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A few things you maybe hadn’t
heard and | think are cool

* Interesting developments in field (see LOls)
* Papers
* NEXT Energy Distance

e Efforts worth knowing:
* NSF (and soon DOE?) Institutes
e Extrkx, didacts, DANCE-Edu

* Small experiments as ML Testbed [remaining time]
* Uncertainty quantification
* Robust physics-informed architectures


https://www.snowmass21.org/docs/files/?dir=summaries/CompF

Lots of work CNN classifiers

* CNN: Major advances in computer vision and natural
language processing (NLP) in past decades, so we leverage
heavily computer vision ala CNN

e Few borrow from NLP....

 Classifier: NNs were breakthrough in classification problems
rather than regressions

. Refe rences
DUNE: Neutrlno interaction classification with a convolutional neural network in the DUNE far detector
(2020) [link]

IceCube: A convolutional neural network based cascade reconstruction for the IceCube Neutrino
Observatory (2021) [link]

Minerva: Neutral pion reconstruction using machine learning in the experiment at E,> 6 GeV [link]

MicroBooNE: EIectromaBnetic Shower Reconstruction and E.nerﬁ y Validation with Michel Electrons
and 0 Samples for the Deep-Learning-Based Analyses in MicroBooNE [link]

EXO: [link]
LUX: [link
Most HEP results have ML in places within pipeline

Mostly medium-scale experiments since small experiments rarely have effort to publish

A Review on Machine Learning for Neutrino Experiments (2020) Psihas et al



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.092003
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07041/pdf
https://iopscience.iop.org/article/10.1088/1748-0221/16/07/P07060/pdf
https://arxiv.org/abs/2110.11874
https://arxiv.org/abs/1804.09641
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.012011
https://inspirehep.net/literature/1810029

Cool thing:

NEXT’s Energy Distance

* NEXT is OnuBD experiment.

MC and data are always different, which can make supervised learning ill-defined

Do data augmentation to avoid overfitting (top right)

How quantify overfitting? And show learning important features in data

* Procedure: Augment, then look at “Energy Distance” in side band

* Small experiments are great test beds for new methods
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Entities with relevant ML
components:

* Physics + Al w/ IAIFI: Institute for Artificial Intelligence and
Fundamental Interactions https://iaifi.org [mailing list]

* Fast ML w/ A3D3: Accelerated Artificial Intelligence
Algorithms for Data-Driven Discover https://a3d3.ai

 Community with CLARIPHY: https://clariphy.org [google
group]
Track finding w/ Exa.TrkX: https://exatrkx.github.io/

ML reconstruction w/ DIDACTS: https://didacts.org [output]
HEP Software: https://iris-hep.org/
DANCE-Edu: Fellowship and post-pandemic summer schools



https://iaifi.org/
http://mailman.mit.edu/mailman/listinfo/iaifi-news
https://a3d3.ai/
https://clariphy.org/
https://groups.google.com/a/clariphy.org/g/announcements
https://exatrkx.github.io/
https://didacts.org/
https://www.zenodo.org/communities/didacts/?page=1&size=20
https://iris-hep.org/
https://docs.google.com/forms/d/1quNi3jMS724h0nsR_iSTcrhymSRPqZ0xxygAKxobh9I/edit

DANCE-ML 20227

e Successful DANCE-
ML in 2020 (Thanks,
Scott!)

* No desire for
remote. Again in
227

e Already funded

DANCE Machine Learning Workshop 2020

2020

3-7 August 2020

US/Pacific timezone

Overview

Scientific Programme
Timetable
Contribution List
Speaker List

My Conference

My Contributions

Registration

Participant List

Organizers

(4| swkravitz@Ibl.gov
(4| tunnell@rice.edu
X iostrovskiy@ua.edu

(4| kterao@slac.stanford.edu

Dark-matter and Neutrino Computation Explored (DANCE)
Machine Learning Workshop 2020

Slido links:
Live questions, careers panel

Recordings can be found in the timetable. In some cases, they are attached to the specific talk, i.e.
"detailed" view, in other cases to the session or the "intro" or "review" at the start of the day. Unedited

versions are being added first, followed by edited versions when available for the respective
being recorded.

Building on the success of the DANCE computing workshop, DANCE-ML will provide a forum to share
and discuss machine learning applications in the context of the dark matter direct detection and
neutrino physics community. As these experiments grow in size and complexity, the ability to extract
as much useful information as possible from the underlying data becomes crucial. The goal of this
workshop is to bridge the gap between broader scientific machine learning clinics and

workshops geared toward large accelerator experiments, so that we can better solve the unique
challenges of our shared domain. All those interested in machine learning within or adjacent to these
areas are encouraged to attend, regardless of position or experience.

Due to the ongoing COVID-19 epidemic, this workshop will be held virtually via Zoom rather than in-
person at LBNL as originally planned.

The registration deadline is July-12 now Aug 2. Attendees are encouraged to register as soon as
convenient to facilitate session planning. Registration is free, but required for all attendees.

If you would like to share on Twitter, please use #DANCEML.

Program

The first day will be spent on interactive tutorials (one aimed at novice ML practitioners, one more
advanced), with each of the four subsequent days centered around a topic identified as a priority at
DANCE 2019:


https://indico.physics.lbl.gov/event/1192/

Probabilistic Programming

* Deep link between ML and auto. differentiation

* Machine-learning optimization of experiment
e Articles on what this means [1] [2], great talk

* MODE Collaboration in Europe [info] [workshop]
* Key idea:

» Auto differentiation key to recent ML advances
(backprop)

* For some function ‘¥, can see how output varies as vary
parameters

e ‘f” can be your simulation or ML model )
« Can use to optimize experiments w/ e.g. NEST  [(x):R" =R

automatic
differentiation

Vi = (5o 5 )

ox1 Oxp



https://www.tandfonline.com/doi/full/10.1080/10619127.2021.1881364
https://www.sciencedirect.com/science/article/pii/S2666032620300090?via%3Dihub
https://indico.cern.ch/event/1022938/contributions/4487279/
https://mode-collaboration.github.io/
https://mode-collaboration.github.io/workshop/index.html

Differentiable programming in partlcle phy5|cs

e Differentiable analysis
Unify analysis pipeline by simultaneously ~ e a0
optimizing the free parameters of an analysis (@E)))
with respect to the desired physics objective : ‘

e Differentiable simulation
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Baydin, Cranmer, Feickert, Gray, Heinrich, Held, Melo, Neubauer, Pearkes, Simpson, Smith, Stark, Thais, Vassilev, Watts. 2020.
“Differentiable Programming in High-Energy Physics.” In Snowmass 2021 Letters of Interest (LOI), Division of Particles and Fields (DPF),
American Physical Society. https://snowmass21.org/loi.
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Detector’s extreme simplicity and sensitivity requires
deep understanding of each step of pipeline, and 1%
improvements worth millions of dollars

What is needed for discovery...

Machine
Learning

=P Pr[X|data,

science]

Observed
data and

—ground-truth-
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* Measurement process, this is all
we do

* Inverse problem

* 1/100 sensor spacing

*  Poisson counting noise

*  Almost perfect forward model

* Dimensions have some meaning,
not images, but no standard
architectures

RSOO N RZ



Unknown

Knowns Known Unknown
Knowns Knows

Graph denoiser

Unknown
Unknowns

Physics-constrained
Graph NN

Known
Unknowns

Bayesian Networks

Unknowns




107! TABLE I: Expected number of events for each background

Iuidfll_ll_lj-_ﬂ LR ||||HT X i 3
400 = e B TR o component in the fiducial mass; in the full ¢S1 € [3,70] PE,
- TR B ; 102 — cS2; € [50,8000] PE search region and in a reference region
300 o w > between the NR median and —20 quantile in ¢S2;,. Uncertain-
200 ' ' ‘S_j ties <0.005 events are omitted. The ER rate is unconstrained
g ' 100 in the likelihood; for illustration, we list the best-fit values to

rg* 100 — _cg{‘ the data in parentheses.

g 0 ' 10 on Full Reference
N _100E . ﬁ Electronic recoils (ER) (62 + 8) (0.2613:%)
= . — Radiogenic neutrons (n) 0.05 £+ 0.01 0.02
200 : 10° &  ONNS (v) 0.02 0.01
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_400E - ] - -r.---l-..f.- ,... 10 Wall leakage (wall) 0.5+ 0.3 0.01
L . T sttt %10° Anomalous (anom) 0.1073:8%  0.01 4+ 0.01
0 20 40 60 80 100 120 140 160 180 200 220 Total background 63 £ 8 0.36155%
R? [mm?] 50 GeV/c?, 10~ *®cm® WIMP  1.66 + 0.01  0.82 4+ 0.06

1512.0750
1705.06655

w/ UDelaware, Tina Peters, Hagit Shatkay
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For ‘graphical
models’, these
tables can be
learned from
full-chain
simulations!

T F 0.9 0.1
T T 0.99 0.01

w/ UDelaware, Tina Peters, Hagit Shatkay



Sensor array

Poisson fluctuations

Average
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https://indico.fnal.gov/event/49237/
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https://indico.fnal.gov/event/49237/

Per Event Uncertainty on regressed variable!!
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Tutorial Paper in preparation, but feel free to reach out


https://indico.fnal.gov/event/49237/
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What makes “reconstruction” (i.e. inverse problem) Average Poisson fluctuations
difficult? 601
e Every new experiment measures something new 8
* Experimental physics has been shown to be 20| 8303@
48% voodoo 5 &
e Likelihood analysis pointless at raw-data .,
level
* Petabytes of data, efficiency matters
e Out-of-the-box ML often fails
e Often regression, not classifier
* Data graphical, not square image
e Poisson counting noise, not normal
* No ground truth on data for supervised
learning
* MC simulations mostly work
* ML learns model from data, scientists apply
model to data
* “We have initial theory of cat photos”

500 2
* Interpretability / Physical constraints R — R

(energy positive)
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y-position [cm]

Naively:

* Try convolutional
graph NN

Kernel hard, hex

but ‘convolutional’

approaches require

translational invariance
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Naively:

* Try convolutional
graph NN

Kernel hard, hex

* but ‘convolutional’
approaches require
translational invarianc

 Treat each ‘node’ as i

embedded in
Euclidean space

Average Poisson fluctuations
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Physical architectural
constraints
e Events cannot be
outside of the
detector
* NN doesn’t know
e Corrections ill-
defined
* Deeper learning
allows more
‘nonlinearity’
e Constrain output by
tanh then transform

Average

Poisson fluctuations
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More publications (read later

Safety of Quark/Gluon Jet Classification, A. Romero, D. Whiteson, M. Fenton, J. Collado and P. Baldi, arXiv 2103.09103 (16 Mar
2021) [1 citation].

Efficient sampling of constrained high-dimensional theoretical spaces with machine learning, J. Hollingsworth, M. Ratz, P. Tanedo
and D. Whiteson, arXiv 2103.06957 (11 Mar 2021) [5 citations].

Progress in developing a hybrid deep learning algorithm for identifying and locating primary vertices, S. Akar, G. Atluri, T. Boettcher,
M. Peters, H. Schreiner et. al., arXiv 2103.04962 (08 Mar 2021).

Learning to Isolate Muons, J. Collado, K. Bauer, E. Witkowski, T. Faucett, D. Whiteson et. al., arXiv 2102.02278 (03 Feb 2021) [1
citation].

Foundations of a Fast, Data-Driven, Machine-Learned Simulator, J. Howard, S. Mandt, D. Whiteson and Y. Yang, arXiv 2101.08944
(21 Jan 2021) [4 citations].

Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs, A. Heintz, V. Razavimaleki, J. Duarte, G. DeZoort, I.
Ojalvo et. al., arXiv 2012.01563 (30 Nov 2020) [9 citations].

Learning to Identify Electrons, J. Collado, J. Howard, T. Faucett, T. Tong, P. Baldi et. al., arXiv 2011.01984 (03 Nov 2020) [1 citation].

Mapping Machine-Learned Physics into a Human-Readable Space, T. Faucett, J. Thaler and D. Whiteson, Phys.Rev.D 103 036020
(2021) (22 Oct 2020) [12 citations].

Permutationless Many-Jet Event Reconstruction with Symmetry Preserving Attention Networks, M. Fenton, A. Shmakov, T. Ho, S.
Hsu, D. Whiteson et. al., arXiv 2010.09206 (19 Oct 2020) [6 citations].

FPGAs-as-a-Service Toolkit (FaaST), D. Rankin, J. Krupa, P. Harris, M. Acosta Flechas, B. Holzman et. al., arXiv 2010.08556 (16 Oct
2020) [4 citations].

Sparse autoregressive models for scalable generation of sparse images in particle physics, Y. Lu, J. Collado, D. Whiteson and P. Baldi,
Phys.Rev.D 103 036012 (2021) (23 Sep 2020) [4 citations].

Bayesian Neural Networks for Fast SUSY Predictions, B. Kronheim, M. Kuchera, H. Prosper and A. Karbo, Phys.Lett.B 813 136041
(2021) (13 Jul 2020) [1 citation].

Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors, Y. Jwa, G.
Guglielmo, L. Carloni and G. Karagiorgi, Unknown (01 Jun 2019) [1 citation].
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