate is averaged over the en-
ergy range (1, 12) keV.

A lower bound in the background level can be evaluated by setting to zero all the
contaminations that are reported as upper limits in table 1. In this case the total background
rate is (6.7 ± 0.7) · 10�6 (kg · day · keV)�1, corresponding to (27 ± 3) y�1 in 1 t FV, about
10% smaller than the previous estimate.

The spatial distribution of the background events inside the whole active volume, in the
energy range (1, 12) keV, is shown in figure 3 together with some fiducial volumes (corres-
ponding to 800, 1000, 1250 and 1530 kg). The background rate as a function of the fiducial
mass is shown in figure 4.

3.2 222Rn

In XENON1T, the main intrinsic source of background in LXe comes from the decays of 222Rn
daughters. Being part of the 238U decay chain, 222Rn can emanate from the components of
the detector and the gas system, or diffuse through the vacuum seals. Due to its relatively
large half-life (3.8 days), it can homogeneously distribute inside the LXe volume (on the
contrary, the background from 220Rn is negligible due to its short half-life). Considering
222Rn daughters, down to the long-lived 210Pb, the most dangerous contribution comes from
the � decay of 214Pb to the ground state of 214Bi, with an end-point energy of 1019 keV,
where no other radiation is emitted. According to GEANT4, version 10.0, the branching
ratio for this channel is 10.9% 2. However, especially if the decay occurs close to the borders
of the active region, decays to other energy levels are also potentially dangerous since the
accompanying � can exit the detector undetected. This is responsible for the slightly higher
background rate from 222Rn seen at larger fiducial masses in figure 4. Given the increased
target mass in XENON1T, this effect is less relevant than what was observed in XENON100
[19]. The only other � emitter in the chain (214Bi), also a potential source of background, can

2Note that up to version 9.6 the branching ratio coded in GEANT4 was significantly smaller: 6.3%.
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TABLE I: Expected number of events for each background
component in the fiducial mass; in the full cS1 2 [3, 70] PE,
cS2b 2 [50, 8000] PE search region and in a reference region
between the NR median and �2� quantile in cS2b. Uncertain-
ties <0.005 events are omitted. The ER rate is unconstrained
in the likelihood; for illustration, we list the best-fit values to
the data in parentheses.

Full Reference

Electronic recoils (ER) (62 ± 8) (0.26+0.11
�0.07)

Radiogenic neutrons (n) 0.05 ± 0.01 0.02

CNNS (⌫) 0.02 0.01

Accidental coincidences (acc) 0.22 ± 0.01 0.06

Wall leakage (wall) 0.5 ± 0.3 0.01

Anomalous (anom) 0.10+0.10
�0.07 0.01 ± 0.01

Total background 63 ± 8 0.36+0.11
�0.07

50 GeV/c2, 10�46cm2 WIMP 1.66 ± 0.01 0.82 ± 0.06

pass these selections with >82% probability, as deter-
mined using simulated events or control samples derived
from calibration, and shown in green in Fig. 1.

The dark matter search uses a cylindrical (1042±12) kg
fiducial mass, which was defined before unblinding using
the reconstructed spatial distribution of ERs in the dark
matter search data and the energy distribution of ERs
from 220Rn. We restrict the search to cS1 2 [3, 70] PE
and cS2b 2 [50, 8000] PE, which causes little additional
loss of WIMP signals, as shown in black in Fig. 1.

Table I lists the six sources of background we consider
inside the fiducial mass and inside the search region. For
illustration, we also list the expected rate in a reference
region between the NR median and �2� quantile in cS2b

(i.e., between the red lines in Fig. 2c), for which Fig. 3
shows the background model projected onto cS1. This
reference region would contain about half of the WIMP
candidate events, while excluding 99.6% of the ER back-
ground. The WIMP search likelihood analysis uses the
full search region. Below we describe each background
component in more detail: all event rates are understood
to be inside the fiducial mass and the full search region.

First, our background model includes ERs, primarily
from � decays of 85Kr and the intrinsic 222Rn-progeny
214Pb, which cause a flat energy spectrum in the en-
ergy range of interest [9]. The ER background model
is based on a simulation of the detector response. We
use a model similar to [21] to convert the energy depo-
sition from ERs into scintillation photons and ionization
electrons, which we fit to 220Rn calibration data in (cS1,
cS2b) space (Fig. 2a).

The best-fit photon yield and recombination fluctua-
tions are comparable to those of [21]. The model ac-
counts for uncertainties of g1, g2, spatial variations of
the S1 and S2 light-collection e�ciencies, the electron-
extraction e�ciency, reconstruction and event-selection

e�ciency, and time dependence of the electron lifetime.
The rate of ERs is not constrained in the likelihood analy-
sis, even though we have independent concentration mea-
surements for 214Pb and 85Kr, since the most stringent
constraint comes from the search data itself.

Second and third, our background model includes
two sources of NRs: radiogenic neutrons contribute
(0.05±0.01) events, and coherent neutrino-nucleus scat-
tering (CNNS) ⇠0.02 events. Cosmogenically produced
neutrons are estimated to contribute O(10�3) events even
without muon-veto tagging. The NR background model
is built from a detector response simulation that shares
the same detector parameters and associated systematic
uncertainties as the ER background model above. The
main di↵erence is the energy-conversion model, where we
use the model and parametrization from NEST [22]. We
obtain the XENON1T response to NRs by fitting the
241AmBe calibration data (Fig. 2b) with the light and
charge yields from [22] as priors. Our NR response model
is therefore constrained by the global fit of external data.
It is also used to predict the WIMP signal models in (cS1,
cS2b) space. The S1 detection e�ciency, which is respon-
sible for our low-energy threshold, is consistent with its
prior (0.7�).

Fourth, accidental coincidences of uncorrelated S1s
and S2s are expected to contribute (0.22 ± 0.01) back-
ground events. We estimated their rate and (cS1, cS2b)
distribution using isolated S1 and S2 signals, which are
observed to be at (0.78 ± 0.01) Hz and (3.23 ± 0.03)
mHz, respectively, before applying S2-selections. The ef-
fect of our event selection on the accidental coincidence
rate is included, similar to [23]. Isolated S1s may arise
from interactions in regions of the detector with poor
charge collection, such as below the cathode, suppressing
an associated cS2 signal. Isolated S2s might arise from
photoionization at the electrodes, regions with poor light
collection, or from delayed extraction [24]. Most acciden-
tal events are expected at low cS1 and at lower cS2b than
typical NRs.

Fifth, inward-reconstructed events from near the
TPC’s PTFE wall are expected to contribute (0.5± 0.3)
events, with the rate and (cS1, cS2b) spectrum extrapo-
lated from events outside the fiducial mass. Most of these
events would appear at unusually low cS2b due to charge
losses near the wall. The inward reconstruction is due
to limited position reconstruction resolution, especially
limited for small S2s, near the 5 (out of 36) top PMTs in
the outermost ring that are unavailable in this analysis.

Sixth and last, we add a small uniform background in
the (cS1, log cS2b) space for ER events with an anoma-
lous cS2b. Such anomalous leakage beyond accidental co-
incidences has been observed in XENON100 [23], and one
such event is seen in the 220Rn calibration data (Fig. 2a).
If these were not 220Rn-induced events, their rate would
scale with exposure and we would see numerous such
events in the WIMP search data. We do not observe

1705.06655



For ‘graphical 
models’, these 

tables can be 
learned from 

full-chain 
simulations!

Poste
rio

r!

w/ UDelaware, Tina Peters, Hagit Shatkay
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Known Unknowns Bayesian Networks
Consider localization

Tutorial

1 cm² pixels

Sensor array
Average Poisson fluctuations

No explicit likelihood

Connect each PMT to 
each pixel

https://indico.fnal.gov/event/49237/


Tutorial

1 cm² pixels

Sensor array
Average Poisson fluctuations

• P(pixel_i | sensor_j)
• Poisson-ish

Graph Structure 
I trained a PGM with the structure shown at below. I do not plan to continue with this structure, 
but am using it while testing the Poisson representation.


The prior probability over Position node is simply the number of events in the pixel divided total 
number of events:





For the PMT nodes, the probability distribution is represented by a univariate Poisson. For 
example, for PMT #0 with an observed intensity of x0 the probability at Position p is:


 ,


where  is the parameter characterizing the distribution for PMT #0 at Position p.


The total number of values stored to calculate the conditional probability distributions using 
this graph is 6996 x 128.


P(Position) = [ Events in Pixel 0
Total Events , . . . , Events in Pixel 6995

Total Events ]

P(PMT #0 = x0, Position = p) =
e−λp,0λp,0

x0

x0!

λp,0

Known Unknowns Bayesian Networks

https://indico.fnal.gov/event/49237/


Known Unknowns Bayesian Networks

Tutorial

Inference 

When performing position reconstruction using this graph, the the evidence nodes are the PMT 
nodes, , and the Position node is the query node. The 
evidence for a single 
event is the measured 
intensities of the 
PMTs, .


The posterior 
probability 
distribution over the 
values of the Position 
for an example event 
is shown a right. The 
3-sigma and 5-sigma 
contours are shown 
in red and orange. 
(The 7-sigma contour 
is not shown.)


For a small test set of 
100 events, the 5-
sigma confidence 
level is ~2-4 cm in 
radius and encloses 
the true position for 
99 of the 100 events.


Summary 
• The discrete positions are now much smaller. There are now ~7000 discrete positions, each 

~1 cm2 in area.

• The discrete PMT random variables with ~3-20 values have been replaced by continuous 

PMT random variables represented by a univariate Poisson distribution characterized by a 
single parameter.


Next Steps 
• Quantitative evaluation of performance with large test set.

• Try fitting data with log Poisson and mixture model with multiple Poisson.

• Heuristic graph structure without learning.

• Learn graph structure.

• Decide writing schedule and write tech note.

χ = {PMT #0, . . . , PMT #126}

x0, . . . , x126

Per Event Uncertainty on regressed variable!!

Paper in preparation, but feel free to reach out

https://indico.fnal.gov/event/49237/


Known Unknown

Knowns Known
Knowns

Unknown
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Graph denoiser

Unknowns Known
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Bayesian Networks
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Average Poisson fluctuationsWhat makes “reconstruction” (i.e. inverse problem) 

difficult?

• Every new experiment measures something new

• Experimental physics has been shown to be 

48% voodoo

• Likelihood analysis pointless at raw-data 

level

• Petabytes of data, efficiency matters

• Out-of-the-box ML often fails

• Often regression, not classifier

• Data graphical, not square image

• Poisson counting noise, not normal

• No ground truth on data for supervised 

learning

• MC simulations mostly work

• ML learns model from data, scientists apply 

model to data

• “We have initial theory of cat photos”

• Interpretability / Physical constraints 

(energy positive)

Unknown Unknowns Physics-constrained Graph 

NN



Consider 
localization 
problem

Current state-
of-art is MLP 
with elu and 
two hidden 
layers, but can’t 
go deep 
learning

CNNs go deep by introducing locality via 
learned kernel to reduce complexity of 
layers.  Above is edge detector. 

Unknown Unknowns Physics-constrained Graph 
NN



Average Poisson fluctuations

Naively:
• Try convolutional 

graph NN
• Kernel hard, hex

• but ‘convolutional’ 
approaches require 
translational invariance

Unknown Unknowns Physics-constrained Graph 
NN



Average Poisson fluctuations

Naively:
• Try convolutional 

graph NN
• Kernel hard, hex

• but ‘convolutional’ 
approaches require 
translational invariance

• Treat each ‘node’ as if 
embedded in 
Euclidean space

Unknown Unknowns Physics-constrained Graph 
NN



Average Poisson fluctuations

Physical architectural 
constraints
• Events cannot be 

outside of the 
detector
• NN doesn’t know
• Corrections ill-

defined 
• Deeper learning 

allows more 
‘nonlinearity’

• Constrain output by 
tanh then transform

Unknown Unknowns Physics-constrained Graph 
NN



More publications (read later)
• Safety of Quark/Gluon Jet Classification, A. Romero, D. Whiteson, M. Fenton, J. Collado and P. Baldi, arXiv 2103.09103 (16 Mar 

2021) [1 citation].

• Efficient sampling of constrained high-dimensional theoretical spaces with machine learning, J. Hollingsworth, M. Ratz, P. Tanedo
and D. Whiteson, arXiv 2103.06957 (11 Mar 2021) [5 citations].

• Progress in developing a hybrid deep learning algorithm for identifying and locating primary vertices, S. Akar, G. Atluri, T. Boettcher, 
M. Peters, H. Schreiner et. al., arXiv 2103.04962 (08 Mar 2021).

• Learning to Isolate Muons, J. Collado, K. Bauer, E. Witkowski, T. Faucett, D. Whiteson et. al., arXiv 2102.02278 (03 Feb 2021) [1 
citation].

• Foundations of a Fast, Data-Driven, Machine-Learned Simulator, J. Howard, S. Mandt, D. Whiteson and Y. Yang, arXiv 2101.08944 
(21 Jan 2021) [4 citations].

• Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs, A. Heintz, V. Razavimaleki, J. Duarte, G. DeZoort, I. 
Ojalvo et. al., arXiv 2012.01563 (30 Nov 2020) [9 citations].

• Learning to Identify Electrons, J. Collado, J. Howard, T. Faucett, T. Tong, P. Baldi et. al., arXiv 2011.01984 (03 Nov 2020) [1 citation].

• Mapping Machine-Learned Physics into a Human-Readable Space, T. Faucett, J. Thaler and D. Whiteson, Phys.Rev.D 103 036020 
(2021) (22 Oct 2020) [12 citations].

• Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks, M. Fenton, A. Shmakov, T. Ho, S. 
Hsu, D. Whiteson et. al., arXiv 2010.09206 (19 Oct 2020) [6 citations].

• FPGAs-as-a-Service Toolkit (FaaST), D. Rankin, J. Krupa, P. Harris, M. Acosta Flechas, B. Holzman et. al., arXiv 2010.08556 (16 Oct 
2020) [4 citations].

• Sparse autoregressive models for scalable generation of sparse images in particle physics, Y. Lu, J. Collado, D. Whiteson and P. Baldi, 
Phys.Rev.D 103 036012 (2021) (23 Sep 2020) [4 citations].

• Bayesian Neural Networks for Fast SUSY Predictions, B. Kronheim, M. Kuchera, H. Prosper and A. Karbo, Phys.Lett.B 813 136041 
(2021) (13 Jul 2020) [1 citation].

• Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors, Y. Jwa, G. 
Guglielmo, L. Carloni and G. Karagiorgi, Unknown (01 Jun 2019) [1 citation].
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